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Abstract

Splitting and rephrasing a complex sen-
tence into several shorter sentences that
convey the same meaning is a chal-
lenging problem in NLP. We show that
while vanilla seq2seq models can reach
high scores on the proposed benchmark
(Narayan et al., 2017), they suffer from
memorization of the training set which
contains more than 89% of the unique
simple sentences from the validation and
test sets. To aid this, we present a
new train-development-test data split and
neural models augmented with a copy-
mechanism, outperforming the best re-
ported baseline by 8.68 BLEU and foster-
ing further progress on the task.

1 Introduction

Processing long, complex sentences is challeng-
ing. This is true either for humans in various
circumstances (Inui et al., 2003; Watanabe et al.,
2009; De Belder and Moens, 2010) or in NLP
tasks like parsing (Tomita, 1986; McDonald and
Nivre, 2011; Jelı́nek, 2014) and machine trans-
lation (Chandrasekar et al., 1996; Pouget-Abadie
et al., 2014; Koehn and Knowles, 2017). An auto-
matic system capable of breaking a complex sen-
tence into several simple sentences that convey the
same meaning is very appealing.

A recent work by Narayan et al. (2017) in-
troduced a dataset, evaluation method and base-
line systems for the task, naming it “Split-and-
Rephrase”. The dataset includes 1,066,115 in-
stances mapping a single complex sentence to a
sequence of sentences that express the same mean-
ing, together with RDF triples that describe their
semantics. They considered two system setups: a
text-to-text setup that does not use the accompany-

ing RDF information, and a semantics-augmented
setup that does. They report a BLEU score of 48.9
for their best text-to-text system, and of 78.7 for
the best RDF-aware one. We focus on the text-to-
text setup, which we find to be more challenging
and more natural.

We begin with vanilla SEQ2SEQ models with
attention (Bahdanau et al., 2015) and reach an ac-
curacy of 77.5 BLEU, substantially outperforming
the text-to-text baseline of Narayan et al. (2017)
and approaching their best RDF-aware method.
However, manual inspection reveal many cases
of unwanted behaviors in the resulting outputs:
(1) many resulting sentences are unsupported by
the input: they contain correct facts about rele-
vant entities, but these facts were not mentioned
in the input sentence; (2) some facts are re-
peated—the same fact is mentioned in multiple
output sentences; and (3) some facts are missing—
mentioned in the input but omitted in the output.

The model learned to memorize entity-fact pairs
instead of learning to split and rephrase. Indeed,
feeding the model with examples containing enti-
ties alone without any facts about them causes it
to output perfectly phrased but unsupported facts
(Table 3). Digging further, we find that 99%
of the simple sentences (more than 89% of the
unique ones) in the validation and test sets also
appear in the training set, which—coupled with
the good memorization capabilities of SEQ2SEQ

models and the relatively small number of dis-
tinct simple sentences—helps to explain the high
BLEU score.

To aid further research on the task, we pro-
pose a more challenging split of the data. We
also establish a stronger baseline by extending
the SEQ2SEQ approach with a copy mechanism,
which was shown to be helpful in similar tasks (Gu
et al., 2016; Merity et al., 2017; See et al., 2017).
On the original split, our models outperform the
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count unique
RDF entities 32,186 925
RDF relations 16,093 172
complex sentences 1,066,115 5,544
simple sentences 5,320,716 9,552
train complex sentences 886,857 4,438
train simple sentences 4,451,959 8,840
dev complex sentences 97,950 554
dev simple sentences 475,337 3,765
test complex sentences 81,308 554
test simple sentences 393,420 4,015
% dev simple in train 99.69% 90.9%
% test simple in train 99.09% 89.8%
% dev vocab in train 97.24%
% test vocab in train 96.35%

Table 1: Statistics for the WEBSPLIT dataset.

best baseline of Narayan et al. (2017) by up to 8.68
BLEU, without using the RDF triples. On the new
split, the vanilla SEQ2SEQ models break com-
pletely, while the copy-augmented models per-
form better. In parallel to our work, an updated
version of the dataset was released (v1.0), which is
larger and features a train/test split protocol which
is similar to our proposal. We report results on this
dataset as well. The code and data to reproduce
our results are available on Github.1 We encour-
age future work on the split-and-rephrase task to
use our new data split or the v1.0 split instead of
the original one.

2 Preliminary Experiments

Task Definition In the split-and-rephrase task
we are given a complex sentence C, and need to
produce a sequence of simple sentences T1, ..., Tn,
n ≥ 2, such that the output sentences convey all
and only the information in C. As additional su-
pervision, the split-and-rephrase dataset associates
each sentence with a set of RDF triples that de-
scribe the information in the sentence. Note that
the number of simple sentences to generate is not
given as part of the input.

Experimental Details We focus on the task of
splitting a complex sentence into several simple
ones without access to the corresponding RDF
triples in either train or test time. For evaluation
we follow Narayan et al. (2017) and compute the
averaged individual multi-reference BLEU score
for each prediction.2 We split each prediction to

1https://github.com/biu-nlp/
sprp-acl2018

2Note that this differs from ”normal” multi-reference
BLEU (as implemented in multi-bleu.pl) since the
number of references differs among the instances in the test-

Model BLEU #S/C #T/S
SOURCE 55.67 1.0 21.11
REFERENCE – 2.52 10.93
Narayan et al. (2017)
HYBRIDSIMPL 39.97 1.26 17.55
SEQ2SEQ 48.92 2.51 10.32
MULTISEQ2SEQ* 42.18 2.53 10.69
SPLIT-MULTISEQ2SEQ* 77.27 2.84 11.63
SPLIT-SEQ2SEQ* 78.77 2.84 9.28
This work
SEQ2SEQ128 76.56 2.53 10.53
SEQ2SEQ256 77.48 2.57 10.56
SEQ2SEQ512 75.92 2.59 10.59

Table 2: BLEU scores, simple sentences per
complex sentence (#S/C) and tokens per simple
sentence (#T/S), as computed over the test set.
SOURCE are the complex sentences and REFER-
ENCE are the reference rephrasings from the test
set. Models marked with * use the semantic RDF
triples.

sentences3 and report the average number of sim-
ple sentences in each prediction, and the average
number of tokens for each simple sentence. We
train vanilla sequence-to-sequence models with at-
tention (Bahdanau et al., 2015) as implemented
in the OPENNMT-PY toolkit (Klein et al., 2017).4

Our models only differ in the LSTM cell size (128,
256 and 512, respectively). See the supplemen-
tary material for training details and hyperparame-
ters. We compare our models to the baselines pro-
posed in Narayan et al. (2017). HYBRIDSIMPL

and SEQ2SEQ are text-to-text models, while the
other reported baselines additionally use the RDF
information.

Results As shown in Table 2, our 3 models ob-
tain higher BLEU scores then the SEQ2SEQ base-
line, with up to 28.35 BLEU improvement, de-
spite being single-layer models vs. the 3-layer
models used in Narayan et al. (2017). A possible
explanation for this discrepancy is the SEQ2SEQ

baseline using a dropout rate of 0.8, while we
use 0.3 and only apply it on the LSTM out-
puts. Our results are also better than the MUL-
TISEQ2SEQ and SPLIT-MULTISEQ2SEQ mod-
els, which use explicit RDF information. We
also present the macro-average5 number of sim-

set.
3Using NLTK v3.2.5 https://www.nltk.org/
4https://github.com/OpenNMT/OpenNMT-py

commit d4ab35a
5Since the number of references varies greatly from one

complex sentence to another, (min: 1, max: 76,283, median:
16) we avoid bias towards the complex sentences with many
references by performing macro average, i.e. we first average
the number of simple sentences in each reference among the

https://github.com/biu-nlp/sprp-acl2018
https://github.com/biu-nlp/sprp-acl2018
https://www.nltk.org/
https://github.com/OpenNMT/OpenNMT-py
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Input Prediction
A Fortress of Grey Ice with ISBM 0-7653-
0633-6 has 672 pages .

J.V. Jones authored A Fortress of Grey Ice .
A Fortress of Grey Ice has 672 pages .

The address , 11 Diagonal Street is located
in South Africa where the leader is Cyril
Ramaphosa and some Asian South Africans
live .

The address , 11 Diagonal Street is located in South Africa .
The leader of South Africa is called Cyril Ramaphosa .
The leader of South Africa is called Cyril Ramaphosa .
The leader of South Africa is called Cyril Ramaphosa .

Alan Shepard Alan Shepard Alan Shepard Alan Shepard is dead .
Alan Shepard was a test pilot .

AFC Ajax AFC Ajax AFC Ajax AFC Ajax ’s manager is Jong Ajax .
AFC Ajax N.V. own Sportpark De Toekomst .

Table 3: Predictions from a vanilla SEQ2SEQ model, illustrating unsupported facts, missing facts and
repeated facts. The last two rows show inputs we composed to demonstrate that the models memorize
entity-fact pairs.

ple sentences per complex sentence in the ref-
erence rephrasings (REFERENCE) showing that
the SPLIT-MULTISEQ2SEQ and SPLIT-SEQ2SEQ

baselines may suffer from over-splitting since the
reference splits include 2.52 simple sentences on
average, while the mentioned models produced
2.84 sentences.

Figure 1: SEQ2SEQ512’s attention weights. Hor-
izontal: input. Vertical: predictions.

Analysis We begin analyzing the results by
manually inspecting the model’s predictions on
the validation set. This reveals three common
kinds of mistakes as demonstrated in Table 3: un-
supported facts, repetitions, and missing facts. All
the unsupported facts seem to be related to enti-
ties mentioned in the source sentence. Inspecting
the attention weights (Figure 1) reveals a worry-
ing trend: throughout the prediction, the model
focuses heavily on the first word in of the first en-
tity (“A wizard of Mars”) while paying little atten-
tion to other cues like “hardcover”, “Diane” and

references of a specific complex sentence, and then average
these numbers.

“the ISBN number”. This explains the abundance
of “hallucinated” unsupported facts: rather than
learning to split and rephrase, the model learned
to identify entities, and spit out a list of facts it had
memorized about them. To validate this assump-
tion, we count the number of predicted sentences
which appeared as-is in the training data. We find
that 1645 out of the 1693 (97.16%) predicted sen-
tences appear verbatim in the training set. Table
1 gives more detailed statistics on the WEBSPLIT

dataset.
To further illustrate the model’s recognize-and-

spit strategy, we compose inputs containing an
entity string which is duplicated three times, as
shown in the bottom two rows of Table 3. As
expected, the model predicted perfectly phrased
and correct facts about the given entities, although
these facts are clearly not supported by the input.

3 New Data-split

The original data-split is not suitable for measur-
ing generalization, as it is susceptible to “cheat-
ing” by fact memorization. We construct a
new train-development-test split to better reflect
our expected behavior from a split-and-rephrase
model. We split the data into train, development
and test sets by randomly dividing the 5,554 dis-
tinct complex sentences across the sets, while us-
ing the provided RDF information to ensure that:

1. Every possible RDF relation (e.g., BORNIN,
LOCATEDIN) is represented in the training
set (and may appear also in the other sets).

2. Every RDF triplet (a complete fact) is repre-
sented only in one of the splits.

While the set of complex sentences is still di-
vided roughly to 80%/10%/10% as in the original
split, now there are nearly no simple sentences in
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count unique
train complex sentences 1,039,392 4,506
train simple sentences 5,239,279 7,865
dev complex sentences 13,294 535
dev simple sentences 39,703 812
test complex sentences 13,429 503
test simple sentences 41,734 879
# dev simple in train 35 (0.09%)
# test simple in train 1 (0%)
% dev vocab in train 62.99%
% test vocab in train 61.67%
dev entities in train 26/111 (23.42%)
test entities in train 25/120 (20.83%)
dev relations in train 34/34 (100%)
test relations in train 37/37 (100%)

Table 4: Statistics for the RDF-based data split

the development and test sets that appear verba-
tim in the train-set. Yet, every relation appear-
ing in the development and test sets is supported
by examples in the train set. We believe this split
strikes a good balance between challenge and fea-
sibility: to succeed, a model needs to learn to iden-
tify relations in the complex sentence, link them to
their arguments, and produce a rephrasing of them.
However, it is not required to generalize to unseen
relations. 6

The data split and scripts for creating it are
available on Github.7 Statistics describing the data
split are detailed in Table 4.

4 Copy-augmented Model

To better suit the split-and-rephrase task, we aug-
ment the SEQ2SEQ models with a copy mecha-
nism. Such mechanisms have proven to be benefi-
cial in similar tasks like abstractive summarization
(Gu et al., 2016; See et al., 2017) and language
modeling (Merity et al., 2017). We hypothesize
that biasing the model towards copying will im-
prove performance, as many of the words in the
simple sentences (mostly corresponding to enti-
ties) appear in the complex sentence, as evident by
the relatively high BLEU scores for the SOURCE

baseline in Table 2.
Copying is modeled using a “copy switch”

probability p(z) computed by a sigmoid over a
learned composition of the decoder state, the con-
text vector and the last output embedding. It in-
terpolates the psoftmax distribution over the target
vocabulary and a copy distribution pcopy over the
source sentence tokens. pcopy is simply the com-
puted attention weights. Once the above distribu-

6The updated dataset (v1.0, published by Narayan et al.
after this work was accepted) follows (2) above, but not (1).

7https://github.com/biu-nlp/
sprp-acl2018

BLEU #S/C #T/S
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SOURCE 55.67 1.0 21.11
REFERENCE – 2.52 10.93
SPLIT-SEQ2SEQ 78.77 2.84 9.28
SEQ2SEQ128 76.56 2.53 10.53
SEQ2SEQ256 77.48 2.57 10.56
SEQ2SEQ512 75.92 2.59 10.59
COPY128 78.55 2.51 10.29
COPY256 83.73 2.49 10.66
COPY512 87.45 2.56 10.50

ne
w

da
ta

sp
lit

SOURCE 55.66 1.0 20.37
REFERENCE – 2.40 10.83
SEQ2SEQ128 5.55 2.27 11.68
SEQ2SEQ256 5.28 2.27 10.54
SEQ2SEQ512 6.68 2.44 10.23
COPY128 16.71 2.0 10.53
COPY256 23.78 2.38 10.55
COPY512 24.97 2.87 10.04

v1
.0

SOURCE 56.1 1.0 20.4
REFERENCE – 2.48 10.69
COPY512 25.47 2.29 11.74

Table 5: Results over the test sets of the original,
our proposed split and the v1.0 split

tions are computed, the final probability for an out-
put word w is:

p(w) = p(z = 1)pcopy(w) + p(z = 0)psoftmax(w)

In case w is not present in the output vocabulary,
we set psoftmax(w) = 0. We refer the reader to
See et al. (2017) for a detailed discussion regard-
ing the copy mechanism.

5 Experiments and Results

Models with larger capacities may have greater
representation power, but also a stronger tendency
to memorize the training data. We therefore per-
form experiments with copy-enhanced models of
varying LSTM widths (128, 256 and 512). We
train the models using the negative log likelihood
of p(w) as the objective. Other than the copy
mechanism, we keep the settings identical to those
in Section 2. We train models on the original split,
our proposed data split and the v1.0 split.

Results Table 5 presents the results. On the orig-
inal data-split, the COPY512 model outperforms
all baselines, improving over the previous best by
8.68 BLEU points. On the new data-split, as ex-
pected, the performance degrades for all models,
as they are required to generalize to sentences not
seen during training. The copy-augmented mod-
els perform better than the baselines in this case as
well, with a larger relative gap which can be ex-
plained by the lower lexical overlap between the
train and the test sets in the new split. On the v1.0
split the results are similar to those on our split,

https://github.com/biu-nlp/sprp-acl2018
https://github.com/biu-nlp/sprp-acl2018
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Input Prediction
Madeleine L’Engle who is influenced by George
Macdonald wrote “ A Severed Wasp ” .

A Severed Wasp was written by George Macdonald .
A Severed Wasp is from the United States .

The A.C. Lumezzane has 4150 members and play
in the Lega Pro League .

A.C. Lumezzane ’s ground is in the Lega Pro League .
A.C. Lumezzane has 4150 members .

Irish English is the official language of Ireland ,
which is lead by Enda Kenny and home to Adare
Manor .

Adare Manor is located in Ireland .
English is the language of Ireland .
English is the language of Ireland . (repeated x3)

Table 6: Predictions from the COPY512 model, trained on the new data split.

in spite of it being larger (1,331,515 vs. 886,857
examples), indicating that merely adding data will
not solve the task.

Analysis We inspect the models’ predictions for
the first 20 complex sentences of the original and
new validation sets in Table 7. We mark each sim-
ple sentence as being “correct” if it contains all
and only relevant information, “unsupported” if it
contains facts not present in the source, and “re-
peated” if it repeats information from a previous
sentence. We also count missing facts. Figure
2 shows the attention weights of the COPY512
model for the same sentence in Figure 1. Reassur-
ingly, the attention is now distributed more evenly
over the input symbols. On the new splits, all
models perform catastrophically. Table 6 shows
outputs from the COPY512 model when trained
on the new split. On the original split, while
SEQ2SEQ128 mainly suffers from missing infor-
mation, perhaps due to insufficient memorization
capacity, SEQ2SEQ512 generated the most unsup-
ported sentences, due to overfitting or memoriza-
tion. The overall number of issues is clearly re-
duced in the copy-augmented models.

Figure 2: Attention weights from the COPY512
model for the same input as in Figure 1.

Model unsup. repeated correct missing
original split
SEQ2SEQ128 5 4 40/49 (82%) 9
SEQ2SEQ256 2 2 42/46 (91%) 5
SEQ2SEQ512 12 2 36/49 (73%) 5

COPY128 3 4 42/49 (86%) 4
COPY256 3 2 45/50 (90%) 6
COPY512 5 0 46/51 (90%) 3
new split

SEQ2SEQ128 37 8 0 54
SEQ2SEQ256 41 7 0 54
SEQ2SEQ512 43 5 0 54

COPY128 23 3 2/27 (7%) 52
COPY256 35 2 3/40 (7%) 49
COPY512 36 13 11/54 (20%) 43
v1.0 split
COPY512 41 3 3/44 (7%) 51

Table 7: Results of the manual analysis, showing
the number of simple sentences with unsupported
facts (unsup.), repeated facts, missing facts and
correct facts, for 20 complex sentences from the
original and new validation sets.

6 Conclusions
We demonstrated that a SEQ2SEQ model can ob-
tain high scores on the original split-and-rephrase
task while not actually learning to split-and-
rephrase. We propose a new and more challenging
data-split to remedy this, and demonstrate that the
cheating SEQ2SEQ models fail miserably on the
new split. Augmenting the SEQ2SEQ models with
a copy-mechanism improves performance on both
data splits, establishing a new competitive base-
line for the task. Yet, the split-and-rephrase task
(on the new split) is still far from being solved.
We strongly encourage future research to evaluate
on our proposed split or on the recently released
version 1.0 of the dataset, which is larger and also
addresses the overlap issues mentioned here.
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