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Abstract

Traditional word embedding approaches
learn semantic information at word level
while ignoring the meaningful internal
structures of words like morphemes.
Furthermore, existing morphology-based
models directly incorporate morphemes
to train word embeddings, but still neglect
the latent meanings of morphemes. In this
paper, we explore to employ the latent
meanings of morphological compositions
of words to train and enhance word
embeddings. Based on this purpose,
we propose three Latent Meaning Mod-
els (LMMs), named LMM-A, LMM-S
and LMM-M respectively, which adopt
different strategies to incorporate the
latent meanings of morphemes during
the training process. Experiments on
word similarity, syntactic analogy and text
classification are conducted to validate
the feasibility of our models. The results
demonstrate that our models outperform
the baselines on five word similarity
datasets. On Wordsim-353 and RG-65
datasets, our models nearly achieve 5%
and 7% gains over the classic CBOW
model, respectively. For the syntactic
analogy and text classification tasks, our
models also surpass all the baselines
including a morphology-based model.

1 Introduction

Word embedding, which is also termed distributed
word representation, has been a hot topic in the
area of Natural Language Processing (NLP).
The derived word embeddings have been used
in plenty of tasks such as text classification (Liu

∗This is the corresponding author.

et al., 2015), information retrieval (Manning et al.,
2008), sentiment analysis (Shin et al., 2016),
machine translation (Cho et al., 2014) and so on.
Recently, some classic word embedding methods
have been proposed, like Continuous Bag-of-
Word (CBOW), Skip-gram (Mikolov et al.,
2013a), Global Vectors (GloVe) (Pennington
et al., 2014). These methods can usually capture
word-level semantic information but ignore the
meaningful inner structures of words like English
morphemes or Chinese characters.

The effectiveness of exploiting the internal
compositions of words has been validated by
some previous work (Luong et al., 2013; Botha
and Blunsom, 2014; Chen et al., 2015; Cotterell
et al., 2016). Some of them compute the word
embeddings by directly adding the representations
of morphemes/characters to context words or
optimizing a joint objective over distributional
statistics and morphological properties (Qiu
et al., 2014; Botha and Blunsom, 2014; Chen
et al., 2015; Luong et al., 2013; Lazaridou et al.,
2013), while others introduce some probabilistic
graphical models to build relationship between
words and their internal compositions. e.g., Bhatia
et al. (2016) treat word embeddings as latent
variables for a prior distribution, which reflects
words’ morphological properties, and feed the
latent variables into a neural sequence model to
obtain final word embeddings. Cotterell et al.
(2016) construct a Gaussian graphical model that
binds the morphological analysis to pre-trained
word embeddings, which can help to smooth the
noisy embeddings. Besides, these two methods
also have the ability to predict embeddings for
unseen words.

Different from all the above models (we
regard them as Explicit models in Fig. 1) where
internal compositions are directly used to encode
morphological regularities into words and the
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Figure 1: An illustration of explicit models and our models in an English corpus. Although incredible
and unbelievable have different morphemes, their morphemes have the same latent meanings.

composition embeddings like morpheme embed-
dings are generated as by-products, we explore
a new way to employ the latent meanings of
morphological compositions rather than the com-
positions themselves to train word embeddings.
As shown in Fig. 1, according to the distributional
semantics hypothesis (Sahlgren, 2008), incredible
and unbelievable probably have similar word
embeddings because they have similar context.
As a matter of fact, incredible is a synonym of
unbelievable and their embeddings are expected
to be close enough. Since the morphemes of
the two words are different, especially the roots
cred and believ, the explicit models may not
significantly shorten the distance between the
words in the vector space. Fortunately, the latent
meanings of the different morphemes are the
same (e.g., the latent meanings of roots cred,
believ are “believe”) as listed in the lookup
table (derived from the resources provided by
Michigan State University),1 which evidently
implies that incredible and unbelievable share
the same meanings. In addition, by replacing
morphemes with their latent meanings, we can
directly and simply quantize the similarities
between words and their sub-compositions with
the same metrics used in most NLP tasks, e.g.,
cosine similarity. Subsequently, the similarities
are utilized to calculate the weights of latent
meanings of morphemes for each word.

In this paper, we try different strategies to

1https://msu.edu/˜defores1/gre/roots/
gre_rts_afx1.htm

modify the input layer and update rules of a
neural language model, e.g., CBOW, Skip-
gram, and propose three lightweight and efficient
models, which are termed Latent Meaning Models
(LMMs), to not only encode morphological pro-
perties into words but also enhance the semantic
similarities among word embeddings. Usually, the
vocabulary derived from the corpus contains vast
majority or even all of the latent meanings. Rather
than generating and training extra embeddings
for latent meanings, we directly override the
embeddings of the corresponding words in the
vocabulary. Moreover, a word map is created
to describe the relations between words and the
latent meanings of their morphemes.

For comparison, our models together with
the state-of-the-art baselines are tested on two
basic NLP tasks, which are word similarity and
syntactic analogy, and one downstream text
classification task. The results show that LMMs
outperform the baselines and get satisfactory
improvement on these tasks. In all, the main
contributions of this paper are summarized as
follows.

• Rather than directly incorporating the mor-
phological compositions (surface forms)
of words, we decide to employ the latent
meanings of the compositions (underlying
forms) to train the word embeddings. To
validate the feasibility of our purpose, three
specific models, named LMMs, are proposed
with different strategies to incorporate the
latent meanings.

https://msu.edu/~defores1/gre/roots/gre_rts_afx1.htm
https://msu.edu/~defores1/gre/roots/gre_rts_afx1.htm
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• We utilize a medium-sized English corpus
to train LMMs and the state-of-the-art
baselines, and evaluate their performance on
two basic NLP tasks, i.e., word similarity
and syntactic analogy, and one downstream
text classification task. The results show
that LMMs outperform the baselines on
five word similarity datasets. On the golden
standard Wordsim-353 and RG-65, LMMs
approximately achieve 5% and 7% gains
over CBOW, respectively. For the syntactic
analogy and text classification tasks, LMMs
also surpass all the baselines.

• We conduct experiments to analyze the
impacts of parameter settings, and the results
demonstrate that the performance of LMMs
on the smallest corpus is similar to the
performance of CBOW on the corpus that is
five times as large, which convinces us that
LMMs are of great advantages to enhance
word embeddings compared with traditional
methods.

2 Background and Related Work

Considering the high efficiency of CBOW pro-
posed by Mikolov et al. (2013a), our LMMs
are built upon CBOW. Here, we first review
some backgrounds of CBOW, and then present
some related work on recent word-level and
morphology-based word embedding methods.

CBOW with Negative Sampling With a
sliding window, CBOW utilizes the context words
in the window to predict the target word. Given a
sequence of tokens T = {t1, t2, · · · , tn}, where
n is the size of a training corpus, the objective of
CBOW is to maximize the following average log
probability equation:

L =
1

n

n∑
i=1

log p
(
ti|context(ti)

)
, (1)

where context(ti) represents the context words
of ti in the slide window, p

(
ti|context(ti)

)
is derived by softmax. Due to huge size of
English vocabulary, p

(
ti|context(ti)

)
can not be

calculated in a tolerable time. Therefore, negative
sampling and hierarchical softmax are proposed
to solve this problem. Owing to the efficiency
of negative sampling, all our models are trained
based on it. In terms of negative sampling, the log

probability log p(tO|tI) is transformed as:

log δ
(
vec′(tO)

T vec(tI)
)
+

m∑
i=1

log
[
1− δ

(
vec′(ti)

T vec(tI)
)]
,

(2)

where m denotes the number of negative samples,
and δ(·) is the sigmoid function. The first item
of Eq. (2) is the probability of target word when
its context is given. The second item indicates the
probability that negative samples do not share the
same context as the target word.

Word-level Word Embedding In general,
word embedding models can mainly be divided
into two branches. One is based on neural network
like the classic CBOW model (Mikolov et al.,
2013a), while the other is based on matrix fac-
torization. Besides CBOW, Skip-gram (Mikolov
et al., 2013a) is another widely used neural-
network-based model, which predicts the context
by using the target word (Mikolov et al., 2013a).
As for matrix factorization, Dhillon et al. (2015)
proposed a spectral word embedding method to
measure the correlation between word information
matrix and context information matrix. In order
to combine the advantages of models based
on neural network and matrix factorization,
Pennington et al. (2014) proposed a famous
word embedding model named GloVe, which is
reported to outperform the CBOW and Skip-gram
models on some tasks. These models are effective
to capture word-level semantic information while
neglecting inner structures of words. In contrast,
the unheeded inner structures are utilized in both
our LMMs and other morphology-based models.

Morphology-based Word Embedding Recent-
ly, some more fine-grained word embedding mod-
els are proposed by exploiting the morphological
compositions of words, e.g., root and affixes.
These morphology-based models can be divided
into two main categories.

The first category directly adds the representa-
tions of internal structures to word embeddings
or optimizes a joint objective over distributional
statistics and morphological properties (Luong
et al., 2013; Qiu et al., 2014; Botha and Blunsom,
2014; Lazaridou et al., 2013; Chen et al., 2015;
Kim et al., 2016; Cotterell and Schütze, 2015).
Chen et al. (2015) proposed a character-enhanced
Chinese word embedding model, which splits a
Chinese word into several characters and add the
characters into the input layer of their models.
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Luong et al. (2013) utilized the morpheme seg-
ments produced by Morfessor (Creutz and Lagus,
2007) and constructed morpheme trees for words
to learn morphologically-aware word embeddings
by the recursive neural network. Kim et al.
(2016) incorporated the convolutional character
information into English words. Their model can
learn character-level semantic information for
embeddings, which is proved to be effective for
some morpheme-rich languages. However, with a
huge size architecture, it’s very time-consuming.
Cotterell et al. (2015) augmented the log linear
model to make the words, which share similar
morphemes, gather together in vector space.

The other category tries to use probabilistic
graphical models to connect words with their
morphological compositions, and further learns
word embeddings (Bhatia et al., 2016; Cotterell
et al., 2016). Bhatia et al. (2016) employed
morphemes and made them as prior knowledge
of the latent word embeddings, then fed the latent
variables into a neural sequence model to obtain
final word embeddings. Cotterell et al. (2016)
proposed a morpheme-based post-processor for
pre-trained word embeddings. They constructed a
Gaussian graphical model which can extrapolate
continuous representations for unknown words.

However, these morphology-based models
directly exploit the internal compositions of
words to encode morphological regularities into
word embeddings, and some by-products are also
produced like morpheme embeddings. In contrast,
we employ the latent meanings of morphological
compositions to provide deeper insights for
training better word embeddings. Furthermore,
since the latent meanings are included in the
vocabulary, there is no extra embedding being
generated.

3 Our Latent Meaning Models

We leverage different strategies to modify the
input layer and update rules of CBOW when
incorporating the latent meanings of morphemes.
Three specific models, named Latent Meaning
Model-Average (LMM-A), LMM-Similarity
(LMM-S) and LMM-Max (LMM-M), are pro-
posed. It should be stated that, for now, our mod-
els mainly concern the derivational morphemes,
which can be interpreted to some meaningful
words or phrases (i.e., latent meanings), not
the inflectional morphemes like tense, number,

not
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Figure 2: A paradigm of LMM-A. The sentence
“it is an incredible thing” is selected as an exam-
ple. When calculating the input vector of “incred-
ible”, we first find out the latent meanings of its
morphemes in the word map, and add the vectors
of all latent meanings to the vector of “incredible”
with equal weights.

gender, etc.
LMM-A assumes that all latent meanings of

morphemes of a word have equal contributions
to the word. LMM-A is applicable to the condi-
tion where words are correctly segmented into
morphemes and each morpheme is interpreted to
appropriate latent meanings. However, refining
the latent meanings for morphemes is time-
consuming and needs vast human annotations.
To address this concern, LMM-S is proposed.
Motivated by the attention scheme, LMM-S holds
the assumption that all latent meanings have
different contributions, and assigns the outliers
small weights to let them have little impact on the
representation of the target word. Furthermore,
in LMM-M, we only keep the latent meanings
which have the greatest contributions to the
corresponding word. In what follows, we are
going to introduce each of our LMMs in detail.
At the end of this section, we will introduce the
update rules of the models.

3.1 LMM-A

Given a sequence of tokens T = {t1, t2, · · · , tn},
LMM-A assumes that morphemes’ latent mean-
ings of token ti (i ∈ [1, n]) have equal contribu-
tions to ti, as shown in Fig. 2. The item for ti in
the word map is ti 7→ Mi. Mi is a set of latent
meanings of ti’s morphemes, and it consists of
three sub-parts Pi, Ri and Si corresponding to
the latent meanings of prefixes, roots and suffixes
of ti, respectively. Hence, at the input layer, the
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Figure 3: A paradigm of LMM-S. In this model,
all latent meanings of morphemes of “incredible”
are added together with different weights.

modified embedding of ti can be expressed as

v̂ti =
1

2

(
vti +

1

Ni

∑
w∈Mi

vw
)
, (3)

where vti is the original word embedding of ti,
Ni denotes the length of Mi and vw indicates
the embedding of latent meaning w. Meanwhile,
we assume the original word embedding and the
average embeddings of vw (w ∈ Mi) have equal
weights, i.e., 0.5. Eventually, v̂ti rather than vti is
utilized for training in CBOW.

3.2 LMM-S
This model is proposed based on the attention
scheme. We observe that many morphemes have
more than one latent meaning. For instance,
prefix in- means “in” and “not”, and suffix
-ible means “able” and “capable”.2 As Fig.
3 shows, for the item incredible 7→

{
[in, not],

[believe], [able, capable]
}

in the word map, the
latent meanings have different biases towards
“incredible”. Therefore, we assign different
weights to latent meanings. We measure the
weights of latent meanings by calculating the
normalized similarities between token ti and the
corresponding latent meanings. For LMM-S, the
modified embedding of ti can be rewritten as

v̂ti =
1

2

[
vti +

∑
w∈Mi

ω<ti,w> · vw
]
, (4)

where vti is the original vector of ti, and ω<ti,w>

denotes the weight between ti and the latent mean-
ing w (w ∈Mi). We use cos(va, vb) to denote the

2All the latent meanings of roots and affixes are referred
to the resources we mentioned before.
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Figure 4: A paradigm of LMM-M. The latent
meanings with maximum similarities towards “in-
credible” are selected.

cosine similarity between va and vb, then ω<ti,w>

is expressed as follows:

ω<ti,w> =
cos(vti , vw)∑

x∈Mi

cos(vti , vx)
. (5)

3.3 LMM-M

To further eliminate the impacts of some uncor-
related latent meanings to a word, in LMM-M,
we only select the latent meanings that have
maximum similarities to the token ti from Pi,
Ri and Si. As is shown in Fig. 4, the latent
meaning “not” of prefix in is finally selected since
the similarity between “not” and “incredible” is
larger than that between “in” and “incredible”.
For token ti, LMM-M is mathematically defined
as

v̂ti =
1

2

[
vti +

∑
w∈M i

max

ω<ti,w> · vw
]
, (6)

where M i
max = {P i

max, R
i
max, S

i
max} is the set

of latent meanings with maximum similarities
towards token ti, and P i

max, Ri
max, Si

max are
obtained by the following equations:

P i
max = argmax

w
cos(vti , vw), w ∈ Pi,

Ri
max = argmax

w
cos(vti , vw), w ∈ Ri, (7)

Si
max = argmax

w
cos(vti , vw), w ∈ Si.

The normalized weight ω<ti,w> (w ∈ M i
max) can

similarly be derived like Eq. (5).
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3.4 Update Rules for LMMs
After modifying the input layer of CBOW, Eq. (1)
can be rewritten as

L̂ =
1

n

n∑
i=1

log p
(
vti |

∑
tj∈context(ti)

v̂tj
)
, (8)

where v̂tj is the modified vector of vtj (tj ∈
context(ti)). Since the word map describes
top-level relations between words and the latent
meanings, these relations don’t change during
the training period. All parameters introduced
by our models can be directly derived using
the word map and word vectors, thus no extra
parameter needs to be trained. When the gradient
is propagated back to the input layer, we update
not just the word vector vtj (tj ∈ context(ti))
but the vectors of the latent meanings in the
vocabulary with the same weights as they are
added to the vector vtj .

4 Experimental Setup

Before conducting experiments, some experimen-
tal settings are firstly introduced in this section.

4.1 Corpus and Word Map
We utilize a medium-sized English corpus to train
all word embedding models. The corpus stems
from the website of the 2013 ACL Workshop
on Machine Translation3 and is used in (Kim
et al., 2016). We choose the news corpus of
2009 whose size is about 1.7GB. It contains
approximately 500 million tokens and 600,000
words in the vocabulary. To get better quality of
the word embeddings, we filter all digits and some
punctuation marks out of the corpus.

For many languages, there exist large morpho-
logical lexicons or morphological tools that can
analyze any word form (Cotterell and Schütze,
2015). To create the word map, we need to
obtain the morphemes of each word and interpret
them with the lookup table mentioned above to
get the latent meanings. Usually, the lookup
table can also be derived from the morphological
lexicons for different languages, although it costs
some time and manpower, we can create the
lookup table once for all since it represents the
common knowledge with respect to a certain
language. Specifically, we first perform an

3http://www.statmt.org/wmt13/
translation-task.html

unsupervised morpheme segmentation using
Morefessor (Creutz and Lagus, 2007) for the
vocabularies. Then we execute matching between
the segmentation results and the morphological
compositions in the lookup table, and the char-
acter sequence with largest overlap ratio will
be viewed as a final morpheme and further be
replaced by its latent meanings. Although the
lookup table employed in this paper contains
latent meanings for only 90 prefixes, 382 roots
and 67 suffixes, we focus on validating the
feasibility of enhancing word embeddings with
the latent meanings of morphemes, and expending
the lookup table is left as future work.

4.2 Baselines
For comparison, we choose three word-level
state-of-the-art word embedding models including
CBOW, Skip-gram (Mikolov et al., 2013a) and
GloVe (Pennington et al., 2014), and we also
implement an Explicitly Morpheme-related
Model (EMM), which is a variant version of the
previous work (Qiu et al., 2014). The architecture
of EMM is based on our LMM-A, where latent
meanings are replaced back to morphemes and
the embeddings of morphemes are also learned
when training word embeddings. This enables
our evaluation to focus on the critical difference
between our models and the explicit model
(Bhatia et al., 2016). We utilize the source code
of word2vec4 to train CBOW and Skip-gram.
GloVe is trained based on the code5 provided by
Pennington et al. (2014). We modify the source
of word2vec and train our models and EMM.

4.3 Parameter Settings
Parameter settings have a great effect on the
performance of word embeddings (Levy et al.,
2015). For fairness, all models are trained based
on equal parameter settings. In order to accelerate
the training process, CBOW, Skip-gram and EMM
together with our models are trained by using the
negative sampling technique. It is suggested that
the number of negative samples in the range 5-20
is useful for small corpus (Mikolov et al., 2013b).
If large corpus is used, the number of negative
samples can be as small as 2-5. According to the
size of corpus we used, the number of negative
samples is empirically set to be 20 in this paper.

4https://github.com/dav/word2vec
5http://nlp.stanford.edu/projects/

glove

http://www.statmt.org/wmt13/translation-task.html
http://www.statmt.org/wmt13/translation-task.html
https://github.com/dav/word2vec
http://nlp.stanford.edu/projects/glove
http://nlp.stanford.edu/projects/glove
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Name Pairs Name Pairs
RG-65 65 RW 2034
SCWS 2003 Men-3k 3000

Wordsim-353 353 WS-353-REL 252

Table 1: Details of datasets. The column “Pairs”
shows the number of word pairs in each dataset.

The dimension of word embedding is set as 200
like that in (Dhillon et al., 2015). We set the
context window size as 5 which is equal to the
setting in (Mikolov et al., 2013b).

4.4 Evaluation Benchmarks

4.4.1 Word Similarity

This experiment is conducted to evaluate the
ability of word embeddings to capture semantic
information from corpus. For English word
similarity, we employ two gold standard datasets
including Wordsim-353 (Finkelstein et al., 2001)
and RG-65 (Rubenstein and Goodenough, 1965)
as well as some other widely-used datasets
including Rare-Word (Luong et al., 2013), SCWS
(Huang et al., 2012), Men-3k (Bruni et al., 2014)
and WS-353-Related (Agirre et al., 2009). More
details of these datasets are shown in Table 1.
Each dataset consists of three columns. The
first two columns stand for word pairs and the
last column is human score. We utilize the
cosine similarity, which is used in many previous
works (Mikolov et al., 2013b; Pennington et al.,
2014), as the metric to measure the distance
between two words. The Spearman’s rank
correlation coefficient (ρ) is employed to evaluate
the similarity between our results and human
scores. Higher ρ means better performance.

4.4.2 Syntactic Analogy

Based on the learned word embeddings, the core
task of syntactic analogy is to answer the analogy
question “a is to b as c is to ”. We utilize
the Microsoft Research Syntactic Analogies
dataset, which is created by Mikolov (Mikolov
et al., 2013c) with size of 8000. To answer the
syntactic analogy question “a is to b as c is to
d” where d is unknown, we assume that the
word representations of a, b, c, d are va, vb,
vc, vd, respectively. To get d, we first calculate
v̂d = vb − va + vc. Then, we find out the word
d′ whose cosine similarity to v̂d is the largest.
Finally, we set d as d′.

4.4.3 Text Classification
To further evaluate the learned word embeddings,
we also conduct 4 text classification tasks using
the 20 Newsgroups dataset.6 The dataset totally
contains around 19000 documents of 20 different
newsgroups, and each corresponding to a different
topic, such as guns, motorcycles, electronics
and so on. For each task, we randomly select
the documents of 10 topics and split them into
training/validation/test subsets at the ratio of
6:2:2, which are emplyed to train, validate and
test an L2-regularized 10-categorization logistic
regression (LR) classifier. As mentioned in
(Tsvetkov et al., 2015), here we also regard the
average word embedding of words (excluding
stop words and out-of-vocabulary words) in each
document as the feature vector (the input of the
classifier) of that document. The LR classifier
is implemented with the scikit-learn toolkit
(Pedregosa et al., 2011), which is an open-source
Python module integrating many state-of-the-art
machine learning algorithms.

5 Experimental Results

5.1 The Results on Word Similarity

Word similarity is conducted to test the semantic
information which is encoded in word embed-
dings, and the results are listed in Table 2 (first 6
rows). We observe that our models surpass the
comparative baselines on five datasets. Compared
with the base model CBOW, it is remarkable that
our models approximately achieve improvements
of more than 5% and 7%, respectively, in the
performance on the golden standard Wordsim-353
and RG-65. On WS-353-REL, the difference
between CBOW and LMM-S even reaches 8%.
The advantage demonstrates the effectiveness
of our methods. Based on our strategy, more
semantic information will be captured in corpus
when adding more latent meanings in the context
window. By incorporating mophemes, EMM also
performs better than other baselines but fails to
get the performance as well as ours. Actually,
EMM mainly tunes the distributions of words in
vector space to let the morpheme-similar words
gather closer, which means it just encodes more
morphological properties into word embeddings
but lacks the ability to capture more semantic
information. Specially, because of the medium-

6http://qwone.com/˜jason/20Newsgroups

http://qwone.com/~jason/20Newsgroups
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CBOW Skip-gram GloVe EMM LMM-A LMM-S LMM-M
Wordsim-353 58.77 61.94 49.40 60.01 62.05 63.13 61.54

RW 40.58 36.42 33.40 40.83 43.12 42.14 40.51
RG-65 56.50 62.81 59.92 60.85 62.51 62.49 63.07
SCWS 63.13 60.20 47.98 60.28 61.86 61.71 63.02
Men-3k 68.07 66.30 60.56 66.76 66.26 68.36 64.65

WS-353-REL 49.72 57.05 47.46 54.48 56.14 58.47 55.19
Syntactic Analogy 13.46 13.14 13.94 17.34 20.38 17.59 18.30
Text Classification 78.26 79.40 77.01 80.00 80.67 80.59 81.28

Table 2: Performance comparison (%) of our LMMs and the baselines on two basic NLP tasks (word
similarity & syntactic analogy) and one downstream task (text classification). The bold digits indicate
the best performances.

size corpus and the experimental settings, GloVe
doesn’t perform as well as that described in
(Pennington et al., 2014).

5.2 The Results on Syntactic Analogy

In (Mikolov et al., 2013c), the dataset is divided
into adjectives, nouns and verbs. For brevity, we
only report performance on the whole dataset. As
the middle row of Table 2 shows, all of our models
outperform the comparative baselines to a great
extent. Compared with CBOW, the advantage of
LMM-A even reaches to 7%. Besides, we observe
that the suffix of “b” usually is the same as the
suffix of “d” when answering question “a is to b
as c is to d”. Based on our strategy, morpheme-
similar words will not only gather closer but have
a trend to group near the latent meanings of their
morphemes, which makes our embeddings have
the advantage to deal with the syntactic analogy
problem. EMM also performs well on this task
but is still weaker than our models. Actually,
syntactic analogy is also a semantics-related task
because “c” and “d” are with similar meanings.
Since our models are better to capture semantic
information, they lead to higher performance than
the explicitly morphology-based models.

5.3 The Results on Text Classification

For each one of the 4 text classification tasks,
we report the classification accuracy over the test
set. The average classification accuracy across
the 4 tasks is utilized as the evaluation metric for
different models. The results are displayed in
the bottom row of Table 2. Since we simply use
the average embedding of words as the feature
vector for 10-categorization classification, the
overall classification accuracies of all models
are merely aroud 80%. However, the classi-
fication accuracies of our LMMs still surpass
all the baselines, especailly CBOW and GloVe.

Moreover, it can be found that incorporating
morphological knowledge (morphemes or latent
meanings of morphemes) into word embeddings
can contribute to enhancing the performance of
word embeddings in the downstream NLP tasks.

5.4 The Impacts of Parameter Settings

Parameter settings can affect the performance
of word embeddings. For example, the corpus
with larger corpus size (the ratio of tokens used
for training) contains more semantic information,
which can improve the performance on word
similarity. We analyze the impacts of corpus
size and window size on the performance of
word embeddings. In the analysis of corpus
size, we hold the same parameter settings as
before. The sizes of tokens used for training
are separately 1/5, 2/5, 3/5, 4/5 and 5/5 of the
entire corpus mentioned above. We utilize the
result of word similarity on Wordsim-353 as the
evaluation criterion. From Fig. 5, we observe
several phenomena. Firstly, the performance of
our LMMs is better than CBOW at each corpus
size. Secondly, the performance of CBOW is
sensitive to the corpus size. In contrast, LMMs’
performance is more stable than CBOW. As
we analyzed in word similarity experiment,
LMMs can increase the semantic information
of word embeddings. It is worth noting that the
performance of LMMs on the smallest corpus
is even better than CBOW’s performance on the
largest corpus. In the analysis of window size,
we observe that the performance of all word
embeddings trained by different models has a
trend to ascend with the increasing of window size
as illustrated in Fig. 6. Our LMMs outperform
CBOW under all the pre-set conditions. Besides,
the worst performance of LMMs is nearly equal
to the best performance of CBOW.
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Figure 5: Parameter analysis of corpus size. X-
axis denotes the ratio of tokens used for training,
and Y-axis denotes the Spearman rank (%) of word
similarity.
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Figure 6: Parameter analysis of window size. X-
axis and Y-axis denote the window size and Spear-
man rank (%) of word similarity, respectively.

5.5 Word Embedding Visualization

To visualize the embeddings of our models, we
randomly select several words from the results of
LMM-A. The dimensions of the selected word
embeddings are reduced from 200 to 2 using
Principal Component Analysis (PCA), and the
2-D word embeddings are illustrated in Fig. 7.
The words with different colors reflect that they
have different morphemes. It is apparent that
words with similar morphemes have a trend to
group together and stay near the latent meanings
of their morphemes. In addition, we can also
find some syntactic regularities in Fig. 7, for
example, “physics” is to “physicist” as “science”
is to “scientist”, and “physicist” and “scientist”
stay near the latent meaning, i.e., “human”, of the
suffix -ist.
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Figure 7: The visualization of word embeddings.
Based on PCA, we randomly select several words
from word embedding of LMM-A and illustrate
them in this figure, “�” indicates the latent mean-
ings of morphemes.

6 Conclusion

In this paper, we explored a new direction to
employ the latent meanings of morphological
compositions rather than the internal compo-
sitions themselves to train word embeddings.
Three specific models named LMM-A, LMM-S
and LMM-M were proposed by modifying the
input layer and update rules of CBOW. The
source code of LMMs is avaliable at https:
//github.com/Y-Xu/lmm.

To test the performance of our models, we
chose three word-level word embedding models
and implemented an Explicitly Morpheme-related
Model (EMM) as comparative baselines, and
tested them on two basic NLP tasks of word simi-
larity and syntactic analogy, and one downstream
text classification task. The experimental results
demonstrate that our models outperform the
baselines on five word similarity datasets. On the
syntactic analogy as well as the text classification
tasks, our models also surpass all the baselines
including the EMM. In the future, we intend to
evaluate our models for some morpheme-rich
languages like Russian, German and so on.
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