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Abstract

We consider two graph models of seman-
tic change. The first is a time-series model
that relates embedding vectors from one
time period to embedding vectors of pre-
vious time periods. In the second, we
construct one graph for each word: nodes
in this graph correspond to time points
and edge weights to the similarity of the
word’s meaning across two time points.
We apply our two models to corpora
across three different languages. We find
that semantic change islinear in two
senses. Firstly, today’s embedding vectors
(= meaning) of words can be derived as
linear combinations of embedding vectors
of their neighbors in previous time peri-
ods. Secondly, self-similarity of words de-
cays linearly in time. We consider both
findings as new laws/hypotheses of se-
mantic change.

1 Introduction

Meaning is not uniform, neither across space, nor
across time. Across space, different languages
tend to exhibit different polysemous associations
for corresponding terms (Eger et al., 2015; Kulka-
rni et al., 2015b). Across time, several well-
known examples of meaning change in English
have been documented. For example, the word
gay’s meaning has shifted, during the 1970s, from
an adjectival meaning ofcheerfulat the beginning
of the 20th century to its present meaning ofhomo-
sexual(Kulkarni et al., 2015a). Similarly, techno-
logical progress has led to semantic broadening of
terms such astransmission, mouse, or apple.

In this work, we consider two graph models
of semantic change. Ourfirst model is ady-
namic model in that the underlying paradigm is
a (time-)series of graphs. Each node in the se-
ries of graphs corresponds to one word, associ-
ated with which is a semantic embedding vec-
tor. We then ask how the embedding vectors in
one time period (graph) can be predicted from the
embedding vectors of neighbor words in previous
time periods. In particular, we postulate that there
is a linear functional relationship that couples a
word’s today’s meaning with its neighbor’s mean-
ings in the past. When estimating the coefficients
of this model, we find that the linear form ap-
pears indeed very plausible. This functional form
then allows us to address further questions, such
as negative relationships between words — which
indicate semantic differentiation over time — as
well as projections into the future. We call our
secondgraph modeltime-indexed self-similarity
graphs. In these graphs, each node corresponds
to a time point and the link between two time
points indicates the semantic similarity of a spe-
cific word across the two time points under con-
sideration. The analysis of these graphs reveals
that most words obey a law of linear semantic ‘de-
cay’: semantic self-similarity decreases linearly
over time.

In our work, we capture semantics by means of
word embeddings derived from context-predicting
neural network architectures, which have be-
come the state-of-the-art in distributional seman-
tics modeling (Baroni et al., 2014). Our approach
and results are partly independent of this repre-
sentation, however, in that we take a structural-
ist approach: we derive new, ‘second-order em-
beddings’ by modeling the meaning of words by
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means of their semantic similarity relations to all
other words in the vocabulary (de Saussure, 1916;
Rieger, 2003). Thus, future research may in prin-
ciple substitute the deep-learning architectures for
semantics considered here by any other method
capable of producing semantic similarity values
between lexical units.

This work is structured as follows. In§2, we
discuss related work. In§3.1 and 3.2, respectively,
we formally introduce the two graph models out-
lined. In §4, we detail our experiments and in§5,
we conclude.

2 Related work

Broadly speaking, one can distinguish two recent
NLP approaches to meaning change analysis. On
the one hand,coarse-grainedtrend analyses com-
pare the semantics of a word in one time pe-
riod with the meaning of the word in the preced-
ing time period (Jatowt and Duh, 2014; Kulka-
rni et al., 2015a). Such coarse-grained mod-
els, by themselves, do not specifyin which re-
spectsa word has changed (e.g., semantic broad-
ening or narrowing), but just aim at capturing
whether meaning change has occurred. In con-
trast, more fine-grained analyses typically sense-
label word occurrences in corpora and then in-
vestigate changes in the corresponding meaning
distributions (Rohrdantz et al., 2011; Mitra et
al., 2014; Plitz et al., 2015; Zhang et al., 2015).
Sense-labeling may be achieved by clustering of
the context vectors of words (Huang et al., 2012;
Chen et al., 2014; Neelakantan et al., 2014) or by
applying LDA-based techniques where word con-
texts take the roles of documents and word senses
take the roles of topics (Rohrdantz et al., 2011;
Lau et al., 2012). Finally, there are studies that
test particular meaning change hypotheses such as
whether similar words tend to diverge in mean-
ing over time (according to the ‘law of differentia-
tion’) (Xu and Kemp, 2015) and papers that intend
to detect corresponding terms across time (words
with similar meanings/roles in two time periods
but potentially different lexical forms) (Zhang et
al., 2015).

3 Graph models

Let V = {w1, . . . , w|V |} be the common vocabu-
lary (intersection) of all words in all time periods

t ∈ T . Here,T is a set of time indices. Denote
an embedding of a wordwi at time periodt as
wi(t) ∈ Rd. Since embeddingswi(s),wi(t) for
two different time periodss, t are generally not
comparable, as they may lie in different coordi-
nate systems, we consider the vectorsw̃i(t) =(

sim(wi(t),w1(t)), . . . , sim(wi(t),w|V |(t))
)
, (1)

each of which lies inR|V | and wheresim is a
similarity function such as the cosine. We note
that our structuralist definition of̃wi(t) is not un-
problematic, since the vectorsw1(t), . . . ,w|V |(t)
tend to be different acrosst, by our very postu-
late, so that there is non-identity of these ‘refer-
ence points’ over time. However, as we may as-
sume that the meanings of at least a few words
are stable over time, we strongly expect the vec-
tors w̃i(t) to be suitable for our task of analysis
of meaning changes.1 For the remainder of this
work, for convenience, we do not distinguish, in
terms of notation, betweenwi(t) andw̃i(t).

3.1 A linear model of semantic change

We postulate, and subsequently test, the follow-
ing model of meaning dynamics which describes
meaning change over time for wordswi:

wi(t) =
p∑

n=1

∑
wj∈V ∩N(wi)

αn
wj

wj(t − n) (2)

whereαn
wj

∈ R, for n = 1, . . . , p, are coeffi-
cients of meaning vectorswj(t− n) andp ≥ 1
is theorder of the model. The setN(wi) ⊆ V de-
notes a set of ‘neighbors’ of wordwi.2 This model
says that the meaning of a wordwi at some timet
is determined by reference to the meanings of its
‘neighbors’ in previous time periods, and that the
underlying functional relationship islinear.

We remark that the model described by Eq. (2)
is a time-series model, and, in particular, a
vector-autoregressive (VAR) model with special

1An alternative to our second-order embeddings is to
project vectors from different time periods in a common
space (Mikolov et al., 2013a; Faruqui and Dyer, 2014), which
requires to find corresponding terms across time. Further,
one could also consider a ‘core’ vocabulary of semantically
stable words, e.g., in the spirit of Swadesh (1952), insteadof
using all vocabulary words as reference.

2We also constrain the vectorswi(t), for all wi ∈ V , to
contain non-zero entries only for words inN(wi).
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structure. The model may also be seen in
the socio-economic context of so-called “opin-
ion dynamic models” (Golub and Jackson, 2010;
Acemoglu and Ozdaglar, 2011; Eger, 2016).
There it is assumed that agents are situated
in network structures and continuously update
their opinions/beliefs/actions according to their
ties with other agents. Model (2) substitutes
multi-dimensional embedding vectors for one-
dimensional opinions.

3.2 Time-indexed self-similarity graphs

We track meaning change by considering a fully
connected graphG(w) for each wordw in V . The
nodes ofG(w) are the time indicesT , and there
is an undirected link between any twos, t ∈ T
whose weight is given bysim(w(s),w(t)). We
call the graphsG(w) time-indexed self-similarity
(TISS) graphsbecause they indicate the (seman-
tic) similarity of a given word with itself across
different time periods. Particular interest may lie
in weak linksin these graphs as they indicate low
similarity between two different time periods, i.e.,
semantic change across time.

4 Experiments

Data As corpus for English, we use the Corpus of
Historical American (COHA).3 This covers texts
from the time period 1810 to 2000. We extract two
slices: the years 1900-2000 and 1810-2000. For
both slices, each time periodt is one decade, e.g.,
T = {1810, 1820, 1830, . . .}.4 For each slice, we
only keep words associated to the word classes
nouns, adjectives, and verbs. For computational
and estimation purposes, we also only consider
words that occur at least 100 times in each time
period. To induce word embeddingsw ∈ Rd for
each wordw ∈ V , we use word2vec (Mikolov et
al., 2013b) with default parametrizations. We do
so for each time periodt ∈ T independently. We
then use these embeddings to derive the new em-
beddings as in Eq. (1). Throughout, we use cosine
similarity assim measure. For German, we con-
sider a proprietary dataset of the German newspa-
per SZ5 for which T = {1994, 1995, . . . , 2003}.

3http://corpus.byu.edu/coha/.
4Each time period contains texts that were written in that

decade.
5http://www.sueddeutsche.de/

We lemmatize and POS tag the data and likewise
only consider nouns, verbs and adjectives, mak-
ing the same frequency constraints as in English.
Finally, we use the PL (Migne, 1855) as data set
for Latin. Here,T = {300, 400, . . . , 1300}. We
use the same preprocessing, frequency, and word
class constraints as for English and German.

Throughout, our datasets are well-balanced in
terms of size. For example, the English COHA
datasets contain about 24M-30M tokens for each
decade from 1900 to 2000, where the decades
1990 and 2000 contain slighly more data than the
earlier decades. The pre-1900 decades contain 18-
24M tokens, with only the decades 1810 and 1820
containing very little data (1M and 7M tokens,
respectively). The corpora are also balanced by
genre.

4.1 TISS graphs

We start with investigating the TISS graphs. Let
Dt0 represent how semantically similar a word
is across two time periods, on average, when
the distance between time periods ist0: Dt0 =
1
C

∑
w∈V

∑
|s−t|=t0

sim(w(s),w(t)), whereC =
|V | · |{(s, t) | |s− t| = t0}| is a normalizer. Figure
1 plots the valuesDt0 for the time slice from 1810
to 2000, for the English data. We notice a clear
trend: self-similarity of a word tends to (almost
perfectly) linearly decrease with time distance. In
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Figure 1:Dt0 (y-axis) as a function oft0 (x-axis),
values ofDt0 (in green) and error-bars.

fact, Table 1 below indicates that this trend holds
across all our corpora, i.e., for different time scales
and different languages: the linear ‘decay’ model

3
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fits theDt0 curves very well, with adjustedR2 val-
ues substantially above 90% and consistently and
significantly negative coefficients. We believe that
this finding may be considered a new statistical
law of semantic change.

Corpus Lang. Time
interval

Years Coeff. R2

COHA English Decade 1900-2000−0.425 98.63
1810-2000 −0.405 96.03

SZ German Year 1994-2003 −0.678 98.64
PL Latin Century 400-1300 −0.228 92.28

Table 1: Coefficients (%) in regression ofDt0 on
t0, and adjustedR2 values (%).

The valuesDt0 as a function oft0 are aver-
ages over all words. Thus, it might be possible
that the average word’s meaning decays linearly
in time, while the semantic behavior, over time, of
a large fraction of words follows different trends.
To investigate this, we consider the distribution
of Dt0(w) = 1

C′
∑

|s−t|=t0
sim(w(s),w(t)) over

fixed wordsw. HereC ′ = |{(s, t) | |s− t| = t0}|.
We consider the regression models

Dt0(w) = α · t0 + const.

for each wordw independently and assess the dis-
tribution of coefficientsα as well as the goodness-
of-fit values. Figure 2 shows — exemplarily for
the English 1900-2000 COHA data — that the co-
efficientsα are negative for almost all words. In
fact, the distribution is left-skewed with a mean
of around−0.4%. Moreover, the linear model is
always a good to very good fit of the data in that
R2 values are centered around 85% and rarely fall
below 75%. We find similar patterns for all other
datasets considered here. This shows that not only
the average word’s meaning decays linearly, but
almost all words’ (whose frequency mass exceeds
a particular threshold) semantics behaves this way.

Next, we use our TISS graphs for the task
of finding words that have undergone meaning
change. To this end, we sort the graphsG(w) by
the ratiosRG(w) = maxlink

minlink , where maxlink de-
notes maximal weight of a link in graphG(w)
and minlink is the minimal weight of a link in
graphG(w). We note that weak links may indi-
cate semantic change, but the stated ratio requires
that ‘weakness’ is seen relative to the strongest se-
mantic links in the TISS graphs. Table 2 presents
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Figure 2: Distribution of Coefficientsα (top) and
R2 values (bottom) in regression of valuesDt0(w)
on t0. The plots are histograms:y-axes are fre-
quencies.

selected words that have highest valuesRG(w).
6

We omit a fine-grained semantic change analysis,

bush (1), web (2), alan (3), implement (4)
jeff (5), gay (6), program (7), film (8),
focus (9), terrific (16), axis (36)

Table 2: Selected words with highest values
RG(w) in COHA for the time period 1900-2000.
In brackets are the ranks of words, i.e.,bushhas
the highest valueRG(w), webthe 2nd highest, etc.

which could be conducted via the methods out-
lined in §2, but notice a few cases. ‘Terrific’ has a
large semantic discrepancy between the 1900s and

6The top ten words with the lowest valuesRG(w) areone,
write, have, who, come, only, even, know, hat, fact.

4
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the 1970s, when the word probably (had) changed
from a negative to a more positive meaning. The
largest discrepancy for ‘web’ is between the 1940s
and the 2000s, when it probably came to be mas-
sively used in the context of the Internet. The high
RG(w) value forw = ‘axis’ derives from compar-
ing its use in the 1900s with its use in the 1940s,
when it probably came to be used in the context
of Nazi Germany and its allies. We notice that the
presented method can account for gradual, accu-
mulating change, which is not possible for models
that compare two succeeding time points such as
the model of Kulkarni et al. (2015a).

4.2 Meaning dynamics network models

Finally, we estimate meaning dynamics models as
in Eq. (2), i.e., we estimate the coefficientsαn

wj

from our data sources. We let the neighborsN(w)
of a wordw as in Eq. (2) be the union (w.r.t.t) over
setsNt(w;n) denoting then ≥ 1 semantically
most similar words (estimated by cosine similar-
ity on the original word2vec vectors) of wordw
in time periodt ∈ T .7 In Table 3, we indicate
two measures: adjustedR2, which indicates the
goodness-of-fit of a model, and prediction error.
By prediction error, we measure the average Eu-
clidean distance between the true semantic vec-
tor of a word in thefinal time periodtN vs. the
predicted semantic vector, via the linear model in
Eq. (2), estimated on the data excluding the fi-
nal period. The indicated prediction error is the
average over all words. We note the following:
R2 values are high (typically above 95%), indi-
cating that the linear semantic change model we
have suggested fits the data well. Moreover,R2

values slightly increase between orderp = 1 and
p = 2; however, for prediction error this trend is
reversed.8 We also include a strong baseline that
claims that word meanings do not change in the fi-
nal periodtN but are the same as intN−1. We note
that the orderp = 1 model consistently improves
upon this baseline, by as much as 18%, depending
upon parameter settings.

Negative relationshipsAnother very interest-

7We exclude wordw from Nt(w; n). We found that in-
cludingw did not improve performance results.

8We experimented with ordersp ≥ 3, but found them to
be inadequate. Typically, coefficients for lagged-3 variables
are either zero or model predictions are way off, possibly
indicating multi-collinearity.

n p Adjusted-R2 Pred. Error Baseline
5 1 95.68± 2.80 0.402±.234 0.447±.232

2 96.13± 1.83 0.549±.333
10 1 95.24± 2.78 0.378±.169 0.445±.187

2 95.75± 2.67 0.515±.247
20 1 94.72± 2.85 0.362±.127 0.442±.156

2 95.27± 2.74 0.493±.190

Table 3: English data, 1900-2000.R2 and predic-
tion error in %.

ing aspect of the model in Eq. (2) is that it allows
for detecting wordswj whose embeddings have
negative coefficientsαwj for a target wordwi (we
considerp = 1 in the remainder). Such nega-
tive coefficients may be seen as instantiations of
the ‘law of differentiation’: the two words’ mean-
ings move, over time, in opposite directions in se-
mantic space. We find significantly negative re-
lationships between the following words, among
others: summit↔ foot, boy↔ woman, vow↔
belief, negro↔ black. Instead of a detailed anal-
ysis, we mention that the Wikipedia entry for the
last pair indicates that the meanings of ‘negro’ and
‘black’ switched roles between the early and late
20th century. While ‘negro’ was once the “neu-
tral” term for the colored population in the US,
it acquired negative connotations after the 1960s;
and vice versa for ‘black’.

5 Concluding remarks

We suggested two novel models of semantic
change. First, TISS graphs allow for detecting
gradual, non-consecutive meaning change. They
enable to detect statistical trends of a possibly
general nature. Second, our time-series models
allow for investigating negative trends in mean-
ing change (‘law of differentiation’) as well as
forecasting into the future, which we leave for fu-
ture work. Both models hint at a linear behav-
ior of semantic change, which deserves further in-
vestigation. We note that this linearity concerns
the core vocabulary of languages (in our case,
words that occurred at least 100 times in each time
period), and, in the case of TISS graphs, is an
averageresult; particular words may have dras-
tic, non-linear meaning changes across time (e.g.,
proper names referring to entirely different enti-
ties). However, our analysis also finds that most
core words’ meanings decay linearly in time.
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In R. Kühn, R. Menzel, W. Menzel, U. Ratsch,
M. M. Richter, and I. O. Stamatescu, editors,Adap-
tivity and Learning. An Interdisciplinary Debate,
pages 347–403. Springer, Berlin.

Christian Rohrdantz, Annette Hautli, Thomas Mayer,
Miriam Butt, Daniel A. Keim, and Frans Plank.
2011. Towards tracking semantic change by visual
analytics. InThe 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Proceedings of the Conference,
19-24 June, 2011, Portland, Oregon, USA - Short
Papers, pages 305–310.

Morris Swadesh. 1952. Lexico-statistic dating of pre-
historic ethnic contacts.Proceedings of the Ameri-
can Philosophical Society, 96(4):452463.

Y. Xu and C. Kemp. 2015. A computational evalua-
tion of two laws of semantic change. InProceedings
of the 37th Annual Conference of the Cognitive Sci-
ence Society.

Yating Zhang, Adam Jatowt, Sourav S. Bhowmick, and
Katsumi Tanaka. 2015. Omnia mutantur, nihil in-
terit: Connecting past with present by finding corre-
sponding terms across time. InProceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing of the
Asian Federation of Natural Language Processing,
ACL 2015, July 26-31, 2015, Beijing, China, Volume
1: Long Papers, pages 645–655.

7

58


