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Abstract
We exploit the visual properties of con-
cepts for lexical entailment detection by
examining a concept’s generality. We in-
troduce three unsupervised methods for
determining a concept’s generality, based
on its related images, and obtain state-of-
the-art performance on two standard se-
mantic evaluation datasets. We also intro-
duce a novel task that combines hypernym
detection and directionality, significantly
outperforming a competitive frequency-
based baseline.

1 Introduction

Automatic detection of lexical entailment is useful
for a number of NLP tasks including search query
expansion (Shekarpour et al., 2013), recognising
textual entailment (Garrette et al., 2011), metaphor
detection (Mohler et al., 2013), and text genera-
tion (Biran and McKeown, 2013). Given two se-
mantically related words, a key aspect of detecting
lexical entailment, or the hyponym-hypernym re-
lation, is the generality of the hypernym compared
to the hyponym. For example, bird is more general
than eagle, having a broader intension and a larger
extension. This property has led to the introduc-
tion of lexical entailment measures that compare
the entropy of distributional word representations,
under the assumption that a more general term has
a higher-entropy distribution (Herbelot and Gane-
salingam, 2013; Santus et al., 2014).

A strand of distributional semantics has recently
emerged that exploits the fact that meaning is of-
ten grounded in the perceptual system, known as
multi-modal distributional semantics (Bruni et al.,
2014). Such models enhance purely linguistic
models with extra-linguistic perceptual informa-
tion, and outperform language-only models on a

range of tasks, including modelling semantic sim-
ilarity and conceptual relatedness (Silberer and
Lapata, 2014). In fact, under some conditions
uni-modal visual representations outperform tradi-
tional linguistic representations on semantic tasks
(Kiela and Bottou, 2014).

We hypothesize that visual representations can
be particularly useful for lexical entailment detec-
tion. Deselaers and Ferrari (2011) have shown that
sets of images corresponding to terms at higher
levels in the WordNet hierarchy have greater vi-
sual variability than those at lower levels. We ex-
ploit this tendency using sets of images returned
by Google’s image search. The intuition is that
the set of images returned for animal will consist
of pictures of different kinds of animals, the set of
images for bird will consist of pictures of differ-
ent birds, while the set for owl will mostly consist
only of images of owls, as can be seen in Figure 1.

Here we evaluate three different vision-based
methods for measuring term generality on the se-
mantic tasks of hypernym detection and hypernym
directionality. Using this simple yet effective un-
supervised approach, we obtain state-of-the-art re-
sults compared with supervised algorithms which
use linguistic data.

2 Related Work

In the linguistic modality, the most closely related
work is by Herbelot and Ganesalingam (2013) and
Santus et al. (2014), who use unsupervised distri-
butional generality measures to identify the hyper-
nym in a hyponym-hypernym pair. Herbelot and
Ganesalingam (2013) use KL divergence to com-
pare the probability distribution of context words,
given a term, to the background probability dis-
tribution of context words. Santus et al. (2014)
use the median entropy of the probability distribu-
tions associated with a term’s top-weighted con-
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Figure 1: Example of how vulture and owl are less dispersed concepts than bird and animal, according
to images returned by Google image search.

text words as a measure of information content.
In the visual modality, the intuition that visual

representations may be useful for detecting lexi-
cal entailment is inspired by Deselaers and Ferrari
(2011). Using manually annotated images from
ImageNet (Deng et al., 2009), they find that con-
cepts and categories with narrower intensions and
smaller extensions tend to have less visual vari-
ability. We extend this intuition to the unsuper-
vised setting of Google image search results and
apply it to the lexical entailment task.

3 Approach

We use two standard evaluations for lexical entail-
ment: hypernym directionality, where the task is to
predict which of two words is the hypernym; and
hypernym detection, where the task is to predict
whether two words are in a hypernym-hyponym
relation (Weeds et al., 2014; Santus et al., 2014).
We also introduce a third, more challenging, eval-
uation that combines detection and directionality.

For the directionality experiment, we evaluate
on the hypernym subset of the well-known BLESS

dataset (Baroni and Lenci, 2011), which consists
of 1337 hyponym-hypernym pairs. In this case, it
is known that the words are in an entailment re-
lation and the task is to predict the directionality
of the relation. BLESS data is always presented
with the hyponym first, so we report how often our
measures predict that the second term in the pair is
more general than the first.

For the detection experiment, we evaluate on the
BLESS-based dataset of Weeds et al. (2014), which
consists of 1168 word pairs and which we call
WBLESS. In this dataset, the positive examples are
hyponym-hypernym pairs. The negative examples

BLESS turtle—animal 1

WBLESS

owl—creature 1
owl—vulture 0
animal—owl 0

BIBLESS

owl—creature 1
owl—vulture 0
animal—owl -1

Table 1: Examples for evaluation datasets.

include pairs in the reversed hypernym-hyponym
order, as well as holonym-meronym pairs, co-
hyponyms, and randomly matched nouns. Ac-
curacy on WBLESS reflects the ability to distin-
guish hypernymy from other relations, but does
not require detection of directionality, since re-
versed pairs are grouped with the other negatives.

For the combined experiment, we assign re-
versed hyponym-hypernym pairs a value of -1 in-
stead of 0. We call this more challenging dataset
BIBLESS. Examples of pairs in the respective
datasets can be found in Table 1.

3.1 Image representations
Following previous work in multi-modal seman-
tics (Bergsma and Goebel, 2011; Kiela et al.,
2014), we obtain images from Google Images1

for the words in the evaluation datasets. It has
been shown that images from Google yield higher-
quality representations than comparable resources
such as Flickr and are competitive with “hand pre-
pared datasets” (Bergsma and Goebel, 2011; Fer-
gus et al., 2005).

1www.google.com/imghp. Images were retrieved on
10 April, 2015 from Cambridge in the United Kingdom.
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For each image, we extract the pre-softmax
layer from a forward pass in a convolutional neural
network (CNN) that has been trained on the Im-
ageNet classification task using Caffe (Jia et al.,
2014). As such, this work is an instance of deep
transfer learning; that is, a deep learning represen-
tation trained on one task (image classification) is
used to make predictions on a different task (im-
age generality). We chose to use CNN-derived im-
age representations because they have been found
to be of higher quality than the traditional bag of
visual words models (Sivic and Zisserman, 2003)
that have previously been used in multi-modal dis-
tributional semantics (Bruni et al., 2014; Kiela and
Bottou, 2014).

3.2 Generality measures

We propose three measures that can be used to cal-
culate the generality of a set of images. The image
dispersion d of a concept word w is defined as the
average pairwise cosine distance between all im-
age representations { ~w1 ... ~wn} of the set of im-
ages returned for w:

d(w) =
2

n(n− 1)

∑
i<j≤n

1− cos( ~wi, ~wj) (1)

This measure was originally introduced to account
for the fact that perceptual information is more rel-
evant for e.g. elephant than it is for happiness. It
acts as a substitute for the concreteness of a word
and can be used to regulate how much perceptual
information should be included in a multi-modal
model (Kiela et al., 2014).

Our second measure follows Deselaers and Fer-
rari (2011), who take a similar approach but in-
stead of calculating the pairwise distance calculate
the distance to the centroid ~µ of { ~w1 ... ~wn}:

c(w) =
1
n

∑
1≤i≤n

1− cos( ~wi, ~µ) (2)

For our third measure we follow Lazaridou et al.
(2015), who try different ways of modulating the
inclusion of perceptual input in their multi-modal
skip-gram model, and find that the entropy of the
centroid vector ~µ works well (where p(µj) = µj

||~µ||
and m is the vector length):

H(w) = −
m∑
j=1

p(µj) log2(p(µj)) (3)

3.3 Hypernym Detection and Directionality
We calculate the directionality of a hyponym-
hypernym pair with a measure f using the follow-
ing formula for a word pair (p, q). Since even co-
hyponyms will not have identical values for f , we
introduce a threshold αwhich sets a minimum dif-
ference in generality for hypernym identification:

s(p, q) = 1− f(p) + α

f(q)
(4)

In other words, s(p, q) > 0 iff f(q) > f(p) + α,
i.e. if the second word (q) is (sufficiently) more
general. To avoid false positives where one word
is more general but the pair is not semantically
related, we introduce a second threshold θ which
sets f to zero if the two concepts have low cosine
similarity. This leads to the following formula:

sθ(p, q) =

{
1− f(p)+α

f(q) if cos( ~µp, ~µq) ≥ θ
0 otherwise

(5)

We experimented with different methods for ob-
taining the mean vector representations for co-
sine (hereafter µc) in Equation (5), and found
that multi-modal representations worked best. We
concatenate an L2-normalized linguistic vector
with the L2-normalized centroid of image vectors
to obtain a multi-modal representation, following
Kiela and Bottou (2014). For a word p with im-
age representations {pimg1 ... pimgn }, we thus set
µc = pling || 1

n

∑n
i p

img
i , after normalizing both

representations. For comparison, we also report
results for a visual-only µc.

For BLESS, we know the words in a pair stand
in an entailment relation, so we set α = θ =
0 and evaluate whether s(p, q) > 0, indicating
that q is a hypernym of p. For WBLESS, we set
α = 0.02 and θ = 0.2 without tuning, and eval-
uate whether sθ(p, q) > 0 (hypernym relation) or
sθ(p, q) ≤ 0 (no hypernym relation). For BIB-
LESS, we set α = 0.02 and θ = 0.25 with-
out tuning, and evaluate whether sθ(p, q) > 0
(hyponym-hypernym), s(p, q) = 0 (no relation),
or s(p, q) ≤ 0 (hypernym-hyponym).

4 Results

The results can be found in Table 2. We com-
pare our methods with a frequency baseline, set-
ting f(p) = freq(p) in Equation 4 and using
the frequency scores from Turney et al. (2011).
Frequency has been proven to be a surprisingly
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BLESS WBLESS BIBLESS

Frequency 0.58 0.57 0.39
WeedsPrec 0.63 — —
WeedsSVM — 0.75 —
WeedsUnSup — 0.58 —
SLQS 0.87 — —
Dispersion 0.88 0.75 (0.74) 0.57 (0.55)
Centroid 0.87 0.74 (0.74) 0.57 (0.54)
Entropy 0.83 0.71 (0.71) 0.56 (0.53)

Table 2: Accuracy. For WBLESS and BIBLESS we
report results for multi-modal µc, with visual-only
µc in brackets.

challenging baseline for hypernym directionality
(Herbelot and Ganesalingam, 2013; Weeds et al.,
2014). In addition, we compare to the reported re-
sults of Santus et al. (2014) for WeedsPrec (Weeds
et al., 2004), an early lexical entailment mea-
sure, and SLQS, the entropy-based method of
Santus et al. (2014). Note, however, that these
are on a subsampled corpus of 1277 word pairs
from BLESS, so the results are indicative but not
directly comparable. On WBLESS we compare
to the reported results of Weeds et al. (2014):
we include results for the highest-performing su-
pervised method (WeedsSVM) and the highest-
performing unsupervised method (WeedsUnSup).

For BLESS, both dispersion and centroid dis-
tance reach or outperform the best other measure
(SLQS). They beat the frequency baseline by a
large margin (+30% and +29%). Taking the en-
tropy of the mean image representations does not
appear to do as well as the other two methods
but still outperforms the baseline and WeedsPrec
(+25% and +20% respectively).

In the case of WBLESS and BIBLESS, we
see a similar pattern in that dispersion and cen-
troid distance perform best. For WBLESS, these
methods outperform the other unsupervised ap-
proach, WeedsUnsup, by +17% and match the
best-performing support vector machine (SVM)
approach in Weeds et al. (2014). In fact, Weeds et
al. (2014) report results for a total of 6 supervised
methods (based on SVM and k-nearest neighbor
(k-NN) classifiers): our unsupervised image dis-
persion method outperforms all of these except for
the highest-performing one, reported here.

We can see that the task becomes increasingly
difficult as we go from directionality to detection
to the combination: the dispersion-based method
goes from 0.88 to 0.75 to 0.57, for example. BIB-
LESS is the most difficult, as shown by the fre-

Figure 2: Accuracy by WordNet shortest path
bucket (1 is shortest, 5 is longest).

quency baseline obtaining only 0.39. Our methods
do much better than this baseline (+18%). Image
dispersion appears to be the most robust measure.

To examine our results further, we divided the
test data into buckets by the shortest WordNet path
connecting word pairs (Miller, 1995). We expect
our method to be less accurate on word pairs with
short paths, since the difference in generality may
be difficult to discern. It has also been suggested
that very abstract hypernyms such as object and
entity are difficult to detect because their linguistic
distributions are not supersets of their hyponyms’
distributions (Rimell, 2014), a factor that should
not affect the visual modality. We find that con-
cept comparisons with a very short path (bucket 1)
are indeed the least accurate. We also find some
drop in accuracy on the longest paths (bucket 5),
especially for WBLESS and BIBLESS, perhaps be-
cause semantic similarity is difficult to detect in
these cases. For a histogram of the accuracy scores
according to WordNet similarity, see Figure 2.

5 Conclusions

We have evaluated three unsupervised methods for
determining the generality of a concept based on
its visual properties. Our best-performing method,
image dispersion, reaches the state-of-the-art on
two standard semantic evaluation datasets. We
introduced a novel, more difficult task combin-
ing hypernym detection and directionality, and
showed that our methods outperform a frequency
baseline by a large margin.

We believe that image generality may be par-
ticularly suited to entailment detection because it
does not suffer from the same issues as linguis-
tic distributional generality. Herbelot and Gane-
salingam (2013) found that general terms like liq-
uid do not always have higher entropy distribu-
tions than their hyponyms, since speakers use
them in very specific contexts, e.g. liquid is often
coordinated with gas.

We also acknowledge that our method depends
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to some degree on Google’s search result diversifi-
cation, but do not feel this detracts from the utility
of the method, since the fact that general concepts
achieve greater maximum image dispersion than
specific concepts is not dependent on any partic-
ular diversification algorithm. In future work, we
plan to explore more sophisticated visual gener-
ality measures, other semantic relations and dif-
ferent ways of fusing visual representations with
linguistic knowledge.
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