
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 1385–1394,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Parse Imputation for Dependency Annotations

Jason Mielens1 Liang Sun2

1Department of Linguistics 2Department of Mechanical Engineering
The University of Texas at Austin The University of Texas at Austin

{jmielens,jbaldrid}@utexas.edu sally722@utexas.edu

Jason Baldridge1

Abstract

Syntactic annotation is a hard task, but it
can be made easier by allowing annotators
flexibility to leave aspects of a sentence
underspecified. Unfortunately, partial an-
notations are not typically directly usable
for training parsers. We describe a method
for imputing missing dependencies from
sentences that have been partially anno-
tated using the Graph Fragment Language,
such that a standard dependency parser
can then be trained on all annotations. We
show that this strategy improves perfor-
mance over not using partial annotations
for English, Chinese, Portuguese and Kin-
yarwanda, and that performance competi-
tive with state-of-the-art unsupervised and
weakly-supervised parsers can be reached
with just a few hours of annotation.

1 Introduction

Linguistically annotated data is produced for
many purposes in many contexts. It typically
requires considerable effort, particularly for lan-
guage documentation efforts in which tooling,
data, and expertise in the language are scarce.
The challenge presented by this scarcity is com-
pounded when doing deeper analysis, such as syn-
tactic structure, which typically requires greater
expertise and existing tooling. In such scenar-
ios, unsupervised approaches are a tempting strat-
egy. While the performance of unsupervised
dependency parsing has improved greatly since
Klein and Manning’s (2004) Dependency Model
with Valence (DMV), state-of-the-art unsuper-
vised parsers still perform well below supervised
approaches (Martins et al., 2010; Spitkovsky et al.,
2012; Blunsom and Cohn, 2010). Additionally,
they typically require large amounts of raw data.
While this is not a problem for some languages,

many of the world’s languages do not have a clean,
digitized corpus available.1 For instance, the ap-
proach of Naseem et al. (2010) is unsupervised in
the sense that it requires no dependency annota-
tions, but it still makes use of the raw version of
the full Penn Treebank. The approach of Mare-
cek et al. (2013) requires extra unlabeled texts to
estimate parameters.

Another strategy is to exploit small amounts of
supervision or knowledge. Naseem et al. (2010)
use a set of universal dependency rules and obtain
substantial gains over unsupervised methods in
many languages. Spitkovsky et al. (2010b; 2011)
use web mark-up and punctuation as additional an-
notations. Alternatively, one could try to obtain
actual dependency annotations cheaply. We use
the Graph Fragment Language (GFL), which was
created with the goal of making annotations eas-
ier for experts and possible for novices (Schneider
et al., 2013; Mordowanec et al., 2014). GFL sup-
ports partial annotations, so annotators can omit
obvious dependencies or skip difficult construc-
tions. The ability to focus on portions of a sen-
tence frees the annotator to target constituents and
dependencies that maximize information that will
be most useful for machine-learned parsers. For
example, Hwa (1999) found higher-level sentence
constituents to be more informative for learning
parsers than lower-level ones.

To support this style of annotation while getting
the benefit from partial annotations, we develop a
two-stage parser learning strategy. The first stage
completes the partial GFL annotations by adapting
a Gibbs tree sampler (Johnson et al., 2007; Sun et
al., 2014). The GFL annotations constrain the tree
sampling space by using both dependencies and
the constituent boundaries they express. The sys-
tem performs missing dependency arc imputation
using Gibbs sampling – we refer to this approach

1In fact, standardized writing systems have yet to be
adopted for some languages.

1385



as the Gibbs Parse Completer2 (GPC). The sec-
ond stage uses the full dependencies output by the
GPC to train Turbo Parser (Martins et al., 2010),
and evaluation is done with this trained model on
unseen sentences. In simulation experiments for
English, Chinese and Portuguese, we show that
the method gracefully degrades when applied to
training corpora with increasing percentages of the
gold training dependencies removed. We also do
actual GFL annotations for those languages plus
Kinyarwanda, and show that using the GPC to fill
in the missing dependencies after two hours of
annotation enables Turbo Parser to obtain 2-6%
better absolute performance than when it has to
throw incomplete annotations out. Furthermore,
the gains are even greater with less annotation time
and it never hurts to use the GPC—so an annota-
tion project can pursue a partial annotation strat-
egy without undermining the utility of the work
for parser training.

This strategy has the further benefit of needing
only a small number of sentences—in our case,
under 100 sentences annotated in a 2-4 hour win-
dow. Furthermore, it relies on no outside tools or
corpora other than a part-of-speech tagger; a re-
source that can be built with two hours of annota-
tion time (Garrette and Baldridge, 2013).

2 Data

Data sources We use four languages from three
language families in an effort to both verify the
cross-linguistic applicability of our approach, ac-
counting for variations in linguistic properties, as
well as to attempt to realistically simulate a real-
world, low-resource environment. Our data comes
from English (ENG), Chinese (CHI), Portuguese
(POR), and Kinyarwanda (KIN).

For ENG we use the Penn Treebank (Marcus
et al., 1993), converted into dependencies by the
standard process. Section 23 was used as a test
set, and a random sample of sentences from sec-
tions 02-21 were selected for annotation with GFL
as described below and subsequently used as the
minimal training set. For CHI we use the Chi-
nese Treebank (CTB5) (Xue et al., 2005), also
converted to dependencies. The testing set con-
sisted of files 1-40/900-931, and the sentences pre-
sented for GFL annotation were randomly sam-
pled from files 81-899. The POR data is from

2The software, instructions, and data are available at
http://www.github.com/jmielens/gpc-acl-2015

Figure 1: GFL example for Mr. Conlon was ex-
ecutive vice president and director of the equity
division.

the CoNLL-X Shared Task on Multilingual De-
pendency Parsing and is derived from the Bosque
portion of the Floresta sintá(c)tica corpus (Afonso
et al., 2002), using the standard provided splits for
training and testing. The KIN data is a corpus con-
sisting of transcripts of testimonies by survivors
of the Rwandan genocide, provided by the Kigali
Genocide Memorial Center – this data is described
by Garrette and Baldridge (2013).

GFL annotation We use a small number of sen-
tences annotated using the Graph Fragment Lan-
guage (GFL), a simple ASCII markup language
for dependency grammar (Schneider et al., 2013).
Unlike traditional syntactic annotation strategies
requiring trained annotators and great effort, rapid
GFL annotations can be collected from annotators
who have minimal training. Kong et al. (2014)
demonstrate the feasibility of training a depen-
dency parser based on a GFL-annotated corpus of
English tweets.

An example of GFL is shown in Figure 1: (a) is
the GFL markup itself and (b) is a graphical repre-
sentation of the dependencies it encodes. Figure 1
specifies several dependencies: of is a dependent
of director, executive vice president and director
are conjuncts and and is the coordinator. However,
the complete internal structure of the phrase the
equity division remains unspecified, other than di-
vision being marked as the head (via an asterisk).3

Finally, Mr. Conlon in square brackets indicates it
is a multiword expression.

3The graphical representation shows both of these as FE
nodes, for fudge expression, indicating they are grouped to-
gether but otherwise underspecified.

1386



CFG Rule EVG distribution Description
S → YH P (root = H) The head of the sentence is H
YH → LHRH - Split-head representation
LH → HL P (STOP |dir = L, head = H, val = 0) H has no left children
LH → L1

H P (CONT |dir = L, head = H, val = 0) H has at least one left child
L′H → HL P (STOP |dir = L, head = H, val = 1) H has no more left children
L′H → L1

H P (CONT |dir = L, head = H, val = 1) H has other left children
L1
H → YAL

′
H P (ArgA|dir = L, head = H, val = 1) A is a left child of H

Table 1: The CFG-DMV grammar schema from Klein and Manning (2004). Note that in these rules
H and A are parts-of-speech. For brevity, we omit the portion of the grammar that handles the right-
hand arguments since they are symmetric to the left. Valency (val) can take the value 1 (we have made
attachments in the direction (dir) d) or 0 (not).

CHI ENG KIN POR
Sentences Annotated 24 34 69 63
Tokens Annotated 820 798 988 1067
Fully Specified Sentences 4 15 31 20

Table 2: Two Hour GFL Annotation Statistics

Kong et al. (2014) stipulate that the GFL an-
notations in their corpus must be fully-specified.
They are thus unable to take advantage of such un-
derspecified sentences, and we address that limita-
tion in this paper. From the GFL annotations we
can extract and deduce dependency arcs and con-
straints (see Section 3.2 for full details) in order to
guide the Gibbs sampling process.

Time-bounded annotation As described in
Section 1, a primary goal of this work was to con-
sider the time in which a useful number of depen-
dency tree annotations might be collected, such
as might be required during the initial phase of a
language documentation project or corpus build.
To this end our annotators were operating under a
strict two hour time limit. We also collected two
further hours for English.

The annotators were instructed to annotate as
many sentences as possible in the two hours, and
that they should liberally use underspecification,
especially for particularly difficult sequences in a
given sentence. This was done to facilitate the
availability of partial annotations for experimenta-
tion. All of the annotators had some previous ex-
perience providing GFL annotations, so no train-
ing period was needed. Annotation was done in
30-minute blocks, to provide short breaks for the
annotators and so that learning curves could be
generated. Each language was annotated by a
single annotator. The ENG and CHI annotators
were native speakers of their annotation language,
while the POR and KIN annotators were non-native

though proficient speakers.
The annotators achieved rates of 400-500 to-

kens/hr, whereas we find rates of 150-200 to-
kens/hr more typical when annotators are asked to
fully specify. Requiring full specification also in-
troduces more errors in cases of annotator uncer-
tainty.

Table 2 shows the size of the GFL corpora that
were created. Typically, over 50% of the sentences
were not fully specified—the partial annotations
provided in these are useless to Turbo Parser un-
less the missing dependencies are imputed.

3 Gibbs Parse Completer (GPC)

3.1 Gibbs sampler for CFG-DMV Model

CFG-DMV model The GPC is based on the
DMV model, a generative model for the unsu-
pervised learning of dependency structures (Klein
and Manning, 2004). We denote the input cor-
pus as ω = (ω1, · · · ,ωN ), where each ωs is a
sentence consisting of words and in a sentence ω,
word ωi has an corresponding part-of-speech tag
τi. We denote the set of all words as Vω and the
set of all parts-of-speech as Vτ . We use the part-
of-speech sequence as our terminal strings, result-
ing in an unlexicalized grammar. Dependencies
can be formulated as split head bilexical context
free grammars (CFGs) (Eisner and Satta, 1999)
and these bilexical CFGs require that each termi-
nal τi in sentence ω is represented in a split form
by two terminals, with labels marking the left and
right heads (τi,L, τi,R). Henceforth, we denote
w = w0,n as our terminals in the split-form of
sentence ω (e.g., the terminals for the dog walks
areDTL DTR NNL NNR VL VR). Table 1 shows
the grammar rules for the DMV model, from Klein
and Manning (2004).

1387



Require: A is parent node of binary rule; wi,k is a valid
span of terminals and i+ 1 < k
function TREESAMPLER(A, i, k)

for i < j < k and pair of child nodes ofA:B,C do
P (j, B,C) = θw

A→BCc(i,j)c(j,k)·pB,i,j ·pC,j,k

pA,i,k

end forSample j∗, B∗, C∗ from multinomial distri-
bution for (j, B,C) with probabilities calculated above

return j∗, B∗, C∗
end function

Algorithm 1: Sampling split position and rule to
expand parent node.

Gibbs sampler The split-head representation
encodes dependencies as a CFG. This enables the
use of a Gibbs sampler algorithm for estimating
PCFGs (Johnson et al., 2007; Sun et al., 2014),
and it is straightforward to incorporate constraints
from partial annotations into this sampler. To do
this, we modified the tree-sampling step to incor-
porate constraints derived from GFL annotations
and thereby impute the missing dependencies.

Given a string w = (w1, · · ·wn), we define
a span of w as wi,k = (wi+1, · · · , wk), so that
w = w0,n. As introduced in Pereira and Schabes
(1992), a bracketing B of w is a finite set of spans
on w satisfying the requirement that no two spans
in a bracketing may overlap unless one span con-
tains the other. For each sentence w = w0,n we
define the auxiliary function for each span wi,j ,
0 ≤ i < j ≤ n:

c(i, j) =

{
1 if span wi,j is valid for B;
0 otherwise.

Here one span is valid for B if it doesn’t cross
any brackets. Section 3.2 describes how to de-
rive bracketing information from GFL annotations
and how to determine if a span wi,j is valid or not.
Note that for parsing a corpus without any annota-
tions and constraints, c(i, j) = 1 for any span, and
the algorithm is equivalent to the Gibbs sampler in
Sun et al. (2014).

There are two parts to the tree-sampling. The
first constructs an inside table as in the Inside-
Outside algorithm for PCFGs and the second se-
lects the tree by recursively sampling productions
from top to bottom. Consider a sentence w, with
sub-spans wi,k = (wi+1, · · · , wk). Given θw

(modified rule probabilities θ given constraints of
sentence w, see Section 3.2), we construct the in-
side table with entries pA,i,k for each nonterminal
and each span wi,k: 0 ≤ i < k ≤ n. We introduce

Require: Arcs is the set of all directed arcs extracted from
annotation for sentence w
function RULEPROB-SENT(w, θ, Arcs)

θw = θ
for each directed arc wi < wj do

if i < j then
for nonterminal A 6= Lτj do

θwA→β = 0 if β contains Yτi

end for
else

for nonterminal A 6= Rτj do
θwA→β = 0 if β contains Yτi

end for
end if

end for
return θw

end function

Algorithm 2: Modifying Rule Probabilities for w
to ensure parse tree contains all directed arcs.

c(i, j) into the calculation of inside probabilities:

pA,i,k = c(i, k)·∑
A→BC∈R

∑
i<j<k

θwA→BC · pB,i,j · pC,j,k (1)

Here, pA,i,k = PGA(wi,k | θw) is the probability
that terminals i through k were produced by the
non-terminal A, A → BC ∈ R are possible rules
to expand A. The inside table is computed recur-
sively using Equation 1.

The resulting inside probabilities are then used
to generate trees from the distribution of all valid
trees of the sentence. The tree is generated
from top to bottom recursively with the function
TreeSampler defined in Algorithm 1, which in-
troduces c(i, j) into the sampling function from
Sun et al. (2014).

3.2 Constraints derived from GFL

We exploit one dependency constraint and two
constituency constraints from partial GFL anno-
tations.

Dependency rule Directed arcs are indicated
with angle brackets pointing from the dependent
to its head, e.g. black > cat. Once we have a di-
rected arc annotation, say ωi > ωj , if i < j, which
means word j has a left child, we must have rule
L1
τj → YτiL

′
τj in our parse tree (similarly if i > j,

we have R1
τj → R′τjYτi in our parse tree), where

τi, τj are parts-of-speech for ωi and ωj . We en-
force this by modifying the rule probabilities for
sample sentence w to ensure that any sampled tree
contains all specified arcs.

1388



Figure 2: Generating brackets for known head

Figure 3: Generating half brackets

Brackets GFL allows annotators to group words
with parenthesis, which provides an explicit indi-
cator of constituent brackets. Even when the inter-
nal structure is left underspecified (e.g. (the eq-
uity division*) in Figure 1 (a), the head is usu-
ally marked with *, and we can use this to infer
sub-constituents. Given such a set of parentheses
and the words inside them, we generate brackets
over the split-head representations of their parts-
of-speech, based on possible positions of the head.
Figure 2 shows how to generate brackets for three
situations: the head is the leftmost word, right-
most word, or is in a medial position. For exam-
ple, the first annotation indicates that under is the
head of under the agreement, and the rest of words
are right descendants of under. This leads to the
bracketing shown over the split-heads.

Half brackets We can also derive one-sided half
brackets from dependency arcs by assuming that
dependencies are projective. For example, in Fig-
ure 3, the annotation a > dog specifies that dog
has a left child a, so we know that there is a right
bracket before the right-head of dog. Thus, we can
detect invalid spans using the half brackets; if a
span starts after a and ends after dog, this span is
invalid because it would result in crossing brack-
ets. This half bracketing is a unique advantage
provided by the split-head representation. The de-
tails of this algorithm are shown in Algorithm 3.

Require: Arcs is the set of all directed arcs extracted for
sentence, wa,b is a span to detect
function DETECTINVALIDSPAN(a, b, Arcs)

for each directed arc ωi < ωj do
if i < j then

if a < 2i− 1 < b < 2j then
c(a, b) = 0

end if
else

if 2j − 2 < a < 2i− 1 < b then
c(i, j) = 0

end if
end if

end for
return c(a, b)

end function

Algorithm 3: Detect whether one span is invalid
given all directed arcs.

Figure 4: Process of generating brackets and de-
tecting invalid spans.

We use both half bracket and full bracket infor-
mation, B, to determine whether a span is valid.
We set c(i, j) = 0 for all spans over w detected
by Algorithm 3 and violating B. Then, in the sam-
pling scheme, we’ll only sample parse trees that
satisfy these underlying constraints.

Figure 4 shows the resulting blocked out spans
in the chart based on both types of brackets for
the given partial annotation, which is Step 1 of the
process. The black dog is a constituent with dog
marked as its head, so we generate a full bracket
over the terminal string in Step 2. Also, barks has
a right child loudly; this generates a half bracket
before VR. In Step 3, the chart in Figure 4 repre-
sents all spans over terminal symbols. The cells in
black are invalid spans based on the full bracket,
and the hatched cells are invalid spans based on
the half bracket.

4 Results

Experiments There are two points of variation
to consider in empirical evaluations of our ap-

1389



Figure 5: English oracle and degradation results

proach. The first is the effectiveness of the GPC
in imputing missing dependencies and the second
is the effectiveness of the GFL annotations them-
selves. Of particular note with respect to the latter
is the reasonable likelihood of divergence between
the annotator and the corpus used for evaluation—
for example, how coordination is handled and
whether subordinate verbs are dependents or heads
of auxiliary verbs. To this end, we perform simu-
lation experiments that remove increasing portions
of gold dependencies from a training corpus to un-
derstand imputation performance and annotation
experiments to evaluate the entire pipeline in a re-
alistically constrained annotation effort.

In that regard, one thing to consider are the part-
of-speech tags used by the unlexicalized GPC.
These do not come for free, so rather than ask
annotators to provide them, the raw sentences to
be annotated were tagged automatically. For En-
glish and Kinyarwanda, we used taggers trained
with resources built in under two hours (Garrette
and Baldridge, 2013), so these results are actually
constrained to the GFL annotation time plus two
hours. Such taggers were not available for Chinese
or Portuguese, so the Stanford tagger (Toutanova
et al., 2003) was used instead.

After imputing missing dependencies, the GPC
outputs fully sentences that are used to train Tur-
boParser (Martins et al., 2010). In all cases,
we compare to a right-branching baseline (RB).
Although comparing to a random baseline is
more typical of imputation experiments, a right-
branching baseline provides a stronger initial com-
parison. For the GFL annotation experiments, we
use two additional baselines. The first is simply
to use the sentences with full annotations and drop
any incomplete ones (GFL-DROP). The second is

Language ENG CHI POR

RB 25.0 11.6 27.0
GFL-GPC-25 58.7 33.5 60.2
GFL-GPC-50 75.0 46.1 71.4
GFL-GPC-75 77.8 50.1 73.7

Full 81.6 56.2 78.1

Table 3: Results with simulated partial annota-
tions, GFL-GPC-X indicates X percent of depen-
dencies were retained.

to make any partial annotations usable by assum-
ing a right-branching completion (GFL-RBC).

Simulated partial annotations Figure 5 shows
the learning curve with respect to number of an-
notated tokens when retaining 100%, 75%, 50%
and 25% of gold-standard training dependencies
and using the GPC to impute the removed ones.
With both 75% and 50% retained, performance
degrades gracefully. It is substantially lower for
25%, but the curve is steeper than the others, indi-
cating it is on track to catch up. Nonetheless, one
recommendation from these results is that it prob-
ably makes sense to start with a small number of
fully annotated sentences and then start mixing in
partially annotated ones.

Table 3 shows the attachment scores obtained
for English, Chinese, and Portuguese with varying
proportions of dependencies removed for the GPC
to impute.4 English and Portuguese hold up well
with 75% and 50% retained, while Chinese drops
more precipitously, and 25% leads to substantial
reductions in performance for all.

Note that these simulations indicate that, given
an equivalent number of total annotated arcs, using
the GPC is more beneficial than requiring annota-
tors to fully specify annotations. Imputing fifty
percent of the dependency arcs from sentences
containing 1000 tokens is typically more effective
by a few points than using the full gold-standard
arcs from sentences containing 500 tokens. Ac-
tually, this simulation is too generous to complete
annotations in that it leaves out consideration of
the time and effort required to obtain those 100%
full gold-standard arcs: it is often a small part of a
sentence that consumes the most effort when full
annotation is required. Additionally, these simula-
tion experiments randomly removed dependencies
while humans tend to annotate higher-level con-

4These are based on the same sentences used in the next
section’s GFL annotation experiments for each language.

1390



Eval Length < 10 < 20 all
GFL-DROP (4hr) 54.5 55.0 52.6
GFL-GPC (4hr) 60.1 61.8 55.1

Blunsom and Cohn, 2010 67.7 – 55.7
Naseem et al., 2010 71.9 50.4 –

Table 4: English results compared to previous un-
supervised and weakly-supervised methods.

stituents and leave internal structure (e.g. of noun
phrases) underspecified. Given Hwa’s (1999) find-
ings, we expect non-random partial annotations to
better serve as a basis for imputation.

GFL annotations We conducted three sets of
experiments with GFL annotations, evaluating on
sentences of all lengths, less than 10 words, and
less than 20 words. This was done to determine
the types of sentences that our method works best
on and to compare to previous work that evaluates
on sentences of different lengths.

Table 4 shows how our results on ENG com-
pare to others. Blunsom and Cohn (2010) rep-
resent state-of-the-art unsupervised results for all
lengths, while Naseem et al. (2010) was chosen as
a previous weakly-supervised approach. GFL-GPC

achieves similar results on the ‘all lengths’ crite-
rion as Blunsom and Cohn and substantially out-
performs Naseem et al. on sentences less than 20
words. Our poor performance on short sentences
is slightly surprising, and may result from an un-
even length distribution in the sentences selected
for annotation—we have only 3 training sentences
less than 10 words—as discussed by Spitkovsky et
al. (2010a). To correct this problem, both long and
short sentences should be included to construct a
more representative sample for annotation.

We did not expect GFL-RBC to perform so sim-
ilarly to RB. It is possible that the relatively large
number of under-specified sentences led to the
right-branching quality of GFL-RBC dominating,
rather than the more informative GFL annotations.

The results of the ENG annotation session can
be seen in Figure 6a. GFL-GPC is quite strong even
at thirty minutes, with only seven sentences anno-
tated. GFL-DROP picks up substantially at the end;
this may be in part explained by the fact that the
last block contained many short sentences, which
provide greater marginal benefit to GFL-DROP than
to GFL-GPC.

The learning curves for the other languages can
be seen in Figures 6b-6d, with a summary avail-
able in Table 5. Like ENG, CHI and POR both

Language KIN CHI POR
RB 52.6 11.6 27.0

GFL-DROP (2hr) 64.4 36.7 59.8
GFL-GPC (2hr) 64.5 38.8 65.0

Table 5: Non-English results summary

show clear wins for the GPC strategy. Of particu-
lar note is that the CHI annotations contained many
fewer fully-completed sentences (4) than the ENG

annotations (15). This somewhat addresses the
question raised by the 25% retention simulation
experiments—the GPC method improves results
over dropping partial annotations. The POR results
show a consistent strong win for GPC throughout.

The KIN results in Figure 6c exhibit a pattern
unlike the other languages; specifically, the KIN

data has a very high right-branching baseline (RB

in figures) and responds nearly identically for all
of the more informed methods. Upon investi-
gation, this appears to be an artifact of the data
used in KIN evaluation plus domain adaptation is-
sues. The gold data consists of transcribed natural
speech, whereas the training data consists of sen-
tences extracted from the Kinyarwanda Wikipedia.

All of the learning curves display a large ini-
tial jump after the first round of annotations. This
is encouraging for approaches that use annotated
sentences: just a small number of examples pro-
vide tremendous benefit, regardless of the strategy
employed.

Error analysis The primary errors seen on an
analysis of the GPC-completed sentences varies
somewhat between languages. The ENG data con-
tains many short sentences, consisting often of a
few words and a punctuation mark. Part of the
GFL convention is that the annotator is free to an-
notate punctuation as part of the sentence or in-
stead view it as extra-linguistic and drop the punc-
tuation from the annotation. Often the punctuation
in the ENG data went unannotated, with the result
being that the final parse model is not particularly
good at handling these types of sentences when
encountered in the test set.

Specific constructions like coordination and
possession also suffer a similar issue in that an-
notators (and corpora) varied slightly on how they
were handled. Thus, some languages like CHI

contained many of a particular type of error due
to mismatches in the conventions of the annota-
tor and corpus. Issues like this could have been
avoided by a longer training period prior to anno-

1391



(a) English (b) Chinese

(c) Kinyarwanda (d) Portuguese

Figure 6: GPC results by annotation time for eval sentences of all lengths.

tation, although were this a real annotation project,
there would be no existing corpus to compare to at
first. This brings up a more basic question of eval-
uation - one of usability versus representational
norm matching. It is likely that the GFL anno-
tations (and thus the models trained on them) di-
verge from the gold standard in what amount to
annotation conventions rather than substantive lin-
guistic divergences. To evaluate more fully or
fairly, we would need test sets produced by the
same set of annotators or an external, task-based
evaluation that uses the dependencies as in input.

5 Conclusions

We have described a modeling strategy that takes
advantage of a Gibbs sampling algorithm for CFG
parsing plus constraints obtained from partial an-
notations to build dependency parsers. This strat-
egy’s performance improves on that of a parser

built only on the available complete annotations.
In doing so, our approach supports annotation ef-
forts that use GFL to obtain guidance from non-
expert human annotators and allow any annotator
to put in less effort than they would to do complete
annotations.

We find that a remarkably small amount of
supervised data can rival existing unsupervised
methods. While unsupervised methods have been
considered an attractive option for low-resource
parsing, they typically rely on large quantities of
clean, raw sentences. Our method uses less than
one hundred sentences, so in a truly low-resource
scenario, it has the potential to require much less
total effort. For instance, a single native speaker
could easily both generate and annotate the sen-
tences required for our method in a few hours,
while the many thousands of raw sentences needed
for state-of-the-art unsupervised methods could

1392



take much longer to assemble if there is no ex-
isting corpus. This also means our method would
be useful for getting in-domain training data for
domain adaptation for parsers.

Finally, our method has the ability to encode
both universal grammar and test-language gram-
mar as a prior. This would be done by replacing
the uniform prior used in this paper with a prior
favoring those grammar rules during the updating-
rule-probabilities phase of the GPC, and would es-
sentially have the effect of weighting those gram-
mar rules.

Acknowledgments

This work was supported in part by the U. S. Army
Research Laboratory and the U. S. Army
Research Office under contract/grant number
W911NF-10-1-0533

References
S. Afonso, E. Bick, R. Haber, and D. Santos. 2002.

“Floresta sintá(c)tica”: a Treebank for Portuguese.
In Proceedings of the 3rd International Conference
on Language Resources and Evaluation (LREC),
pages 1698–1703. LREC.

Phil Blunsom and Trevor Cohn. 2010. Unsupervised
induction of tree substitution grammars for depen-
dency parsing. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1204–1213. Association for Com-
putational Linguistics.

Jason Eisner and Giorgio Satta. 1999. Efficient pars-
ing for bilexical context-free grammars and head au-
tomaton grammars. In Proceedings of the 37th an-
nual meeting of the Association for Computational
Linguistics on Computational Linguistics, pages
457–464. Association for Computational Linguis-
tics.

Dan Garrette and Jason Baldridge. 2013. Learning a
part-of-speech tagger from two hours of annotation.
In HLT-NAACL, pages 138–147. Citeseer.

Rebecca Hwa. 1999. Supervised grammar induction
using training data with limited constituent infor-
mation. In Proceedings of the 37th annual meet-
ing of the Association for Computational Linguistics
on Computational Linguistics, pages 73–79. Associ-
ation for Computational Linguistics.

Mark Johnson, Thomas L Griffiths, and Sharon Gold-
water. 2007. Bayesian inference for PCFGs via
Markov chain Monte Carlo. In Human Language
Technologies 2007: The Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 139–146.

Dan Klein and Christopher D Manning. 2004. Corpus-
based induction of syntactic structure: Models of de-
pendency and constituency. In Proceedings of the
42nd Annual Meeting on Association for Computa-
tional Linguistics, page 478. Association for Com-
putational Linguistics.

Lingpeng Kong, Nathan Schneider, Swabha
Swayamdipta, Archna Bhatia, Chris Dyer, and
Noah A Smith. 2014. A dependency parser for
tweets. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
Doha, Qatar, to appear.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large anno-
tated corpus of English: The Penn Treebank. Com-
putational linguistics, 19(2):313–330.

David Marecek and Milan Straka. 2013. Stop-
probability estimates computed on a large corpus
improve unsupervised dependency parsing. In ACL
(1), pages 281–290.

André FT Martins, Noah A Smith, Eric P Xing, Pe-
dro MQ Aguiar, and Mário AT Figueiredo. 2010.
Turbo parsers: Dependency parsing by approxi-
mate variational inference. In Proceedings of the
2010 Conference on Empirical Methods in Natural
Language Processing, pages 34–44. Association for
Computational Linguistics.

Michael T. Mordowanec, Nathan Schneider, Chris
Dyer, and Noah A Smith. 2014. Simplified depen-
dency annotations with GFL-Web. ACL 2014, page
121.

Tahira Naseem, Harr Chen, Regina Barzilay, and Mark
Johnson. 2010. Using universal linguistic knowl-
edge to guide grammar induction. In Proceedings of
the 2010 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1234–1244. Asso-
ciation for Computational Linguistics.

Fernando Pereira and Yves Schabes. 1992. Inside-
outside reestimation from partially bracketed cor-
pora. In Proceedings of the 30th annual meeting
on Association for Computational Linguistics, pages
128–135. Association for Computational Linguis-
tics.

Nathan Schneider, Brendan OConnor, Naomi Saphra,
David Bamman, Manaal Faruqui, Noah A Smith,
Chris Dyer, and Jason Baldridge. 2013. A
framework for (under) specifying dependency syn-
tax without overloading annotators. LAW VII & ID,
page 51.

Valentin I Spitkovsky, Hiyan Alshawi, and Daniel Ju-
rafsky. 2010a. From baby steps to leapfrog: How
less is more in unsupervised dependency parsing. In
Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the
Association for Computational Linguistics, pages
751–759. Association for Computational Linguis-
tics.

1393



Valentin I Spitkovsky, Daniel Jurafsky, and Hiyan Al-
shawi. 2010b. Profiting from mark-up: Hyper-text
annotations for guided parsing. In Proceedings of
the 48th Annual Meeting of the Association for Com-
putational Linguistics, pages 1278–1287. Associa-
tion for Computational Linguistics.

Valentin I Spitkovsky, Hiyan Alshawi, and Daniel Ju-
rafsky. 2011. Punctuation: Making a point in un-
supervised dependency parsing. In Proceedings of
the Fifteenth Conference on Computational Natural
Language Learning, pages 19–28. Association for
Computational Linguistics.

Valentin I Spitkovsky, Hiyan Alshawi, and Daniel Ju-
rafsky. 2012. Three dependency-and-boundary
models for grammar induction. In Proceedings of
the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 688–698. Asso-
ciation for Computational Linguistics.

Liang Sun, Jason Mielens, and Jason Baldridge. 2014.
Parsing low-resource languages using Gibbs sam-
pling for PCFGs with latent annotations. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics.

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology-
Volume 1, pages 173–180. Association for Compu-
tational Linguistics.

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Marta
Palmer. 2005. The Penn Chinese TreeBank: Phrase
structure annotation of a large corpus. Natural lan-
guage engineering, 11(02):207–238.

1394


