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Abstract

We introduce XMEANT—a new cross-lingual
version of the semantic frame based MT
evaluation metric MEANT—which can cor-
relate even more closely with human ade-
quacy judgments than monolingual MEANT
and eliminates the need for expensive hu-
man references. Previous work established
that MEANT reflects translation adequacy
with state-of-the-art accuracy, and optimiz-
ing MT systems against MEANT robustly im-
proves translation quality. However, to go
beyond tuning weights in the loglinear SMT
model, a cross-lingual objective function that
can deeply integrate semantic frame crite-
ria into the MT training pipeline is needed.
We show that cross-lingual XMEANT out-
performs monolingual MEANT by (1) replac-
ing the monolingual context vector model in
MEANT with simple translation probabilities,
and (2) incorporating bracketing ITG con-
straints.

1 Introduction

We show that XMEANT, a new cross-lingual ver-
sion of MEANT (Lo et al., 2012), correlates with
human judgment even more closely than MEANT
for evaluating MT adequacy via semantic frames,
despite discarding the need for expensive human
reference translations. XMEANT is obtained by
(1) using simple lexical translation probabilities,
instead of the monolingual context vector model
used in MEANT for computing the semantic role
fillers similarities, and (2) incorporating bracket-
ing ITG constrains for word alignment within the
semantic role fillers. We conjecture that the rea-
son that XMEANT correlates more closely with
human adequacy judgement than MEANT is that
on the one hand, the semantic structure of the
MT output is closer to that of the input sentence

than that of the reference translation, and on the
other hand, the BITG constraints the word align-
ment more accurately than the heuristic bag-of-
word aggregation used in MEANT. Our results
suggest that MT translation adequacy is more ac-
curately evaluated via the cross-lingual semantic
frame similarities of the input and the MT output
which may obviate the need for expensive human
reference translations.

The MEANT family of metrics (Lo and Wu,
2011a, 2012; Lo et al., 2012) adopt the princi-
ple that a good translation is one where a human
can successfully understand the central meaning
of the foreign sentence as captured by the basic
event structure: “who did what to whom, when,
where and why” (Pradhan et al., 2004). MEANT
measures similarity between the MT output and
the reference translations by comparing the simi-
larities between the semantic frame structures of
output and reference translations. It is well estab-
lished that the MEANT family of metrics corre-
lates better with human adequacy judgments than
commonly used MT evaluation metrics (Lo and
Wu, 2011a, 2012; Lo et al., 2012; Lo and Wu,
2013b; Macháček and Bojar, 2013). In addition,
the translation adequacy across different genres
(ranging from formal news to informal web fo-
rum and public speech) and different languages
(English and Chinese) is improved by replacing
BLEU or TER with MEANT during parameter
tuning (Lo et al., 2013a; Lo and Wu, 2013a; Lo
et al., 2013b).

In order to continue driving MT towards better
translation adequacy by deeply integrating seman-
tic frame criteria into the MT training pipeline, it is
necessary to have a cross-lingual semantic objec-
tive function that assesses the semantic frame sim-
ilarities of input and output sentences. We there-
fore propose XMEANT, a cross-lingual MT evalu-
ation metric, that modifies MEANT using (1) sim-
ple translation probabilities (in our experiments,
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from quick IBM-1 training), to replace the mono-
lingual context vector model in MEANT, and (2)
constraints from BITGs (bracketing ITGs). We
show that XMEANT assesses MT adequacy more
accurately than MEANT (as measured by correla-
tion with human adequacy judgement) without the
need for expensive human reference translations in
the output language.

2 Related Work

2.1 MT evaluation metrics

Surface-form oriented metrics such as BLEU (Pa-
pineni et al., 2002), NIST (Doddington, 2002),
METEOR (Banerjee and Lavie, 2005), CDER
(Leusch et al., 2006), WER (Nießen et al., 2000),
and TER (Snover et al., 2006) do not correctly re-
flect the meaning similarities of the input sentence.
In fact, a number of large scale meta-evaluations
(Callison-Burch et al., 2006; Koehn and Monz,
2006) report cases where BLEU strongly dis-
agrees with human judgments of translation ade-
quacy.

This has caused a recent surge of work to de-
velop better ways to automatically measure MT
adequacy. Owczarzak et al. (2007a,b) improved
correlation with human fluency judgments by us-
ing LFG to extend the approach of evaluating syn-
tactic dependency structure similarity proposed by
Liu and Gildea (2005), but did not achieve higher
correlation with human adequacy judgments than
metrics like METEOR. TINE (Rios et al., 2011) is
a recall-oriented metric which aims to preserve the
basic event structure but it performs comparably
to BLEU and worse than METEOR on correlation
with human adequacy judgments. ULC (Giménez
and Màrquez, 2007, 2008) incorporates several
semantic features and shows improved correla-
tion with human judgement on translation quality
(Callison-Burch et al., 2007, 2008) but no work
has been done towards tuning an SMT system us-
ing a pure form of ULC perhaps due to its expen-
sive run time. Similarly, SPEDE (Wang and Man-
ning, 2012) predicts the edit sequence for match-
ing the MT output to the reference via an inte-
grated probabilistic FSM and PDA model. Sagan
(Castillo and Estrella, 2012) is a semantic textual
similarity metric based on a complex textual en-
tailment pipeline. These aggregated metrics re-
quire sophisticated feature extraction steps, con-
tain several dozens of parameters to tune, and em-
ploy expensive linguistic resources like WordNet

Figure 1: Monolingual MEANT algorithm.

or paraphrase tables; the expensive training, tun-
ing, and/or running time makes them hard to in-
corporate into the MT development cycle.

2.2 The MEANT family of metrics
MEANT (Lo et al., 2012), which is the weighted f-
score over the matched semantic role labels of the
automatically aligned semantic frames and role
fillers, that outperforms BLEU, NIST, METEOR,
WER, CDER and TER in correlation with human
adequacy judgments. MEANT is easily portable
to other languages, requiring only an automatic se-
mantic parser and a large monolingual corpus in
the output language for identifying the semantic
structures and the lexical similarity between the
semantic role fillers of the reference and transla-
tion.

Figure 1 shows the algorithm and equations for
computing MEANT. q0

i,j and q1
i,j are the argument

of type j in frame i in MT and REF respectively.
w0

i and w1
i are the weights for frame i in MT/REF

respectively. These weights estimate the degree of
contribution of each frame to the overall meaning
of the sentence. wpred and wj are the weights of
the lexical similarities of the predicates and role
fillers of the arguments of type j of all frame be-
tween the reference translations and the MT out-
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Figure 2: Examples of automatic shallow semantic parses. The input is parsed by a Chinese automatic
shallow semantic parser. The reference and MT output are parsed by an English automatic shallow
semantic parser. There are no semantic frames for MT3 since the system decided to drop the predicate.

put. There is a total of 12 weights for the set
of semantic role labels in MEANT as defined in
Lo and Wu (2011b). For MEANT, they are de-
termined using supervised estimation via a sim-
ple grid search to optimize the correlation with
human adequacy judgments (Lo and Wu, 2011a).
For UMEANT (Lo and Wu, 2012), they are es-
timated in an unsupervised manner using relative
frequency of each semantic role label in the refer-
ences and thus UMEANT is useful when human
judgments on adequacy of the development set are
unavailable.

si,pred and si,j are the lexical similarities based
on a context vector model of the predicates and
role fillers of the arguments of type j between the
reference translations and the MT output. Lo et al.
(2012) and Tumuluru et al. (2012) described how
the lexical and phrasal similarities of the semantic
role fillers are computed. A subsequent variant of
the aggregation function inspired by Mihalcea et
al. (2006) that normalizes phrasal similarities ac-
cording to the phrase length more accurately was
used in more recent work (Lo et al., 2013a; Lo
and Wu, 2013a; Lo et al., 2013b). In this paper,
we employ a newer version of MEANT that uses
f-score to aggregate individual token similarities
into the composite phrasal similarities of seman-
tic role fillers, as our experiments indicate this is
more accurate than the previously used aggrega-
tion functions.

Recent studies (Lo et al., 2013a; Lo and Wu,
2013a; Lo et al., 2013b) show that tuning MT sys-

tems against MEANT produces more robustly ad-
equate translations than the common practice of
tuning against BLEU or TER across different data
genres, such as formal newswire text, informal
web forum text and informal public speech.

2.3 MT quality estimation
Evaluating cross-lingual MT quality is similar to
the work of MT quality estimation (QE). Broadly
speaking, there are two different approaches to
QE: surface-based and feature-based.

Token-based QE models, such as those in Gan-
drabur et al. (2006) and Ueffing and Ney (2005)
fail to assess the overall MT quality because trans-
lation goodness is not a compositional property. In
contrast, Blatz et al. (2004) introduced a sentence-
level QE system where an arbitrary threshold is
used to classify the MT output as good or bad.
The fundamental problem of this approach is that
it defines QE as a binary classification task rather
than attempting to measure the degree of goodness
of the MT output. To address this problem, Quirk
(2004) related the sentence-level correctness of the
QE model to human judgment and achieved a high
correlation with human judgement for a small an-
notated corpus; however, the proposed model does
not scale well to larger data sets.

Feature-based QE models (Xiong et al., 2010;
He et al., 2011; Ma et al., 2011; Specia, 2011;
Avramidis, 2012; Mehdad et al., 2012; Almaghout
and Specia, 2013; Avramidis and Popović, 2013;
Shah et al., 2013) throw a wide range of linguis-
tic and non-linguistic features into machine learn-
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Figure 3: Cross-lingual XMEANT algorithm.

ing algorithms for predicting MT quality. Al-
though the feature-based QE system of Avramidis
and Popović (2013) slightly outperformed ME-
TEOR on correlation with human adequacy judg-
ment, these “black box” approaches typically lack
representational transparency, require expensive
running time, and/or must be discriminatively re-
trained for each language and text type.

3 XMEANT: a cross-lingual MEANT

Like MEANT, XMEANT aims to evaluate how
well MT preserves the core semantics, while
maintaining full representational transparency.
But whereas MEANT measures lexical similar-
ity using a monolingual context vector model,
XMEANT instead substitutes simple cross-lingual
lexical translation probabilities.

XMEANT differs only minimally from
MEANT, as underlined in figure 3. The same
weights obtained by optimizing MEANT against
human adequacy judgement were used for
XMEANT. The weights can also be estimated in
unsupervised fashion using the relative frequency
of each semantic role label in the foreign input, as
in UMEANT.

To aggregate individual lexical translation prob-
abilities into phrasal similarities between cross-
lingual semantic role fillers, we compared two nat-
ural approaches to generalizing MEANT’s method
of comparing semantic parses, as described below.

3.1 Applying MEANT’s f-score within
semantic role fillers

The first natural approach is to extend MEANT’s
f-score based method of aggregating semantic
parse accuracy, so as to also apply to aggregat-

ing lexical translation probabilities within seman-
tic role filler phrases. However, since we are miss-
ing structure information within the flat role filler
phrases, we can no longer assume an injective
mapping for aligning the tokens of the role fillers
between the foreign input and the MT output. We
therefore relax the assumption and thus for cross-
lingual phrasal precision/recall, we align each to-
ken of the role fillers in the output/input string
to the token of the role fillers in the input/output
string that has the maximum lexical translation
probability. The precise definition of the cross-
lingual phrasal similarities is as follows:

ei,pred ≡ the output side of the pred of aligned frame i

fi,pred ≡ the input side of the pred of aligned frame i

ei,j ≡ the output side of the ARG j of aligned frame i

fi,j ≡ the input side of the ARG j of aligned frame i

p(e, f) =
√

t (e|f) t (f |e)

prece,f =

∑
e∈e max

f∈f
p(e, f)

|e|

rece,f =

∑
f∈f max

e∈e
p(e, f)

|f|

si,pred =
2 · precei,pred,fi,pred

· recei,pred,fi,pred

precei,pred,fi,pred
+ recei,pred,fi,pred

si,j =
2 · precei,j ,fi,j

· recei,j ,fi,j

precei,j ,fi,j
+ recei,j ,fi,j

where the joint probability p is defined as the har-
monized the two directions of the translation table
t trained using IBM model 1 (Brown et al., 1993).
prece,f is the precision and rece,f is the recall of
the phrasal similarities of the role fillers. si,pred

and si,j are the f-scores of the phrasal similarities
of the predicates and role fillers of the arguments
of type j between the input and the MT output.

3.2 Applying MEANT’s ITG bias within
semantic role fillers

The second natural approach is to extend
MEANT’s ITG bias on compositional reorder-
ing, so as to also apply to aggregating lexical
translation probabilities within semantic role filler
phrases. Addanki et al. (2012) showed empiri-
cally that cross-lingual semantic role reordering of
the kind that MEANT is based upon is fully cov-
ered within ITG constraints. In Wu et al. (2014),
we extend ITG constraints into aligning the tokens
within the semantic role fillers within monolingual
MEANT, thus replacing its previous monolingual
phrasal aggregation heuristic. Here we borrow the
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idea for the cross-lingual case, using the length-
normalized inside probability at the root of a BITG
biparse (Wu, 1997; Zens and Ney, 2003; Saers and
Wu, 2009) as follows:

G ≡ ⟨{A} ,W0,W1,R, A⟩
R ≡ {A → [AA] , A → ⟨AA⟩, A → e/f}

p ([AA] |A) = p (⟨AA⟩|A) = 0.25

p (e/f |A) =
1

2

√
t (e|f) t (f |e)

si,pred =
1

1− ln
(

P
(
A ∗⇒ei,pred/fi,pred|G

))
max(|ei,pred|,|fi,pred|)

si,j =
1

1− ln
(

P
(
A ∗⇒ei,j/fi,j |G

))
max(|ei,j |,|fi,j |)

where G is a bracketing ITG, whose only nonter-
minal is A, and where R is a set of transduction
rules where e ∈ W0 ∪ {ϵ} is an output token
(or the null token), and f ∈ W1 ∪ {ϵ} is an in-
put token (or the null token). The rule probabil-
ity function p is defined using fixed probabilities
for the structural rules, and a translation table t
trained using IBM model 1 in both directions. To
calculate the inside probability of a pair of seg-
ments, P

(
A ∗⇒ e/f|G

)
, we use the algorithm de-

scribed in Saers et al. (2009). si,pred and si,j are
the length normalized BITG parsing probabilities
of the predicates and role fillers of the arguments
of type j between the input and the MT output.

4 Results

Table 1 shows that for human adequacy judgments
at the sentence level, the f-score based XMEANT
(1) correlates significantly more closely than other
commonly used monolingual automatic MT eval-
uation metrics, and (2) even correlates nearly as
well as monolingual MEANT. This suggests that
the semantic structure of the MT output is indeed
closer to that of the input sentence than that of the
reference translation.

Furthermore, the ITG-based XMEANT (1) sig-
nificantly outperforms MEANT, and (2) is an au-
tomatic metric that is nearly as accurate as the
HMEANT human subjective version. This indi-
cates that BITG constraints indeed provide a more
robust token alignment compared to the heuris-
tics previously employed in MEANT. It is also
consistent with results observed while estimating
word alignment probabilities, where BITG con-
straints outperformed alignments from GIZA++
(Saers and Wu, 2009).

Table 1: Sentence-level correlation with HAJ
(GALE phase 2.5 evaluation data)

Metric Kendall
HMEANT 0.53
XMEANT (BITG) 0.51
MEANT (f-score) 0.48
XMEANT (f-score) 0.46
MEANT (2013) 0.46
NIST 0.29
BLEU/METEOR/TER/PER 0.20
CDER 0.12
WER 0.10

5 Conclusion

We have presented XMEANT, a new cross-lingual
variant of MEANT, that correlates even more
closely with human translation adequacy judg-
ments than MEANT, without the expensive human
references. This is (1) accomplished by replacing
monolingual MEANT’s context vector model with
simple translation probabilities when computing
similarities of semantic role fillers, and (2) fur-
ther improved by incorporating BITG constraints
for aligning the tokens in semantic role fillers.
While monolingual MEANT alone accurately re-
flects adequacy via semantic frames and optimiz-
ing SMT against MEANT improves translation,
the new cross-lingual XMEANT semantic objec-
tive function moves closer toward deep integration
of semantics into the MT training pipeline.

The phrasal similarity scoring has only been
minimally adapted to cross-lingual semantic role
fillers in this first study of XMEANT. We expect
further improvements to XMEANT, but these first
results already demonstrate XMEANT’s potential
to drive research progress toward semantic SMT.
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