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Abstract

In this paper we extend the cube-pruned
dependency parsing framework of Zhang
et al. (2012; 2013) by forcing inference to
maintain both label and structural ambigu-
ity. The resulting parser achieves state-of-
the-art accuracies, in particular on datasets
with a large set of dependency labels.

1 Introduction

Dependency parsers assign a syntactic depen-
dency tree to an input sentence (Kübler et al.,
2009), as exemplified in Figure 1. Graph-based
dependency parsers parameterize models directly
over substructures of the tree, including single
arcs (McDonald et al., 2005), sibling or grand-
parent arcs (McDonald and Pereira, 2006; Car-
reras, 2007) or higher-order substructures (Koo
and Collins, 2010; Ma and Zhao, 2012). As the
scope of each feature function increases so does
parsing complexity, e.g., o(n5) for fourth-order
dependency parsing (Ma and Zhao, 2012). This
has led to work on approximate inference, typ-
ically via pruning (Bergsma and Cherry, 2010;
Rush and Petrov, 2012; He et al., 2013)

Recently, it has been shown that cube-pruning
(Chiang, 2007) can efficiently introduce higher-
order dependencies in graph-based parsing (Zhang
and McDonald, 2012). Cube-pruned dependency
parsing runs standard bottom-up chart parsing us-
ing the lower-order algorithms. Similar to k-best
inference, each chart cell maintains a beam of k-
best partial dependency structures. Higher-order
features are scored when combining beams during
inference. Cube-pruning is an approximation, as
the highest scoring tree may fall out of the beam
before being fully scored with higher-order fea-
tures. However, Zhang et al. (2013) observe state-
of-the-art results when training accounts for errors
that arise due to such approximations.

John emailed April about one month ago

NSUBJ IOBJ

ADVMOD

QUANTMOD NUM
NPADVMOD

Figure 1: A sample dependency parse.

In this work we extend the cube-pruning frame-
work of Zhang et al. by observing that dependency
parsing has two fundamental sources of ambiguity.
The first, structural ambiguity, pertains to confu-
sions about the unlabeled structure of the tree, e.g.,
the classic prepositional phrase attachment prob-
lem. The second, label ambiguity, pertains to sim-
ple label confusions, e.g., whether a verbal object
is direct or indirect.

Distinctions between arc labels are frequently
fine-grained and easily confused by parsing mod-
els. For example, in the Stanford dependency
label set (De Marneffe et al., 2006), the labels
TMOD (temporal modifier), NPADVMOD (noun-
phrase adverbial modifier), IOBJ (indirect object)
and DOBJ (direct object) can all be noun phrases
that modify verbs to their right. In the context of
cube-pruning, during inference, the system opts to
maintain a large amount of label ambiguity at the
expense of structural ambiguity. Frequently, the
beam stores only label ambiguities and the result-
ing set of trees have identical unlabeled structure.
For example, in Figure 1, the aforementioned la-
bel ambiguity around noun objects to the right of
the verb (DOBJ vs. IOBJ vs. TMP) could lead one
or more of the structural ambiguities falling out of
the beam, especially if the beam is small.

To combat this, we introduce a secondary beam
for each unique unlabeled structure. That is,
we partition the primary (entire) beam into dis-
joint groups according to the identity of unla-
beled structure. By limiting the size of the sec-
ondary beam, we restrict label ambiguity and en-
force structural diversity within the primary beam.
The resulting parser consistently improves on the
state-of-the-art parser of Zhang et al. (2013). In
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Figure 2: Structures and rules for parsing with the
(Eisner, 1996) algorithm. Solid lines show only
the construction of right-pointing first-order de-
pendencies. l is the predicted arc label. Dashed
lines are the additional sibling modifier signatures
in a generalized algorithm, specifically the previ-
ous modifier in complete chart items.

particular, data sets with large label sets (and thus
a large number of label confusions) typically see
the largest jumps in accuracy. Finally, we show
that the same result cannot be achieved by simply
increasing the size of the beam, but requires ex-
plicit enforcing of beam diversity.

2 Structural Diversity in Cube-Pruning

Our starting point is the cube-pruned dependency
parsing model of Zhang and McDonald (2012). In
that work, as here, inference is simply the Eis-
ner first-order parsing model (Eisner, 1996) shown
in Figure 2. In order to score higher-order fea-
tures, each chart item maintains a list of signa-
tures, which represent subtrees consistent with the
chart item. The stored signatures are the relevant
portions of the subtrees that will be part of higher-
order feature calculations. For example, to score
features over adjacent arcs, we might maintain ad-
ditional signatures, again shown in Figure 2.

The scope of the signature adds asymptotic
complexity to parsing. Even for second-order sib-
lings, there will now be O(n) possible signatures
per chart item. The result is that parsing com-
plexity increases from O(n3) to O(n5). Instead
of storing all signatures, Zhang and McDonald
(2012) store the current k-best in a beam. This re-
sults in approximate inference, as some signatures
may fall out of the beam before higher-order fea-
tures can be scored. This general trick is known as
cube-pruning and is a common approach to deal-
ing with large hypergraph search spaces in ma-
chine translation (Chiang, 2007).

Cube-pruned parsing is analogous to k-best
parsing algorithmically. But there is a fundamen-
tal difference. In k-best parsing, if two subtrees
ta and tb belong to the same chart item, with ta
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Figure 3: Merging procedure in cube pruning. The
bottom shows that enforcing diversity in the k-best
lists can give chance to a good structure at (2, 2).

ranking higher than tb, then an extension of ta
through combing with a subtree tc from another
chart item must also score higher than that of tb.
This property is called the monotonicity property.
Based on it, k-best parsing merges k-best subtrees
in the following way: given two chart items with
k-best lists to be combined, it proceeds on the two
sorted lists monotonically from beginning to end
to generate combinations. Cube pruning follows
the merging procedure despite the loss of mono-
tonicity due to the addition of higher-order feature
functions over the signatures of the subtrees. The
underlying assumption of cube pruning is that the
true k-best results are likely in the cross-product
space of top-ranked component subtrees. Figure 3
shows that the space is the top-left corner of the
grid in the binary branching cases.

As mentioned earlier, the elements in chart item
k-best lists are feature signatures of subtrees. We
make a distinction between labeled signatures and
unlabeled signatures. As feature functions are de-
fined on sub-graphs of the dependency trees, a fea-
ture signature is labeled if and only if feature func-
tions draw information from both the arcs in the
sub-graph and the labels on the arcs. Every la-
beled signature projects to an unlabeled signature
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that ignores the arc labels.
The motivation for introducing unlabeled signa-

tures for labeled parsing is to enforce structural di-
versity. Figure 3 illustrates the idea. In the top
diagram, there is only one unlabeled signature in
one of the two lists. This is likely to happen when
there is label ambiguity so that all three labels have
similar scores. In such cases, alternative tree struc-
tures further down in the list that have the poten-
tial to be scored higher when incorporating higher-
order features, lose this opportunity due to prun-
ing. By contrast, if we introduce structural diver-
sity by limiting the number of label variants, such
alternative structures can come out on top.

More formally, when the feature signatures of
the subtrees include arc labels, the cardinality of
the set of all possible signatures grows by a poly-
nomial of the size of the label set. This factor has a
diluting effect on the diversity of unlabeled signa-
tures within the beam. The larger the label set is,
the greater the chance label ambiguity will dom-
inate the beam. Therefore, we introduce a sec-
ond level of beam specifically for labeled signa-
tures. We call it the secondary beam, relative to
the primary beam, i.e., the entire beam. The sec-
ondary beam limits the number of labeled signa-
tures for each unlabeled signature, a projection of
labeled signature, while the primary beam limits
the total number of labeled signatures. To illus-
trate this, consider an original primary beam of
length b and a secondary beam length of sb. Let
tji represent the ith highest scoring labeled variant
of unlabeled structure j. The table below shows a
specific example of beam configurations for b = 4
for all possible values of sb. The original beam is
the pathological case where all signatures have the
same unlabeled projection. When sb = 1, all sig-
natures in the beam now have a different unlabeled
projection. When sb = 4, the beam reverts to the
original without any structural diversity. Values
between balance structural and label diversity.

beam original b = 4 b = 4 b = 4 b = 4

rank b=4 sb = 1 sb = 2 sb = 3 sb = 4

1 t11 t11 t11 t11 t11

2 t12 t21 t12 t12 t12

3 t13 t31 t21 t13 t13

4 t14 t41 t31 t21 t14

· · · · · · · · · · · · · · · · · · · · · beam cut-off · · · · · · · · · · · · · · · · · · · · ·
5 t21 . . . . . . . . . . . .

6 t31 . . . . . . . . . . . .

7 t22 . . . . . . . . . . . .

8 t32 . . . . . . . . . . . .

9 t41 . . . . . . . . . . . .

To achieve this in cube pruning, deeper explo-
ration in the merging procedure becomes neces-
sary. In this example, originally the merging pro-
cedure stops when t14 has been explored. When
sb = 1, the exploration needs to go further from
rank 4 to 9. When sb = 2, it needs to go from 4
to 6. When sb = 3, only one more step to rank
5 is necessary. The amount of additional compu-
tation depends on the value of sb, the composi-
tion of the incoming k-best lists, and the feature
functions which determine feature signatures. To
account for this we also compare to baselines sys-
tems that simply increase the size of the beam to a
comparable run-time.

In our experiments we found that sb = b/2 is
typically a good choice. As in most parsing sys-
tems, beams are applied consistently during learn-
ing and testing because feature weights will be ad-
justed according to the diversity of the beam.

3 Experiments

We use the cube-pruned dependency parser of
Zhang et al. (2013) as our baseline system. To
make an apples-to-apples comparison, we use the
same online learning algorithm and the same fea-
ture templates. The feature templates include first-
to-third-order labeled features and valency fea-
tures. More details of these features are described
in Zhang and McDonald (2012). For online learn-
ing, we apply the same violation-fixing strategy
(so-called single-node max-violation) on MIRA
and run 8 epochs of training for all experiments.

For English, we conduct experiments on
the commonly-used constituency-to-dependency-
converted Penn Treebank data sets. The first one,
Penn-YM, was created by the Penn2Malt1 soft-
ware. The second one, Penn-S-2.0.5, used the
Stanford dependency framework (De Marneffe et
al., 2006) by applying version 2.0.5 of the Stan-
ford parser. The third one, Penn-S-3.3.0 was con-
verted by version 3.3.0 of the Stanford parser. The
train/dev/test split was standard: sections 2-21 for
training; 22 for validation; and 23 for evaluation.
Automatic POS tags for Penn-YM and Penn-S-
2.0.5 are provided by TurboTagger (Martins et al.,
2013) with an accuracy of 97.3% on section 23.
For Chinese, we use the CTB-5 dependency tree-
bank which was converted from the original con-
stituent treebank by Zhang and Nivre (2011) and
use gold-standard POS tags as is standard.

1http://stp.lingfil.uu.se/∼nivre/research/Penn2Malt.html
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Berkeley Parser TurboParser Cube-pruned w/o diversity Cube-pruned w/ diversity
UAS LAS UAS LAS UAS LAS UAS LAS

PENN-YM - - 93.07 - 93.50 92.41 93.57 92.48
PENN-S-2.0.5 - - 92.82 - 93.59 91.17 93.71 91.37
PENN-S-3.3.0 93.31 91.01 92.20 89.67 92.91 90.52 93.01 90.64
PENN-S-3.3.0-GOLD 93.65 92.05 93.56 91.99 94.32 92.90 94.40 93.02
CTB-5 - - - - 87.78 86.13 87.96 86.34

Table 1: English and Chinese results for cube pruning dependency parsing with the enforcement of
structural diversity. PENN-S and CTB-5 are significant at p < 0.05. Penn-S-2.0.5 TurboParser result is
from Martins et al. (2013). Following Kong and Smith (2014), we trained our models on Penn-S-3.3.0
with gold POS tags and evaluated with both non-gold (Stanford tagger) and gold tags.

Table 1 shows the main results of the paper.
Both the baseline and the new system keep a beam
of size 6 for each chart cell. The difference is
that the new system enforces structural diversity
with the introduction of a secondary beam for la-
bel variants. We choose the secondary beam that
yields the highest LAS on the development data
sets for Penn-YM, Penn-S-2.0.5 and CTB-5. In-
deed we observe larger improvements for the data
sets with larger label sets. Penn-S-2.0.5 has 49 la-
bels and observes a 0.2% absolute improvement in
LAS. Although CTB-5 has a small label set (18),
we do see similar improvements for both UAS and
LAS. There is a slight improvement for Penn-YM
despite the fact that Penn-YM has the most com-
pact label set (12). These results are the highest
known in the literature. For the Penn-S-3.3.0 re-
sults we can see that our model outperforms Tur-
boPaser and is competitive with the Berkeley con-
stituency parser (Petrov et al., 2006). In particu-
lar, if gold tags are assumed, cube-pruning signif-
icantly outperforms Berkeley. This suggests that
joint tagging and parsing should improve perfor-
mance further in the non-gold tag setting, as that
is a differentiating characteristic of constituency
parsers. Table 2 shows the results on the CoNLL
2006/2007 data sets (Buchholz and Marsi, 2006;
Nivre et al., 2007). For simplicity, we set the sec-
ondary beam to 3 for all. We can see that over-
all there is an improvement in accuracy and this is
highly correlated with the size of the label set.

In order to examine the importance of balancing
structural diversity and labeled diversity, we let the
size of the secondary beam vary from one to the
size of the primary beam. In Table 3, we show the
results of all combinations of beam settings of pri-
mary beam sizes 4 and 6 for three data sets: Penn-
YM, Penn-S-2.0.5, and CTB-5 respectively. In the
table, we highlight the best results for each beam
size and data set on the development data. For 5
of the total of 6 comparison groups – three lan-

w/o diversity w/ diversity
Language(labels) UAS LAS UAS LAS

CZECH(82) 88.36 82.16 88.36 82.02
SWEDISH(64) 91.62 85.08 91.85 85.26

PORTUGUESE(55) 92.07 88.30 92.23 88.50
DANISH(53) 91.88 86.95 91.78 86.93

HUNGARIAN(49) 85.85 81.02 86.55 81.79
GREEK(46) 86.14 78.20 86.21 78.45

GERMAN(46) 92.03 89.44 92.01 89.52
CATALAN(42) 94.58 89.05 94.91 89.54

BASQUE(35) 79.59 71.52 80.14 71.94
ARABIC(27) 80.48 69.68 80.56 69.98

TURKISH(26) 76.94 66.80 77.14 67.00
SLOVENE(26) 86.01 77.14 86.27 77.44

DUTCH(26) 83.57 80.29 83.39 80.19
ITALIAN(22) 87.57 83.22 87.38 82.95
SPANISH(21) 87.96 84.95 87.98 84.79

BULGARIAN(19) 94.02 89.87 93.88 89.63
JAPANESE(8) 93.26 91.67 93.16 91.51

AVG 87.76 82.08 87.87 82.20

Table 2: Results for languages from CoNLL
2006/2007 shared tasks. When a language is in
both years, the 2006 set is used. Languages are
sorted by the number of unique arc labels.

guages times two primary beams – the best result
is obtained by choosing a secondary beam size that
is close to one half the size of the primary beam.
Contrasting Table 1 and Table 3, the accuracy im-
provements are consistent across the development
set and the test set for all three data sets.

A reasonable question is whether such improve-
ments could be obtained by simply enlarging the
beam in the baseline parser. The bottom row of
Table 3 shows the parsing results for the three data
sets when the beam is enlarged to 16. On Penn-
S-2.0.5, the baseline with beam 16 is at roughly
the same speed as the highlighted best system with
primary beam 6 and secondary beam 3. On CTB-
5, the beam 16 baseline is 30% slower. Table 3
indicates that simply enlarging the beam – rela-
tive to parsing speed – does not recover the wins
of structural diversity on Penn-S-2.0.5 and CTB-5,
though it does reduce the gap on Penn-S-2.0.5. On
Penn-YM, the beam 16 baseline is slightly better
than the new system, but 90% slower.
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primary secondary PENN-YM PENN-S-2.0.5 CTB-5
beam beam UAS LAS UAS LAS UAS LAS

4

1 93.67 92.64 93.65 91.04 87.53 85.85
2 93.79 92.68 93.77 91.30 87.62 85.96
3 93.80 92.66 93.69 91.23 87.48 85.91
4 93.75 92.63 93.62 91.11 87.68 86.08

6

1 93.65 92.46 93.76 91.15 87.72 86.05
2 93.80 92.69 93.80 91.35 87.61 85.96
3 93.75 92.64 93.99 91.55 87.80 86.18
4 93.82 92.74 93.84 91.40 87.91 86.28
5 93.82 92.71 93.71 91.26 87.75 86.12
6 93.74 92.61 93.70 91.21 87.66 86.05

16 16 93.87 92.75 93.77 91.35 87.59 85.86

Table 3: Varying the degree of diversity by adjusting the secondary beam for labeled variants, with
different primary beams. When the size of the secondary beam is equal to the primary beam, the parser
degenerates to not enforcing structural diversity. In the opposite, when the secondary beam is smaller,
there is more structural diversity and less label diversity. Results are on development sets.

To better understand the behaviour of structural
diversity pruning relative to increasing the beam,
we looked at the unlabeled attachment F-score per
dependency label in the Penn-S-2.0.5 development
set2. Table 4 shows the 10 labels with the largest
increase in attachment scores for structural diver-
sity pruning relative to standard pruning. Impor-
tantly, the biggest wins are primarily for labels in
which unlabeled attachment is lower than average
(93.99, 8 out of 10). Thus, diversity pruning gets
most of its wins on difficult attachment decisions.
Indeed, many of the relations represent clausal
dependencies that are frequently structurally am-
biguous. There are also cases of relatively short
dependencies that can be difficult to attach. For
instance, quantmod dependencies are typically ad-
verbs occurring after verbs that modify quantities
to their right. But these can be confused as ad-
verbial modifiers of the verb to the left. These re-
sults support our hypothesis that label ambiguity
is causing hard attachment decisions to be pruned
and that structural diversity can ameliorate this.

4 Discussion

Keeping multiple beams in approximate search
has been explored in the past. In machine transla-
tion, multiple beams are used to prune translation
hypotheses at different levels of granularity (Zens
and Ney, 2008). However, the focus is improving
the speed of translation decoder rather than im-
proving translation quality through enforcement
of hypothesis diversity. In parsing, Bohnet and
Nivre (2012) and Bohnet et al. (2013) propose a
model for joint morphological analysis, part-of-
speech tagging and dependency parsing using a

2Using eval.pl from Buchholz and Marsi (2006).

w/o diversity w/ diversity
Label large beam small beam diff

quantmod 86.65 88.06 1.41
partmod 83.63 85.02 1.39

xcomp 87.76 88.74 0.98
tmod 89.75 90.72 0.97

appos 88.89 89.84 0.95
nsubjpass 92.53 93.31 0.78

complm 94.50 95.15 0.64
advcl 81.10 81.74 0.63

ccomp 82.64 83.17 0.54
number 96.86 97.39 0.53

Table 4: Unlabeled attachment F-score per de-
pendency relation. The top 10 score increases
for structural diversity pruning (beam 6 and la-
bel beam of 3) over basic pruning (beam 16) are
shown. Only labels with more than 100 instances
in the development data are considered.

left-to-right beam. With a single beam, token level
ambiguities (morphology and tags) dominate and
dependency level ambiguity is suppressed. This is
addressed by essentially keeping two beams. The
first forces every tree to be different at the depen-
dency level and the second stores the remaining
highest scoring options, which can include outputs
that differ only at the token level.

The present work looks at beam diversity in
graph-based dependency parsing, in particular la-
bel versus structural diversity. It was shown that
by keeping a diverse beam significant improve-
ments could be achieved on standard benchmarks,
in particular with respect to difficult attachment
decisions. It is worth pointing out that other
dependency parsing frameworks (e.g., transition-
based parsing (Zhang and Clark, 2008; Zhang and
Nivre, 2011)) could also benefit from modeling
structural diversity in search.
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