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Abstract
For sentence compression, we propose new se-
mantic constraints to directly capture the relations
between a predicate and its arguments, whereas
the existing approaches have focused on relatively
shallow linguistic properties, such as lexical and
syntactic information. These constraints are based
on semantic roles and superior to the constraints
of syntactic dependencies. Our empirical eval-
uation on the Written News Compression Cor-
pus (Clarke and Lapata, 2008) demonstrates that
our system achieves results comparable to other
state-of-the-art techniques.

1 Introduction
Recent work in document summarization do not

only extract sentences but also compress sentences.
Sentence compression enables summarizers to re-
duce the redundancy in sentences and generate in-
formative summaries beyond the extractive summa-
rization systems (Knight and Marcu, 2002). Con-
ventional approaches to sentence compression ex-
ploit various linguistic properties based on lexical
information and syntactic dependencies (McDonald,
2006; Clarke and Lapata, 2008; Cohn and Lapata,
2008; Galanis and Androutsopoulos, 2010).

In contrast, our approach utilizes another property
based on semantic roles (SRs) which improves weak-
nesses of syntactic dependencies. Syntactic depen-
dencies are not sufficient to compress some complex
sentences with coordination, with passive voice, and
with an auxiliary verb. Figure 1 shows an example
with a coordination structure. 1

1This example is from Written News Compression Cor-
pus (http://jamesclarke.net/research/resources).

Figure 1: Semantic Role vs. Dependency Relation
In this example, a SR labeler annotated that Harari

is an A0 argument of left and an A1 argument of
became. Harari is syntactically dependent on left –
SBJ(left-2, Harari-1). However, Harari is not depen-
dent on became and we are hence unable to utilize a
dependency relation between Harari and became di-
rectly. SRs allow us to model the relations between
a predicate and its arguments in a direct fashion.

SR constraints are also advantageous in that we
can compress sentences with semantic information.
In Figure 1, became has three arguments, Harari as
A1, businessman as A2, and shortly afterward as
AM-TMP. As shown in this example, shortly after-
word can be omitted (shaded boxes). In general,
modifier arguments like AM-TMP or AM-LOC are
more likely to be reduced than complement cases
like A0-A4. We can implement such properties by
SR constraints.

Liu and Gildea (2010) suggests that SR features
contribute to generating more readable sentence in
machine translation. We expect that SR features also
help our system to improve readability in sentence
compression and summarization.

2 Why are Semantic Roles Useful for Com-
pressing Sentences?
Before describing our system, we show the statis-

tics in terms of predicates, arguments and their rela-
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Label In Compression / Total Ratio
A0 1454 / 1607 0.905
A1 1916 / 2208 0.868
A2 427 / 490 0.871
AM-TMP 261 / 488 0.535
AM-LOC 134 / 214 0.626
AM-ADV 115 / 213 0.544
AM-DIS 8 / 85 0.094

Table 1: Statistics of Arguments in Compression
tions in the Written News Compression (WNC) Cor-
pus. It has 82 documents (1,629 sentences). We di-
vided them into three: 55 documents are used for
training (1106 sentences); 10 for development (184
sentences); 17 for testing (339 sentences).

Our investigation was held in training data. There
are 3137 verbal predicates and 7852 unique argu-
ments. We performed SR labeling by LTH (Johans-
son and Nugues, 2008), an SR labeler for CoNLL-
2008 shared task. Based on the SR labels annotated
by LTH, we investigated that, for all predicates in
compression, how many their arguments were also
in. Table 1 shows the survival ratio of main argu-
ments in compression. Labels A0, A1, and A2 are
complement case roles and over 85% of them survive
with their predicates. On the other hand, for modifier
arguments (AM-X), survival ratios are down to lower
than 65%. Our SR constraints implement the differ-
ence of survival ratios by SR labels. Note that de-
pendency labels SBJ and OBJ generally correspond
to SR labels A0 and A1, respectively. But their total
numbers are 777 / 919 (SBJ) and 918 / 1211 (OBJ)
and much fewer than A0 and A1 labels. Thus, SR la-
bels can connect much more arguments to their pred-
icates.

3 Approach
This section describes our new approach to sen-

tence compression. In order to introduce rich syn-
tactic and semantic constraints to a sentence com-
pression model, we employ Markov Logic (Richard-
son and Domingos, 2006). Since Markov Logic sup-
ports both soft and hard constraints, we can imple-
ment our SR constraints in simple and direct fash-
ion. Moreover, implementations of learning and
inference methods are already provided in existing
Markov Logic interpreters such as Alchemy 2 and
Markov thebeast. 3 Thus, we can focus our effort

2http://alchemy.cs.washington.edu/
3http://code.google.com/p/thebeast/

on building a set of formulae called Markov Logic
Network (MLN). So, in this section, we describe our
proposed MLN in detail.

3.1 Proposed Markov Logic Network
First, let us define our MLN predicates. We sum-

marize the MLN predicates in Table 2. We have only
one hidden MLN predicate, inComp(i) which mod-
els the decision we need to make: whether a token i
is in compression or not. The other MLN predicates
are called observed which provide features. With our
MLN predicates defined, we can now go on to in-
corporate our intuition about the task using weighted
first-order logic formulae. We define SR constraints
and the other formulae in Sections 3.1.1 and 3.1.2,
respectively.

3.1.1 Semantic Role Constraints
Semantic role labeling generally includes the three

subtasks: predicate identification; argument role la-
beling; sense disambiguation. Our model exploits
the results of predicate identification and argument
role labeling. 4 pred(i) and role(i, j, r) indicate the
results of predicate identification and role labeling,
respectively.

First, the formula describing a local property of a
predicate is

pred(i)⇒ inComp(i) (1)
which denotes that, if token i is a predicate then i is
in compression. A formula with exact one hidden
predicate is called local formula.

A predicate is not always in compression. The for-
mula reducing some predicates is

pred(i) ∧ height(i,+n)⇒ ¬inComp(i) (2)
which implies that a predicate i is not in compression
with n height in a dependency tree. Note the + nota-
tion indicates that the MLN contains one instance of
the rule, with a separate weight, for each assignment
of the variables with a plus sign.

As mentioned earlier, our SR constraints model
the difference of the survival rate of role labels in
compression. Such SR constraints are encoded as:

role(i, j,+r) ∧ inComp(i)⇒ inComp( j) (3)

role(i, j,+r) ∧ ¬inComp(i)⇒ ¬inComp( j) (4)
which represent that, if a predicate i is (not) in com-
pression, then its argument j is (not) also in with

4Sense information is too sparse because the size of the
WNC Corpus is not big enough.
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predicate definition
inComp(i) Token i is in compression

pred(i) Token i is a predicate
role(i, j, r) Token i has an argument j with role r
word(i,w) Token i has word w

pos(i, p) Token i has Pos tag p
dep(i, j, d) Token i is dependent on token j with

dependency label d
path(i, j, l) Tokens i and j has syntactic path l
height(i, n) Token i has height n in dependency tree

Table 2: MLN Predicates
role r. These formulae are called global formulae
because they have more than two hidden MLN pred-
icates. With global formulae, our model makes two
decisions at a time. When considering the example
in Figure 1, Formula (3) will be grounded as:

role(9, 1,A0) ∧ inComp(9)⇒ inComp(1) (5)

role(9, 7,AM-TMP) ∧ inComp(9)⇒ inComp(7). (6)
In fact, Formula (5) gains a higher weight than For-
mula (6) by learning on training data. As a re-
sult, our system gives “1-Harari” more chance to
survive in compression. We also add some exten-
sions of Formula (3) combined with dep(i, j,+d) and
path(i, j,+l) which enhance SR constraints. Note, all
our SR constraints are “predicate-driven” (only ⇒
not ⇔ as in Formula (13)). Because an argument is
usually related to multiple predicates, it is difficult to
model “argument-driven” formula.

3.1.2 Lexical and Syntactic Features
For lexical and syntactic features, we mainly refer

to the previous work (McDonald, 2006; Clarke and
Lapata, 2008). The first two formulae in this sec-
tion capture the relation of the tokens with their lexi-
cal and syntactic properties. The formula describing
such a local property of a word form is

word(i,+w)⇒ inComp(i) (7)
which implies that a token i is in compression with a
weight that depends on the word form.

For part-of-speech (POS), we add unigram and bi-
gram features with the formulae,

pos(i,+p)⇒ inComp(i) (8)

pos(i,+p1) ∧ pos(i + 1,+p2)⇒ inComp(i). (9)
POS features are often more reasonable than word
form features to combine with the other properties.
The formula,

pos(i,+p) ∧ height(i,+n)⇒ inComp(i). (10)
is a combination of POS features and a height in a

dependency tree.
The next formula combines POS bigram features

with dependency relations.
pos(i,+p1) ∧ pos( j,+p2) ∧
dep(i, j,+d)⇒ inComp(i). (11)

Moreover, our model includes the following
global formulae,

dep(i, j,+d) ∧ inComp(i)⇒ inComp( j) (12)

dep(i, j,+d) ∧ inComp(i)⇔ inComp( j) (13)
which enforce the consistencies between head and
modifier tokens. Formula (12) represents that if
we include a head token in compression then its
modifier must also be included. Formula (13) en-
sures that head and modifier words must be simul-
taneously kept in compression or dropped. Though
Clarke and Lapata (2008) implemented these depen-
dency constraints by ILP, we implement them by
soft constraints of MLN. Note that Formula (12) ex-
presses the same properties as Formula (3) replacing
dep(i, j,+d) by role(i, j,+r).

4 Experiment and Result
4.1 Experimental Setup

Our experimental setting follows previous
work (Clarke and Lapata, 2008). As stated in
Section 2, we employed the WNC Corpus. For
preprocessing, we performed POS tagging by
stanford-tagger. 5 and dependency parsing by
MST-parser (McDonald et al., 2005). In addition,
LTH 6 was exploited to perform both dependency
parsing and SR labeling. We implemented our
model by Markov Thebeast with Gurobi optimizer. 7

Our evaluation consists of two types of automatic
evaluations. The first evaluation is dependency based
evaluation same as Riezler et al. (2003). We per-
formed dependency parsing on gold data and system
outputs by RASP. 8 Then we calculated precision, re-
call, and F1 for the set of label(head,modi f ier).

In order to demonstrate how well our SR con-
straints keep correct predicate-argument structures
in compression, we propose SRL based evalua-
tion. We performed SR labeling on gold data

5http://nlp.stanford.edu/software/tagger.shtml
6http://nlp.cs.lth.se/software/semantic_

parsing:_propbank_nombank_frames
7http://www.gurobi.com/
8http://www.informatics.susx.ac.uk/research/

groups/nlp/rasp/
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Original [A0 They] [pred say] [A1 the refugees will enhance productivity and economic growth].
MLN with SRL [A0 They] [pred say] [A1 the refugees will enhance growth].
Gold Standard [A1∗ the refugees will enhance productivity and growth].
Original [A0 A Ł16.1m dam] [AM−MOD will] [pred hold] back [A1 a 2.6-mile-long artificial lake to be

known as the Roadford Reservoir].
MLN with SRL [A0 A dam] will [pred hold] back [A1 a artificial lake to be known as the Roadford Reservoir].
Gold Standard [A0 A Ł16.1m dam] [AM−MOD will] [pred hold back [A1 a 2.6-mile-long Roadford Reservoir].

Table 4: Analysis of Errors

Model CompR F1-Dep F1-SRL
McDonald 73.6% 38.4% 49.9%
MLN w/o SRL 68.3% 51.3% 57.2%
MLN with SRL 73.1% 58.9% 64.1%
Gold Standard 73.3% – –

Table 3: Results of Sentence Compression
and system outputs by LTH. Then we calculated
precision, recall, and F1 value for the set of
role(predicate, argument).

The training time of our MLN model are approx-
imately 8 minutes on all training data, with 3.1GHz
Intel Core i3 CPU and 4G memory. While the pre-
diction can be done within 20 seconds on the test
data.

4.2 Results
Table 3 shows the results of our compression

models by compression rate (CompR), dependency-
based F1 (F1-Dep), and SRL-based F1 (F1-SRL). In
our experiment, we have three models. McDonald
is a re-implementation of McDonald (2006). Clarke
and Lapata (2008) also re-implemented McDonald’s
model with an ILP solver and experimented it on the
WNC Corpus. 9 MLN with SRL and MLN w/o
SRL are our Markov Logic models with and with-
out SR Constraints, respectively.

Note our three models have no constraint for the
length of compression. Therefore, we think the com-
pression rate of the better system should get closer to
that of human compression. In comparison between
MLN models and McDonald, the former models out-
perform the latter model on both F1-Dep and F1-
SRL. Because MLN models have global constraints
and can generate syntactically correct sentences.

Our concern is how a model with SR constraints
is superior to a model without them. MLN with
SRL outperforms MLN without SRL with a 7.6
points margin (F1-Dep). The compression rate of
MLN with SRL goes up to 73.1% and gets close

9Clarke’s re-implementation got 60.1% for CompR and
36.0%pt for F1-Dep

to that of gold standard. SRL-based evaluation also
shows that SR constraints actually help extract cor-
rect predicate-argument structures. These results are
promising to improve readability.

It is difficult to directly compare our results with
those of state-of-the-art systems (Cohn and Lapata,
2009; Clarke and Lapata, 2010; Galanis and An-
droutsopoulos, 2010) since they have different test-
ing sets and the results with different compression
rates. However, though our MLN model with SR
constraints utilizes no large-scale data, it is the only
model which achieves close on 60% in F1-Dep.

4.3 Error Analysis
Table 4 indicates two critical examples which our

SR constraints failed to compress correctly. For the
first example, our model leaves an argument with its
predicate because our SR constraints are “predicate-
driven”. In addition, “say” is the main verb in this
sentence and hard to be deleted due to the syntactic
significance.

The second example in Table 4 requires to iden-
tify a coreference relation between artificial lake and
Roadford Reservour. We consider that discourse
constraints (Clarke and Lapata, 2010) help our model
handle these cases. Discourse and coreference infor-
mation enable our model to select important argu-
ments and their predicates.

5 Conclusion
In this paper, we proposed new semantic con-

straints for sentence compression. Our model with
global constraints of semantic roles selected correct
predicate-argument structures and successfully im-
proved performance of sentence compression.

As future work, we will compare our model with
the other state-of-the-art systems. We will also inves-
tigate the correlation between readability and SRL-
based score by manual evaluations. Furthermore, we
would like to combine discourse constraints with SR
constraints.
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