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Abstract

Although much work on relation extraction
has aimed at obtaining static facts, many of
the target relations are actually fluents, as their
validity is naturally anchored to a certain time
period. This paper proposes a methodologi-
cal approach to temporally anchored relation
extraction. Our proposal performs distant su-
pervised learning to extract a set of relations
from a natural language corpus, and anchors
each of them to an interval of temporal va-
lidity, aggregating evidence from documents
supporting the relation. We use a rich graph-
based document-level representation to gener-
ate novel features for this task. Results show
that our implementation for temporal anchor-
ing is able to achieve a 69% of the upper
bound performance imposed by the relation
extraction step. Compared to the state of the
art, the overall system achieves the highest
precision reported.

1 Introduction

A question that arises when extracting a relation is
how to capture its temporal validity: Can we assign a
period of time when the obtained relation held? As
pointed out in (Ling and Weld, 2010), while much
research in automatic relation extraction has focused
on distilling static facts from text, many of the tar-
get relations are in fact fluents, dynamic relations
whose truth value is dependent on time (Russell and
Norvig, 2010).

The Temporally anchored relation extraction
problem consists in, given a natural language text
document corpus, C, a target entity, e, and a target

relation, r, extracting from the corpus the value of
that relation for the entity, and a temporal interval
for which the relation was valid.

In this paper, we introduce a methodological ap-
proach to temporal anchoring of relations automat-
ically extracted from unrestricted text. Our system
(see Figure 1) extracts relational facts from text us-
ing distant supervision (Mintz et al., 2009) and then
anchors the relation to an interval of temporal va-
lidity. The intuition is that a distant supervised sys-
tem can effectively extract relations from the source
text collection, and a straightforward date aggrega-
tion can then be applied to anchor them. We pro-
pose a four step process for temporal anchoring:
(1) represent temporal evidence; (2) select tempo-
ral information relevant to the relation; (3) decide
how a relational fact and its relevant temporal in-
formation are themselves related; and (4) aggregate
imprecise temporal intervals across multiple docu-
ments. In contrast with previous approaches that
aim at intra-document temporal information extrac-
tion (Ling and Weld, 2010), we focus on mining
a corpus aggregating temporal evidences across the
supporting documents.

We address the following research questions:
(1) Validate whether distant supervised learning is
suitable for the task, and evaluate its shortcomings.
(2) Explore whether the use of features extracted
from a document-level rich representation could im-
prove distant supervised learning. (3) Compare the
use of document metadata against temporal expres-
sions within the document for relation temporal an-
choring. (4) Analyze how, in a pipeline architecture,
the propagation of errors limits the overall system’s
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Figure 1: System overview diagram.

performance.
The representation we use for temporal informa-

tion is detailed in section 2; the rich document-level
representation we exploit is described in section 3.
For a query entity and target relation, the system first
performs relation extraction (section 4); then, we
find and aggregate time constraint evidence for the
same relation across different documents, to estab-
lish a temporal validity anchor interval (section 5).
Empirical comparative evaluation of our approach is
introduced in section 6; while some related work is
shown in section 7 and conclusions in section 8.

2 Temporal Anchors

We will denominate relation instance a triple
〈entity, relation name, value〉. We aim at anchor-
ing relation instances to their temporal validity. We
need a representation flexible enough to capture the
imprecise temporal information available in text,
but expressed in a structured style. Allen’s (1983)
interval-based algebra for temporal representation
and reasoning, underlies much research, such as the
Tempeval challenges (Verhagen et al., 2007; Puste-
jovsky and Verhagen, 2009). Our task is different,
as we focus on obtaining the temporal interval as-
sociated to a fact, rather than reasoning about the

temporal relations among the events appearing in a
single text.

Let us assume that each relation instance is valid
during a certain temporal interval, I = [t0, tf ]. This
sharp temporal interval fails to capture the impreci-
sion of temporal boundaries conveyed in natural lan-
guage text. The Temporal Slot Filling task at TAC-
KBP 2011 (Ji et al., 2011) proposed a 4-tuple rep-
resentation that we will refer to as imprecise anchor
intervals. An imprecise temporal interval is defined
as an ordered 4-tuple of time points: (t1, t2, t3, t4),
with the following semantics: the relation is true for
a period which starts at some point between t1 and
t2 and ends between t3 and t4. It should hold that:
t1 ≤ t2, t3 ≤ t4, and t1 ≤ t4. Any of the four
endpoints can be left unconstrained (t1 or t3 would
be −∞, and t2 or t4 would be +∞). This represen-
tation is flexible and expressive, although it cannot
capture certain types of information (Ji et al., 2011).

3 Document Representation

We use a rich document representation that employs
a graph structure obtained by augmenting the syn-
tactic dependency analysis of the document with se-
mantic information.

A document D is represented as a document
graph GD; with node set VD and edge set, ED. Each
node v ∈ VD represents a chunk of text, which is a
sequence of words1. Each node is labeled with a
dictionary of attributes, some of which are common
for every node: the words it contains, their part-of-
speech annotations (POS) and lemmas. Also, a rep-
resentative descriptor, which is a normalized string
value, is generated from the chunks in the node. Cer-
tain nodes are also annotated with one or more types.
There are three families of types: Events (verbs
that describe an action, annotated with tense, polar-
ity and aspect); standardized Time Expressions; and
Named Entities, with additional annotations such as
gender or age.

Edges in the document graph, e ∈ ED, represent
four kinds of relations between the nodes:
• Syntactic: a dependency relation.
• Coreference: indicates that two chunks refer to

1Most chunks consist in one word; we join words into a
chunk (and a node) in two cases: a multi-word named entity
and a verb and its auxiliaries.
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Figure 2: Collapsed document graph representation, GC ,
for the sample text document “David’s wife, Julia, is cel-
ebrating her birthday. She was born in September 1979”.

the same discourse referent.
• Semantic relations between two nodes, such as
hasClass, hasProperty and hasAge.
• Temporal relations between events and time ex-

pressions.
The processing includes dependency parsing,

named entity recognition and coreference reso-
lution, done with the Stanford CoreNLP soft-
ware (Klein and Manning, 2003); and events and
temporal information extraction, via the TARSQI

Toolkit (Verhagen et al., 2005).
The document graph GD is then further trans-

formed into a collapsed document graph, GC . Each
node of GC clusters together coreferent nodes, rep-
resenting a discourse referent. Thus, a node u in GC

is a cluster of nodes u1, . . . , uk of GD. There is an
edge (u, v) in GC if there was an edge between any
of the nodes clustered into u and any of the nodes
v1, . . . , vk′ . The coreference edges do not appear in
this representation. Additional semantic information
is also blended into this representation: normaliza-
tion of genitives, semantic class indicators inferred
from appositions and genitives, and gender annota-
tion inferred from pronouns. A final graph example
can be seen in Figure 2.

4 Distant Supervised Relation Extraction

To perform relation extraction, our proposal fol-
lows a distant supervision approach (Mintz et al.,
2009), which has also inspired other slot filling sys-
tems (Agirre et al., 2009; Surdeanu et al., 2010).
We capture long distance relations by introducing

a document-level representation and deriving novel
features from deep syntactic and semantic analysis.

Seed harvesting. From a reference Knowledge
Base (KB), we extract a set of relation triples
or seeds: 〈entity, relation, value〉, where the
relation is one of the target relations. Our
document-level distant supervision assumption is
that if entity and value are found in a document
graph (see section 3), and there is a path connect-
ing them, then the document expresses the relation.

Relation candidates gathering. From a seed triple,
we retrieve candidate documents that contain both
the entity and value, within a span of 20 tokens,
using a standard IR approach. Then, entity and
value are matched to the document graph represen-
tation. We first use approximate string comparison
to find nodes matching the seed entity. After an en-
tity node has been found we use local breadth-first-
search (BFS) to find a matching value and the short-
est connecting path between them. We enforce the
Named Entity type of entity and value to match a
expected type, predefined for the relation.

Our procedure traverses the document graph look-
ing for entity and value nodes meeting those condi-
tions; when found, we generate features for a pos-
itive example for the relation2. If we encounter a
node that matches the expected NE type of the rela-
tion, but does not match the seed value, we generate
a negative example for that relation.

Training. From positive and negative examples, we
generate binary features; some of them are inspired
by previous work (Surdeanu and Ciaramita, 2007;
Mintz et al., 2009; Riedel et al., 2010; Surdeanu et
al., 2010), and others are novel, taking advantage of
our graph representation. Table 1 summarizes our
choice of features. Features appearing in less than 5
training examples were discarded.

Relation instance extraction. Given an input entity
and a target relation, we aim at finding a filler value
for a relation instance. This task is known as Slot
Filling. From the set of retrieved documents relevant
to the query entity, represented as document graphs,

2From the collapsed document graph representation we ob-
tained an average of 9213 positive training examples per slot;
from the uncollapsed document graph, a slightly lower average
of 8178.5 positive examples per slot.
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Feature name Description
path dependency path between ENTITY and

VALUE in the sentence
X-annotation NE annotations for X
X-pos Part-of-speech annotations for X
X-gov Governor of X in the dependency path
X-mod Modifiers of X in the dependency path
X-has age X is a NE, with an age attribute
X-has class-C X is a NE, with a class C
X-property-P X is a NE, and it has a property P
X-has-Y X is a NE, with a possessive relation with

another NE, Y
X-is-Y X is a NE, in a copula with another NE, Y
X-gender-G X is a NE, and it has gender G
V -tense Tense of the verb V in the path
V -aspect Aspect of the verb V in the path
V -polarity Polarity (positive or negative) of the verb V

Table 1: Features included in the model. X stands for
ENTITY and VALUE. Verb features are generated from
the verbs, V , identified in the path between ENTITY and
VALUE.

we locate matching entities and start a local BFS of
candidate values, generating for them an unlabelled
example. For each of the relations to extract, a bi-
nary classifier (extractor) decides whether the exam-
ple is a valid relation instance. For each particular
relation classifier, only candidates with the expected
entity and value types for the relation were used in
the application phase. Each extractor was a SVM
classifier with linear kernel (Joachims, 2002). All
learning parameters were set to their default values.

The classification process yields a predicted class
label, plus a real number indicating the margin. We
performed an aggregation phase to sum the mar-
gins over distinct occurrences of the same extracted
value. The rationale is that when the same value is
extracted from more than one document, we should
accumulate that evidence.

The output of this phase is the set of extracted re-
lations (positive for each of the classifiers), plus the
documents where the same fact was detected (sup-
porting documents).

5 Temporal Anchoring of Relations

In this section, we propose and discuss a unified
methodological approach for temporal anchoring of
relations. We assume the input is a relation instance
and a set of supporting documents. The task is es-
tablishing a imprecise temporal anchor interval for
the relation.

We present a four-step methodological approach:
(1) representation of intra-document temporal infor-
mation; (2) selection of relevant temporal informa-
tion for the relation; (3) mapping of the link between
relational fact and temporal information into an in-
terval; and (4) aggregation of imprecise intervals.

Temporal representation. The first methodologi-
cal step is to obtain and represent the available intra-
document temporal information; the input is a doc-
ument, and the task is to identify temporal signals
and possible links among them. We use the term link
for a relation between a temporal expression (a date)
and an event; we want to avoid confusion with the
term relation (a relational fact extracted from text).

In our particular implementation:
• We use TARSQI to extract temporal expressions

and link them to events. In particular, TARSQI

uses the following temporal links: included, si-
multaneous, after, before, begun by or ended.
• We focus also on the syntactic pattern [Event-

preposition-Time] within the lexical context of the
candidate entity and value.
• Both are normalized into one from a set of prede-

fined temporal links: within, throughout, begin-
ning, ending, after and before.

Selection of temporal evidence. For each docu-
ment and relational instance, we have to select those
temporal expressions that are relevant.
a. Document-level metadata. The default value

we use is the document creation time (DCT),
if available. The underlying assumption is that
there is a within link from each fact expressed in
the text and the document creation time.

b. Temporal expressions. Temporal evidence
comes also from the temporal expressions
present in the context of a relation. In our par-
ticular implementation, we followed a straight-
forward approach, looking for the time expres-
sion closest in the document graph to the short-
est path between the entity and value nodes. This
search is performed via a limited depth BFS,
starting from the nodes in the path, in order from
value to entity.

Mapping of temporal links into intervals. The
third step is deciding how a relational fact and its rel-
evant temporal information are themselves related.
We have to map this information, expressed in text,
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Temporal link Constraints mapping
Before t4 = first
After t1 = last
Within and Throughout t2 = first and t3 = last
Beginning t1 = first and t2 = last
Ending t3 = first and t4 = last

Table 2: Mapping from time expression and temporal re-
lation to temporal constraints.

to a temporal representation. We will use the impre-
cise anchor intervals described is section 2.

Let T be a temporal expression identified in the
document or its metadata. Now, the mapping of tem-
poral constraints depends on the temporal link to the
time expression identified; also, the semantics of the
event have to be considered in order to decide the
time period associated to a relation instance. This
step is important because the event could refer just to
the beginning of the relation, its ending, or both. For
instance, it is obvious that having the event marry
is different to having the event divorce, when decid-
ing the temporal constraints associated to the spouse
relation.

Table 2 shows our particular mapping between
temporal links and constraints. In particular, for the
default document creation time, we suppose that a
relation which appears in a document with creation
time d held true at least in that date; that is, we are
assuming a within link, and we map t2 = d, t3 = d.

Inter-document temporal evidence aggregation.
The last step is aggregating all the time constraints
found for the same relation and value across differ-
ent documents. If we found that a relation started af-
ter two dates d and d′, where d′ > d, the closest con-
straint to the real start of the relation is d′. Mapped to
temporal constraints, it means that we would choose
the biggest t1 possible. Following the same reason-
ing, we would want to maximize t3. On the other
side, when a relation started before two dates d2 and
d′

2, where d′
2 > d2, the closest constraint is d2 and

we would choose the smallest t2. In summary, we
will maximize t1 and t3 and minimize t2 and t4, so
we will narrow the margins.

6 Evaluation

We have used for our evaluation the dataset com-
piled within the TAC-KBP 2011 Temporal Slot Fill-
ing Task (Ji et al., 2011). We employed as initial

KB the one distributed to participants in the task,
which has been compiled from Wikipedia infoboxes.
It contains 898 triples 〈entity, slot type, value〉 for
100 different entities and up to 8 different slots (re-
lations) per entity3. This gold standard contains the
correct responses pooled from the participant sys-
tems plus a set of responses manually found by
annotators. Each triple has associated a temporal
anchor. The relations had to be extracted from a
domain-general collection of 1.7 million documents.
Our system was one of the five that took part in
the task.We have evaluated the overall system and
the two main components of the architecture: Rela-
tion Extraction, and Temporal Anchoring of the re-
lations. Due to space limitations, the description of
our implementation is very concise; refer to (Garrido
et al., 2011) for further details.

6.1 Evaluation of Relation Extraction

System response in the relation extraction step con-
sists in a set of triples 〈entity, slot type, value〉.
Performance is measured using precision, recall and
F-measure (harmonic mean) with respect to the 898
triples in the key. Target relations (slots) are poten-
tially list-valued, that is, more than one value can
be valid for a relation (possibly at different points
in time). Only correct values yield any score, and
redundant triples are ignored.

Experiments. We run two different system settings
for the relation extraction step. They differ in the
document representation used (detailed in section3),
in order to empirically assess whether clustering of
discourse referents into single nodes benefits the ex-
traction. In SETTING 1, each document is repre-
sented as a document graph, GD, while in SETTING

2 collapsed document graph representation, GC , is
employed.

Results. Results are shown in Table 3 in the col-
umn Relation Extraction. Both settings have a sim-
ilar performance with a slight increase in the case
of graphs with clustered referents. Although preci-
sion is close to 0.5, recall is lower than 0.1. We have
studied the limits of the assumptions our approach

3There are 7 person relations: cities of residence, state-
orprovinces of residence, countries of residence, employee of,
member of, title, spouse, and an organization relation:
top members/employees.
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is based on. First, our standard retrieval component
performance limits the overall system’s. As a matter
of example, if we retrieve the first 100 documents
per entity, we find relevant documents only for 62%
of the triples in the key. This number means that no
matter how good relation extraction method is, 38%
of relations will not be found.

Second, the distant supervision assumption un-
derlying our approach is that for a seed relation in-
stance 〈entity, relation, value〉, any textual men-
tion of entity and value expresses the relation. It
has been shown that this assumption is more often
violated when training knowledge base and docu-
ment collection are of different type, e.g. Wikipedia
and news-wire (Riedel et al., 2010). We have real-
ized that a more determinant factor is the relation
itself and the type of arguments it takes. We ran-
domly sampled 100 training examples per relation,
and manually inspected them to assess if they were
indeed mentions of the relation. While for the re-
lation cities of residence only 30% of the training
examples are expressing the relation, for spouse the
number goes up to 59%. For title, up to 90% of the
examples are correct. This fact explains, at least par-
tially, the zeros we obtain for some relations.

6.2 Evaluation of Temporal Anchoring
Under the evaluation metrics proposed by TAC-KBP
2011, if the value of the relation instance is judged
as correct, the score for temporal anchoring depends
on how well the returned interval matches the one
provided in the key. More precisely, let the correct
imprecise anchor interval in the gold standard key
be Sk = (k1, k2, k3, k4) and the system response be
S = (r1, r2, r3, r4). The absence of a constraint in
t1 or t3 is treated as a value of −∞; the absence of
a constraint in t2 or t4 is treated as a value of +∞.
Then, let di = |ki − ri|, for i ∈ 1, . . . , 4, be the
difference, a real number measured in years. The
score for the system response is:

Q(S) =
1
4

4∑
i=1

1
1 + di

The score for a target relation Q(r) is computed
by summing Q(S) over all unique instances of the
relation whose value is correct. If the gold standard
contains N responses, and the system output M re-
sponses, then precision is: P = Q(r)/M , and recall:

R = Q(r)/N ; F1 is the harmonic mean of P and R.

Experiments. We evaluated two different set-
tings for the temporal anchoring step; both use
the collapsed document graph representation, GC

(SETTING 2). The goal of the experiment is two-
fold. First, test the strength of the document creation
time as evidence for temporal anchoring. Second,
test how hard this metadata-level baseline is to beat
using contextual temporal expressions.

The SETTING 2-I assumes a within temporal link
between the document creation time and any relation
expressed inside the document, and aggregates this
information across the documents that we have iden-
tified as supporting the relation. The SETTING 2-II
considers documents content in order to extract tem-
poral links from the context of the text that expresses
the relation. If no temporal expression is found, the
date of the document is used as default. Temporal
links from all supporting documents are mapped into
intervals and aggregated as detailed in section 5.

The performance on relation extraction is an up-
per bound for temporal anchoring, attainable if tem-
poral anchoring is perfect. Thus, we also evaluate
the temporal anchoring performance as the percent-
age the final system achieves with respect to the re-
lation extraction upper bound.

Results. Results are shown in Table 3 under column
Temporal Anchoring. They are low, due to the upper
bound that error propagation in candidate retrieval
and relation extraction imposes upon this step: tem-
porally anchoring alone achives 69% of its upper
bound. This value corresponds to the baseline SET-
TING 2-I, showing its strength. The difference with
SETTING 2-II shows that this baseline is difficult
to beat by considering temporal evidence inside the
document content. There is a reason for this. The
temporal link mapping into time intervals does not
depend only on the type of link, but also on the se-
mantics of the text that expresses the relation as we
pointed out above. We have to decide how to trans-
form the link between relation and temporal expres-
sion into a temporal interval. Learning a model for
this is a hard open research problem that has a strong
adversary in the baseline proposed.
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Relation Extraction Temporal Anchoring
SETTING 1 SETTING 2 SETTING 2-I SETTING 2-II

P R F P R F P R F % P R F %
(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(3) 0.33 0.02 0.03 0 0 0 0 0 0 0 0 0 0 0
(4) 0.22 0.09 0.13 0.29 0.11 0.16 0.23 0.09 0.13 79 0.21 0.08 0.11 72
(5) 0.53 0.13 0.20 0.54 0.12 0.19 0.34 0.07 0.12 63 0.30 0.06 0.11 56
(6) 0.70 0.12 0.20 0.75 0.13 0.22 0.57 0.10 0.16 76 0.50 0.08 0.14 67
(7) 0.50 0.06 0.10 0.50 0.07 0.12 0.29 0.04 0.07 58 0.25 0.04 0.06 50
(8) 0.25 0.04 0.07 0.20 0.04 0.07 0.15 0.03 0.05 75 0.06 0.01 0.02 30
(9) 0.42 0.08 0.14 0.45 0.08 0.14 0.31 0.06 0.10 69 0.27 0.05 0.09 60

Table 3: Results of experiments for each relation: (1) per:stateorprovinces of residence; (2) per:employee of; (3)
per:countries of residence; (4) per:member of; (5) per:title; (6) org:top members/employees; (7) per:spouse; (8)
per:cities of residence; (9) overall results (calculated as a micro-average).

System # Filled Precision Recall F1
BLENDER2 1206 0.1789 0.3030 0.2250
BLENDER1 1116 0.1796 0.2942 0.2231
BLENDER3 1215 0.1744 0.2976 0.2199
IIRG1 346 0.2457 0.1194 0.1607
Setting 2-1 167 0.2996 0.0703 0.1139
Setting 2-2 167 0.2596 0.0609 0.0986
Stanford 12 5140 0.0233 0.1680 0.0409
Stanford 11 4353 0.0238 0.1453 0.0408
USFD20112 328 0.0152 0.0070 0.0096
USFD20113 127 0.0079 0.0014 0.0024

Table 4: System ID, number of filled responses of the
system, precision, recall and F measure.

6.3 Comparative Evaluation

Our approach was compared with the other four
participants at the KBP Temporal Slot Filling Task
2011. Table 4 shows results sorted by F-measure in
comparison to our two settings (described above).
These official results correspond to a previous
dataset containing 712 triples4.

As shown in column Filled our approach returns
less triples than other systems, explaining low recall.
However, our system achieves the highest precision
for the complete task of temporally anchored rela-
tion extraction. Despite low recall, our system ob-
tains the third best F1 value. This is a very promis-
ing result, since several directions can be explored
to consider more candidates and increase recall.

7 Related Work

Compiling a Knowledge Base of temporally an-
chored facts is an open research challenge (Weikum
et al., 2011). Despite the vast amount of research fo-
cusing on understanding temporal expressions and

4Slot-fillers from human assessors were not considered

their relation to events in natural language, the com-
plete problem of temporally anchored relation ex-
traction remains relatively unexplored. Also, while
much research has focused on single-document ex-
traction, it seems clear that extracting temporally an-
chored relations needs the aggregation of evidences
across multiple documents.

There have been attempts to extend an existing
knowledge base. Wang et al. (2010) use regular
expressions to mine Wikipedia infoboxes and cat-
egories and it is not suited for unrestricted text. An
earlier attempt (Zhang et al., 2008), is specific for
business and difficult to generalize to other relations.
Two recent promising works are more related to our
research. Wang et al. (2011) uses manually defined
patterns to collect candidate facts and explicit dates,
and re-rank them using a graph label propagation al-
gorithm; their approach is complementary to ours,
as our aim is not to harvest temporal facts but to
extract the relations in which a query entity takes
part; unlike us, they require entity, value, and a ex-
plicit date to appear in the same sentence. Talukdar
et al. (2012) focus on the partial task of temporally
anchoring already known facts, showing the useful-
ness of the document creation time as temporal sig-
nal, aggregated across documents.

Earlier work has dealt mainly with partial aspects
of the problem. The TempEval community focused
on the classification of the temporal links between
pairs of events, or an event and a temporal expres-
sion; using shallow features (Mani et al., 2003; La-
pata and Lascarides, 2004; Chambers et al., 2007),
or syntactic-based structured features (Bethard and
Martin, 2007; Puşcaşu, 2007; Cheng et al., 2007).

Aggregating evidence across different documents
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to temporally anchor facts has been explored in set-
tings different to Information Extraction, such as
answering of definition questions (Paşca, 2008) or
extracting possible dates of well-known historical
events (Schockaert et al., 2010).

Temporal inference or reasoning to solve con-
flicting temporal expressions and induce temporal
order of events has been used in TempEval (Tatu
and Srikanth, 2008; Yoshikawa et al., 2009) and
ACE (Gupta and Ji, 2009) tasks, but focused on
single-document extraction. Ling et al. (2010), use
cross-event joint inference to extract temporal facts,
but only inside a single document.

Evaluation campaigns, such as ACE and TAC-
KBP 2011 have had an important role in promoting
this research. While ACE required only to identify
time expressions and classify their relation to events,
KBP requires to infer explicitly the start/end time of
relations, which is a realistic approach in the context
of building time-aware knowledge bases. KBP rep-
resents an important step for the evaluation of tem-
poral information extraction systems. In general, the
participant systems adapted existing slot filling sys-
tems, adding a temporal classification component:
distant supervised (Chen et al., 2010; Surdeanu et
al., 2010) on manually-defined patterns (Byrne and
Dunnion, 2010).

8 Conclusions

This paper introduces the problem of extracting,
from unrestricted natural language text, relational
knowledge anchored to a temporal span, aggregat-
ing temporal evidence from a collection of docu-
ments. Although compiling time-aware knowledge
bases is an important open challenge (Weikum et
al., 2011), it has remained unexplored until very re-
cently (Wang et al., 2011; Talukdar et al., 2012).

We have elucidated the two challenges of the task,
namely relation extraction and temporal anchoring
of the extracted relations.

We have studied how, in a pipeline architecture,
the propagation of errors limits the overall system’s
performance. The performance attainable in the full
task is limited by the quality of the output of the
three main phases: retrieval of candidate passages/
documents, extraction of relations and temporal an-
choring of those.

We have also studied the limits of the distant su-
pervision approach to relation extraction, showing
empirically that its performance depends not only
on the nature of reference knowledge base and doc-
ument corpus (Riedel et al., 2010), but also on the
relation to be extracted. Given a relation between
two arguments, if it is not dominant among textual
expressions of those arguments, the distant supervi-
sion assumption will be more often violated.

We have introduced a novel graph-based docu-
ment level representation, that has allowed us to gen-
erate new features for the task of relation extraction,
capturing long distance structured contexts. Our re-
sults show how, in a document level syntactic repre-
sentation, it yields better results to collapse corefer-
ent nodes.

We have presented a methodological approach
to temporal anchoring composed of: (1) intra-
document temporal information representation; (2)
selection of relation-dependent relevant temporal in-
formation; (3) mapping of temporal links to an inter-
val representation; and (4) aggregation of imprecise
intervals.

Our proposal has been evaluated within a frame-
work that allows for comparability. It has been able
to extract temporally anchored relational informa-
tion with the highest precision among the partici-
pant systems taking part in the competitive evalu-
ation TAC-KBP 2011.

For the temporal anchoring sub-problem, we have
demonstrated the strength of the document creation
time as a temporal signal. It is possible to achieve
a performance of 69% of the upper-bound imposed
by relation extraction by assuming that any relation
mentioned in a document held at the document cre-
ation time (there is a within link between the rela-
tional fact and the document creation time). This
baseline has proved stronger than extracting and an-
alyzing the temporal expressions present in the doc-
ument content.
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