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Abstract

In this paper we introduce a novel use of the
lexicographic semiring and motivate its use
for speech and language processing tasks. We
prove that the semiring allows for exact en-
coding of backoff models with epsilon tran-
sitions. This allows for off-line optimization
of exact models represented as large weighted
finite-state transducers in contrast to implicit
(on-line) failure transition representations. We
present preliminary empirical results demon-
strating that, even in simple intersection sce-
narios amenable to the use of failure transi-
tions, the use of the more powerful lexico-
graphic semiring is competitive in terms of
time of intersection.

1 Introduction and Motivation

Representing smoothed n-gram language models as
weighted finite-state transducers (WFST) is most
naturally done with a failure transition, which re-
flects the semantics of the “otherwise” formulation
of smoothing (Allauzen et al., 2003). For example,
the typical backoff formulation of the probability of
a word w given a history h is as follows

Pw | h
Pw|h) = {aflp(’wfh,)

where P is an empirical estimate of the probabil-
ity that reserves small finite probability for unseen
n-grams; «y, is a backoff weight that ensures nor-
malization; and h’ is a backoff history typically
achieved by excising the earliest word in the his-
tory h. The principle benefit of encoding the WFST
in this way is that it only requires explicitly storing
n-gram transitions for observed n-grams, i.e., count
greater than zero, as opposed to all possible n-grams
of the given order which would be infeasible in for
example large vocabulary speech recognition. This
is a massive space savings, and such an approach is
also used for non-probabilistic stochastic language
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if c(hw) > 0
otherwise

6]

models, such as those trained with the perceptron
algorithm (Roark et al., 2007), as the means to ac-
cess all and exactly those features that should fire
for a particular sequence in a deterministic automa-
ton. Similar issues hold for other finite-state se-
quence processing problems, e.g., tagging, bracket-
ing or segmenting.

Failure transitions, however, are an implicit
method for representing a much larger explicit au-
tomaton — in the case of n-gram models, all pos-
sible n-grams for that order. During composition
with the model, the failure transition must be inter-
preted on the fly, keeping track of those symbols
that have already been found leaving the original
state, and only allowing failure transition traversal
for symbols that have not been found (the semantics
of “otherwise”). This compact implicit representa-
tion cannot generally be preserved when composing
with other models, e.g., when combining a language
model with a pronunciation lexicon as in widely-
used FST approaches to speech recognition (Mohri
et al., 2002). Moving from implicit to explicit repre-
sentation when performing such a composition leads
to an explosion in the size of the resulting trans-
ducer, frequently making the approach intractable.
In practice, an off-line approximation to the model
is made, typically by treating the failure transitions
as epsilon transitions (Mohri et al., 2002; Allauzen
et al., 2003), allowing large transducers to be com-
posed and optimized off-line. These complex ap-
proximate transducers are then used during first-pass
decoding, and the resulting pruned search graphs
(e.g., word lattices) can be rescored with exact lan-
guage models encoded with failure transitions.

Similar problems arise when building, say, POS-
taggers as WFST: not every pos-tag sequence will
have been observed during training, hence failure
transitions will achieve great savings in the size of
models. Yet discriminative models may include
complex features that combine both input stream
(word) and output stream (tag) sequences in a single
feature, yielding complicated transducer topologies
for which effective use of failure transitions may not
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be possible. An exact encoding using other mecha-
nisms is required in such cases to allow for off-line
representation and optimization.

In this paper, we introduce a novel use of a semir-
ing — the lexicographic semiring (Golan, 1999) —
which permits an exact encoding of these sorts of
models with the same compact topology as with fail-
ure transitions, but using epsilon transitions. Unlike
the standard epsilon approximation, this semiring al-
lows for an exact representation, while also allow-
ing (unlike failure transition approaches) for off-line
composition with other transducers, with all the op-
timizations that such representations provide.

In the next section, we introduce the semiring, fol-
lowed by a proof that its use yields exact represen-
tations. We then conclude with a brief evaluation of
the cost of intersection relative to failure transitions
in comparable situations.

2 The Lexicographic Semiring

Weighted automata are automata in which the tran-
sitions carry weight elements of a semiring (Kuich
and Salomaa, 1986). A semiring is a ring that may
lack negation, with two associative operations & and
® and their respective identity elements 0 and 1. A
common semiring in speech and language process-
ing, and one that we will be using in this paper, is
the tropical semiring (R U {oo}, min, +, 00, 0), i.e.,
min is the & of the semiring (with identity co) and
+ is the ® of the semiring (with identity 0). This is
appropriate for performing Viterbi search using neg-
ative log probabilities — we add negative logs along
a path and take the min between paths.

A (W, Wy ... W,)-lexicographic weight is a tu-
ple of weights where each of the weight classes
Wi, Ws...W,, must observe the path property
(Mohri, 2002). The path property of a semiring K
is defined in terms of the natural order on K such
that: @ <g biff a ® b = a. The tropical semiring
mentioned above is a common example of a semir-
ing that observes the path property, since:

w; D wy =
w; @ wy =

min{wi, wy}

w1 + w2

The discussion in this paper will be restricted to
lexicographic weights consisting of a pair of tropi-
cal weights — henceforth the (7', T')-lexicographic
semiring. For this semiring the operations & and ®
are defined as follows (Golan, 1999, pp. 223-224):
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if wy < ws or

<’U.)1, w2> (’(1)1 = w3 &
(wy,ws) ® (ws,wy) = wa < Wy)
(ws,ws) otherwise

(wi,ws) @ (w3, wg) = (w1 + wsz,ws + wy)

The term “lexicographic” is an apt term for this
semiring since the comparison for & is like the lexi-
cographic comparison of strings, comparing the first
elements, then the second, and so forth.

3 Language model encoding

3.1 Standard encoding

For language model encoding, we will differentiate
between two classes of transitions: backoff arcs (la-
beled with a ¢ for failure, or with € using our new
semiring); and n-gram arcs (everything else, labeled
with the word whose probability is assigned). Each
state in the automaton represents an n-gram history
string h and each n-gram arc is weighted with the
(negative log) conditional probability of the word w
labeling the arc given the history h. For a given his-
tory h and n-gram arc labeled with a word w, the
destination of the arc is the state associated with the
longest suffix of the string hw that is a history in the
model. This will depend on the Markov order of the
n-gram model. For example, consider the trigram
model schematic shown in Figure 1, in which only
history sequences of length 2 are kept in the model.
Thus, from history h; = w;_ow;_1, the word w;
transitions to h;1 = w;_1w;, which is the longest
suffix of h;w; in the model.

As detailed in the “otherwise” semantics of equa-
tion 1, backoff arcs transition from state h to a state
', typically the suffix of & of length |h| — 1, with
weight (—log ). We call the destination state a
backoff state. This recursive backoff topology ter-
minates at the unigram state, i.e., h = €, no history.

Backoff states of order k£ may be traversed either
via ¢-arcs from the higher order n-gram of order &k +
1 or via an n-gram arc from a lower order n-gram of
order k£ — 1. This means that no n-gram arc can enter
the zeroeth order state (final backoff), and full-order
states — history strings of length n — 1 for a model
of order n — may have n-gram arcs entering from
other full-order states as well as from backoff states
of history size n — 2.

3.2 Encoding with lexicographic semiring

For an LM machine M on the tropical semiring with
failure transitions, which is deterministic and has the



Figure 1: Deterministic finite-state representation of n-gram
models with negative log probabilities (tropical semiring). The
symbol ¢ labels backoff transitions. Modified from Roark and
Sproat (2007), Figure 6.1.

path property, we can simulate ¢-arcs in a standard
LM topology by a topologically equivalent machine
M’ on the lexicographic (T',T) semiring, where ¢
has been replaced with epsilon, as follows. For every
n-gram arc with label w and weight ¢, source state
s; and destination state s;, construct an n-gram arc
with label w, weight (0, ¢), source state s;, and des-
tination state s}. The exit cost of each state is con-
structed as follows. If the state is non-final, (0o, 00).
Otherwise if it final with exit cost ¢ it will be (0, c).
Let n be the length of the longest history string in
the model. For every ¢-arc with (backoff) weight
c, source state s;, and destination state s; repre-
senting a history of length k, construct an e-arc
with source state s, destination state s, and weight
(®@2(=k) ) where ® > 0 and ®®("F) takes  to
the (n — k:)th power with the ® operation. In the
tropical semiring, ® is 4, so ®@(FK) = (n — k).
For example, in a trigram model, if we are backing
off from a bigram state h (history length = 1) to a
unigram state, n — k = 2 — 0 = 2, so we set the
backoff weight to (2®, — log arp,) for some ® > 0.
In order to combine the model with another au-
tomaton or transducer, we would need to also con-
vert those models to the (7', T) semiring. For these
automata, we simply use a default transformation
such that every transition with weight c is assigned
weight (0, c). For example, given a word lattice
L, we convert the lattice to L’ in the lexicographic
semiring using this default transformation, and then
perform the intersection L' N M’. By removing ep-
silon transitions and determinizing the result, the
low cost path for any given string will be retained
in the result, which will correspond to the path
achieved with ¢-arcs. Finally we project the second
dimension of the (T', T') weights to produce a lattice
in the tropical semiring, which is equivalent to the
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resultof LN M, i.e.,
Co(det(eps-rem(L N M'))) =LNM

where Co denotes projecting the second-dimension
of the (T',T) weights, det(-) denotes determiniza-
tion, and eps-rem(-) denotes e-removal.

4 Proof

We wish to prove that for any machine N,
ShortestPath(M’ N N') passes through the equiv-
alent states in M’ to those passed through in M for
ShortestPath(M N N). Therefore determinization
of the resulting intersection after e-removal yields
the same topology as intersection with the equiva-
lent ¢ machine. Intuitively, since the first dimension
of the (T',T') weights is O for n-gram arcs and > 0
for backoff arcs, the shortest path will traverse the
fewest possible backoff arcs; further, since higher-
order backoff arcs cost less in the first dimension of
the (T, T') weights in M’, the shortest path will in-
clude n-gram arcs at their earliest possible point.
We prove this by induction on the state-sequence
of the path p/p’ up to a given state s;/s} in the respec-
tive machines M /M.
Base case: If p/p’ is of length 0, and therefore the
states s;/s/ are the initial states of the respective ma-
chines, the proposition clearly holds.
Inductive step: Now suppose that p/p’ visits
50...5i/5p...s; and we have therefore reached s;/s
in the respective machines. Suppose the cumulated
weights of p/p’ are W and (¥, W), respectively. We
wish to show that whichever s; is next visited on p
(i.e., the path becomes sy...s;5;) the equivalent state
s’ is visited on p’ (i.e., the path becomes 36...323;).
Let w be the next symbol to be matched leaving
states s; and s;-. There are four cases to consider:
(1) there is an n-gram arc leaving states s; and s; la-
beled with w, but no backoff arc leaving the state;
(2) there is no n-gram arc labeled with w leaving the
states, but there is a backoff arc; (3) there is no n-
gram arc labeled with w and no backoff arc leaving
the states; and (4) there is both an n-gram arc labeled
with w and a backoff arc leaving the states. In cases
(1) and (2), there is only one possible transition to
take in either M or M’, and based on the algorithm
for construction of M’ given in Section 3.2, these
transitions will point to s; and s;- respectively. Case
(3) leads to failure of intersection with either ma-
chine. This leaves case (4) to consider. In M, since
there is a transition leaving state s; labeled with w,



the backoff arc, which is a failure transition, can-
not be traversed, hence the destination of the n-gram
arc s; will be the next state in p. However, in M "
both the n-gram transition labeled with w and the
backoff transition, now labeled with ¢, can be tra-
versed. What we will now prove is that the shortest
path through M’ cannot include taking the backoff
arc in this case.

In order to emit w by taking the backoff arc out
of state s/, one or more backoff (¢) transitions must
be taken, followed by an n-gram arc labeled with
w. Let k be the order of the history represented
by state s}, hence the cost of the first backoff arc
is {((n — k)®, —log(a)) in our semiring. If we
traverse m backoff arcs prior to emitting the w,
the first dimension of our accumulated cost will be
m(n — k+ "1)®, based on our algorithm for con-
struction of M’ given in Section 3.2. Let s; be the
destination state after traversing m backoff arcs fol-
lowed by an n-gram arc labeled with w. Note that,
by definition, m < k, and £k — m + 1 is the or-
der of state s;. Based on the construction algo-
rithm, the state s; is also reachable by first emit-
ting w from state s to reach state s’ followed by
some number of backoff transitions. The order of
state s is either k (if & is the highest order in the
model) or k£ + 1 (by extending the history of state
s; by one word). If it is of order k, then it will re-
quire m — 1 backoff arcs to reach state s}, one fewer
than the path to state s) that begins with a back-
off arc, for a total cost of (m — 1)(n — k + 2-1)®
which is less than m(n — k + Z51)®. If state
s;. is of order k + 1, there will be m backoff
arcs to reach state s;, but with a total cost of
m(n—(k+1)+ 20 = m(n—k+ 23)®
which is also less than m(n — k + “-1)®. Hence
the state s; can always be reached from s, with a
lower cost through state s} than by first taking the
backoff arc from s;. Therefore the shortest path on
M’ must follow s...s;s’. O

This completes the proof.

S Experimental Comparison of ¢, ¢ and
(T, T) encoded language models

For our experiments we used lattices derived from a
very large vocabulary continuous speech recognition
system, which was built for the 2007 GALE Ara-
bic speech recognition task, and used in the work
reported in Lehr and Shafran (2011). The lexico-
graphic semiring was evaluated on the development
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set (2.6 hours of broadcast news and conversations;
18K words). The 888 word lattices for the develop-
ment set were generated using a competitive base-
line system with acoustic models trained on about
1000 hrs of Arabic broadcast data and a 4-gram lan-
guage model. The language model consisting of
122M n-grams was estimated by interpolation of 14
components. The vocabulary is relatively large at
737K and the associated dictionary has only single
pronunciations.

The language model was converted to the automa-
ton topology described earlier, and represented in
three ways: first as an approximation of a failure
machine using epsilons instead of failure arcs; sec-
ond as a correct failure machine; and third using the
lexicographic construction derived in this paper.

The three versions of the LM were evaluated by
intersecting them with the 888 lattices of the de-
velopment set. The overall error rate for the sys-
tems was 24.8%—comparable to the state-of-the-
art on this task!. For the shortest paths, the failure
and lexicographic machines always produced iden-
tical lattices (as determined by FST equivalence);
in contrast, 81% of the shortest paths from the ep-
silon approximation are different, at least in terms
of weights, from the shortest paths using the failure
LM. For full lattices, 42 (4.7%) of the lexicographic
outputs differ from the failure LM outputs, due to
small floating point rounding issues; 863 (97%) of
the epsilon approximation outputs differ.

In terms of size, the failure LM, with 5.7 mil-
lion arcs requires 97 Mb. The equivalent (T',T')-
lexicographic LM requires 120 Mb, due to the dou-
bling of the size of the weights.” To measure speed,
we performed the intersections 1000 times for each
of our 888 lattices on a 2993 MHz Intel® Xeon®
CPU, and took the mean times for each of our meth-
ods. The 888 lattices were processed with a mean
of 1.62 seconds in total (1.8 msec per lattice) us-
ing the failure LM; using the (7', T')-lexicographic
LM required 1.8 seconds (2.0 msec per lattice), and
is thus about 11% slower. Epsilon approximation,
where the failure arcs are approximated with epsilon
arcs took 1.17 seconds (1.3 msec per lattice). The

!The error rate is a couple of points higher than in Lehr and
Shafran (2011) since we discarded non-lexical words, which are
absent in maximum likelihood estimated language model and
are typically augmented to the unigram backoff state with an
arbitrary cost, fine-tuned to optimize performance for a given
task.

?If size became an issue, the first dimension of the (T, T')-
weight can be represented by a single byte.



slightly slower speeds for the exact method using the
failure LM, and (7', T) can be related to the over-
head of computing the failure function at runtime,
and determinization, respectively.

6 Conclusion

In this paper we have introduced a novel applica-
tion of the lexicographic semiring, proved that it
can be used to provide an exact encoding of lan-
guage model topologies with failure arcs, and pro-
vided experimental results that demonstrate its ef-
ficiency. Since the (T, T')-lexicographic semiring
is both left- and right-distributive, other optimiza-
tions such as minimization are possible. The par-
ticular (7', T')-lexicographic semiring we have used
here is but one of many possible lexicographic en-
codings. We are currently exploring the use of a
lexicographic semiring that involves different semir-
ings in the various dimensions, for the integration of
part-of-speech taggers into language models.

An implementation of the lexicographic semir-
ing by the second author is already available as
part of the OpenFst package (Allauzen et al., 2007).
The methods described here are part of the NGram
language-model-training toolkit, soon to be released
at opengrm.org.
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