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Abstract

Lots of Chinese characters are very produc-
tive in that they can form many structured
words either as prefixes or as suffixes. Pre-
vious research in Chinese word segmentation
mainly focused on identifying only the word
boundaries without considering the rich inter-
nal structures of many words. In this paper we
argue that this is unsatisfying in many ways,
both practically and theoretically. Instead, we
propose that word structures should be recov-
ered in morphological analysis. An elegant
approach for doing this is given and the result
is shown to be promising enough for encour-
aging further effort in this direction. Our prob-
ability model is trained with the Penn Chinese
Treebank and actually is able to parse both
word and phrase structures in a unified way.

1 Why Parse Word Structures?

Research in Chinese word segmentation has pro-
gressed tremendously in recent years, with state of
the art performing at around 97% in precision and
recall (Xue, 2003; Gao et al., 2005; Zhang and
Clark, 2007; Li and Sun, 2009). However, virtually
all these systems focus exclusively on recognizing
the word boundaries, giving no consideration to the
internal structures of many words. Though it has
been the standard practice for many years, we argue
that this paradigm is inadequate both in theory and
in practice, for at least the following four reasons.

The first reason is that if we confine our defi-
nition of word segmentation to the identification of
word boundaries, then people tend to have divergent

opinions as to whether a linguistic unit is a word or
not (Sproat et al., 1996). This has led to many dif-
ferent annotation standards for Chinese word seg-
mentation. Even worse, this could cause inconsis-
tency in the same corpus. For instance, 䉂擌奒
‘vice president’ is considered to be one word in the
Penn Chinese Treebank (Xue et al., 2005), but is
split into two words by the Peking University cor-
pus in the SIGHAN Bakeoffs (Sproat and Emerson,
2003). Meanwhile, 䉂䀓惼 ‘vice director’ and 䉂
䚲䡮 ‘deputy manager’ are both segmented into two
words in the same Penn Chinese Treebank. In fact,
all these words are composed of the prefix䉂 ‘vice’
and a root word. Thus the structure of䉂擌奒 ‘vice
president’ can be represented with the tree in Fig-
ure 1. Without a doubt, there is complete agree-

NN
ll,,

JJf

䉂

NNf

擌奒

Figure 1: Example of a word with internal structure.

ment on the correctness of this structure among na-
tive Chinese speakers. So if instead of annotating
only word boundaries, we annotate the structures of
every word, 1 then the annotation tends to be more

1Here it is necessary to add a note on terminology used in
this paper. Since there is no universally accepted definition
of the “word” concept in linguistics and especially in Chinese,
whenever we use the term “word” we might mean a linguistic
unit such as 䉂擌奒 ‘vice president’ whose structure is shown
as the tree in Figure 1, or we might mean a smaller unit such as
擌奒 ‘president’ which is a substructure of that tree. Hopefully,
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consistent and there could be less duplication of ef-
forts in developing the expensive annotated corpus.

The second reason is applications have different
requirements for granularity of words. Take the per-
sonal name 撱嗤吼 ‘Zhou Shuren’ as an example.
It’s considered to be one word in the Penn Chinese
Treebank, but is segmented into a surname and a
given name in the Peking University corpus. For
some applications such as information extraction,
the former segmentation is adequate, while for oth-
ers like machine translation, the later finer-grained
output is more preferable. If the analyzer can pro-
duce a structure as shown in Figure 4(a), then ev-
ery application can extract what it needs from this
tree. A solution with tree output like this is more el-
egant than approaches which try to meet the needs
of different applications in post-processing (Gao et
al., 2004).

The third reason is that traditional word segmen-
tation has problems in handling many phenomena
in Chinese. For example, the telescopic compound
㦌撥怂惆 ‘universities, middle schools and primary
schools’ is in fact composed of three coordinating el-
ements㦌惆 ‘university’,撥惆 ‘middle school’ and
怂惆 ‘primary school’. Regarding it as one flat word
loses this important information. Another example
is separable words like 扩扙 ‘swim’. With a lin-
ear segmentation, the meaning of ‘swimming’ as in
扩堑扙 ‘after swimming’ cannot be properly rep-
resented, since扩扙 ‘swim’ will be segmented into
discontinuous units. These language usages lie at the
boundary between syntax and morphology, and are
not uncommon in Chinese. They can be adequately
represented with trees (Figure 2).
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Figure 2: Example of telescopic compound (a) and sepa-
rable word (b).

The last reason why we should care about word

the context will always make it clear what is being referred to
with the term “word”.

structures is related to head driven statistical parsers
(Collins, 2003). To illustrate this, note that in the
Penn Chinese Treebank, the word 戽䊂䠽吼 ‘En-
glish People’ does not occur at all. Hence con-
stituents headed by such words could cause some
difficulty for head driven models in which out-of-
vocabulary words need to be treated specially both
when they are generated and when they are condi-
tioned upon. But this word is in turn headed by its
suffix 吼 ‘people’, and there are 2,233 such words
in Penn Chinese Treebank. If we annotate the struc-
ture of every compound containing this suffix (e.g.
Figure 3), such data sparsity simply goes away.

NN
b
b

"
"

NRf

戽䊂䠽

NNf

吼

Figure 3: Structure of the out-of-vocabulary word 戽䊂
䠽吼 ‘English People’.

Had there been only a few words with inter-
nal structures, current Chinese word segmentation
paradigm would be sufficient. We could simply re-
cover word structures in post-processing. But this is
far from the truth. In Chinese there is a large number
of such words. We just name a few classes of these
words and give one example for each class (a dot is
used to separate roots from affixes):

personal name: 㡿増·揽 ‘Nagao Makoto’
location name: 凝挕·撲 ‘New York State’
noun with a suffix: 䆩䡡·勬 ‘classifier’
noun with a prefix: 敏·䧥䧥 ‘mother-to-be’
verb with a suffix: 敧䃄·䑺 ‘automatize’
verb with a prefix: 䆓·噙 ‘waterproof’
adjective with a suffix: 䉅䏜·怮 ‘composite’
adjective with a prefix: 䆚·搔喪 ‘informal’
pronoun with a prefix: 䊈·墠 ‘everybody’
time expression: 憘䛊䛊壊·兣 ‘the year 1995’
ordinal number: 䀱·喛憘 ‘eleventh’
retroflex suffixation: 䑳䃹·䄎 ‘flower’

This list is not meant to be complete, but we can get
a feel of how extensive the words with non-trivial
structures can be. With so many productive suf-
fixes and prefixes, analyzing word structures in post-
processing is difficult, because a character may or
may not act as an affix depending on the context.
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For example, the character 吼 ‘people’ in 撇嗤吼
‘the one who plants’ is a suffix, but in the personal
name撱嗤吼 ‘Zhou Shuren’ it isn’t. The structures
of these two words are shown in Figure 4.

(a) NR
ZZ��

NFf

撱

NGf

嗤吼

(b) NN
ZZ��

VVf

撇嗤

NNf

吼

Figure 4: Two words that differ only in one character,
but have different internal structures. The character 吼
‘people’ is part of a personal name in tree (a), but is a
suffix in (b).

A second reason why generally we cannot re-
cover word structures in post-processing is that some
words have very complex structures. For example,
the tree of 壃搕䈿擌懂揶 ‘anarchist’ is shown in
Figure 5. Parsing this structure correctly without a
principled method is difficult and messy, if not im-
possible.

NN
aaa
!!!

NN
HHH

���
VV
ZZ��

VVf

壃

NNf

搕䈿

NNf

擌懂

NNf

揶

Figure 5: An example word which has very complex
structures.

Finally, it must be mentioned that we cannot store
all word structures in a dictionary, as the word for-
mation process is very dynamic and productive in
nature. Take䌬 ‘hall’ as an example. Standard Chi-
nese dictionaries usually contain 埣嗖䌬 ‘library’,
but not many other words such as 䎰愒䌬 ‘aquar-
ium’ generated by this same character. This is un-
derstandable since the character 䌬 ‘hall’ is so pro-
ductive that it is impossible for a dictionary to list
every word with this character as a suffix. The same
thing happens for natural language processing sys-
tems. Thus it is necessary to have a dynamic mech-
anism for parsing word structures.

In this paper, we propose a new paradigm for
Chinese word segmentation in which not only word
boundaries are identified but the internal structures
of words are recovered (Section 3). To achieve this,
we design a joint morphological and syntactic pars-
ing model of Chinese (Section 4). Our generative
story describes the complete process from sentence
and word structures to the surface string of char-
acters in a top-down fashion. With this probabil-
ity model, we give an algorithm to find the parse
tree of a raw sentence with the highest probabil-
ity (Section 5). The output of our parser incorpo-
rates word structures naturally. Evaluation shows
that the model can learn much of the regularity of
word structures, and also achieves reasonable ac-
curacy in parsing higher level constituent structures
(Section 6).

2 Related Work

The necessity of parsing word structures has been
noticed by Zhao (2009), who presented a character-
level dependency scheme as an alternative to the lin-
ear representation of words. Although our work is
based on the same notion, there are two key dif-
ferences. The first one is that part-of-speech tags
and constituent labels are fundamental for our pars-
ing model, while Zhao focused on unlabeled depen-
dencies between characters in a word, and part-of-
speech information was not utilized. Secondly, we
distinguish explicitly the generation of flat words
such as䑵喏䃮 ‘Washington’ and words with inter-
nal structures. Our parsing algorithm also has to be
adapted accordingly. Such distinction was not made
in Zhao’s parsing model and algorithm.

Many researchers have also noticed the awkward-
ness and insufficiency of current boundary-only Chi-
nese word segmentation paradigm, so they tried to
customize the output to meet the requirements of
various applications (Wu, 2003; Gao et al., 2004).
In a related research, Jiang et al. (2009) presented a
strategy to transfer annotated corpora between dif-
ferent segmentation standards in the hope of saving
some expensive human labor. We believe the best
solution to the problem of divergent standards and
requirements is to annotate and analyze word struc-
tures. Then applications can make use of these struc-
tures according to their own convenience.
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Since the distinction between morphology and
syntax in Chinese is somewhat blurred, our model
for word structure parsing is integrated with con-
stituent parsing. There has been many efforts to in-
tegrate Chinese word segmentation, part-of-speech
tagging and parsing (Wu and Zixin, 1998; Zhou and
Su, 2003; Luo, 2003; Fung et al., 2004). However,
in these research all words were considered to be
flat, and thus word structures were not parsed. This
is a crucial difference with our work. Specifically,
consider the word 碾碜扨 ‘olive oil’. Our parser
output tree Figure 6(a), while Luo (2003) output tree
(b), giving no hint to the structure of this word since
the result is the same with a real flat word 䧢哫膝
‘Los Angeles’(c).

(a) NN
ZZ��

NNf

碾碜

NNf

扨

(b) NN

NNf

碾碜扨

(c) NR

NRf

䧢哫膝

Figure 6: Difference between our output (a) of parsing
the word 碾碜扨 ‘olive oil’ and the output (b) of Luo
(2003). In (c) we have a true flat word, namely the loca-
tion name䧢哫膝 ‘Los Angeles’.

The benefits of joint modeling has been noticed
by many. For example, Li et al. (2010) reported that
a joint syntactic and semantic model improved the
accuracy of both tasks, while Ng and Low (2004)
showed it’s beneficial to integrate word segmenta-
tion and part-of-speech tagging into one model. The
later result is confirmed by many others (Zhang and
Clark, 2008; Jiang et al., 2008; Kruengkrai et al.,
2009). Goldberg and Tsarfaty (2008) showed that
a single model for morphological segmentation and
syntactic parsing of Hebrew yielded an error reduc-
tion of 12% over the best pipelined models. This is
because an integrated approach can effectively take
into account more information from different levels
of analysis.

Parsing of Chinese word structures can be re-
duced to the usual constituent parsing, for which
there has been great progress in the past several
years. Our generative model for unified word and
phrase structure parsing is a direct adaptation of the
model presented by Collins (2003). Many other ap-
proaches of constituent parsing also use this kind

of head-driven generative models (Charniak, 1997;
Bikel and Chiang, 2000) .

3 The New Paradigm

Given a raw Chinese sentence like 䤕撓䏓喴敯
䋳㢧喓, a traditional word segmentation system
would output some result like 䤕撓䏓 喴 敯䋳㢧
喓(‘Lin Zhihao’, ‘is’, ‘chief engineer’). In our new
paradigm, the output should at least be a linear se-
quence of trees representing the structures of each
word as in Figure 7.

NR
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�
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NFf

䤕

NGf

撓䏓
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VVf

喴

NN
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HH

�
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JJf

敯

NN
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NNf

䋳㢧

NNf

喓

Figure 7: Proposed output for the new Chinese word seg-
mentation paradigm.

Note that in the proposed output, all words are an-
notated with their part-of-speech tags. This is nec-
essary since part-of-speech plays an important role
in the generation of compound words. For example,
揶 ‘person’ usually combines with a verb to form a
compound noun such as唗䕏揶 ‘designer’.

In this paper, we will actually design an integrated
morphological and syntactical parser trained with
a treebank. Therefore, the real output of our sys-
tem looks like Figure 8. It’s clear that besides all
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Figure 8: The actual output of our parser trained with a
fully annotated treebank.

the information of the proposed output for the new
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paradigm, our model’s output also includes higher-
level syntactic parsing results.

3.1 Training Data

We employ a statistical model to parse phrase and
word structures as illustrated in Figure 8. The cur-
rently available treebank for us is the Penn Chinese
Treebank (CTB) 5.0 (Xue et al., 2005). Because our
model belongs to the family of head-driven statisti-
cal parsing models (Collins, 2003), we use the head-
finding rules described by Sun and Jurafsky (2004).

Unfortunately, this treebank or any other tree-
banks for that matter, does not contain annotations
of word structures. Therefore, we must annotate
these structures by ourselves. The good news is that
the annotation is not too complicated. First, we ex-
tract all words in the treebank and check each of
them manually. Words with non-trivial structures
are thus annotated. Finally, we install these small
trees of words into the original treebank. Whether a
word has structures or not is mostly context indepen-
dent, so we only have to annotate each word once.

There are two noteworthy issues in this process.
Firstly, as we’ll see in Section 4, flat words and
non-flat words will be modeled differently, thus it’s
important to adapt the part-of-speech tags to facili-
tate this modeling strategy. For example, the tag for
nouns is NN as in 憞䠮䞎 ‘Iraq’ and 卣敯埚 ‘for-
mer president’. After annotation, the former is flat,
but the later has a structure (Figure 9). So we change
the POS tag for flat nouns to NNf, then during bot-
tom up parsing, whenever a new constituent ending
with ‘f’ is found, we can assign it a probability in a
way different from a structured word or phrase.

Secondly, we should record the head position of
each word tree in accordance with the requirements
of head driven parsing models. As an example, the
right tree in Figure 9 has the context free rule “NN
→ JJf NNf”, the head of which should be the right-
most NNf. Therefore, in卣敯埚 ‘former president’
the head is敯埚 ‘president’.

In passing, the readers should note the fact that
in Figure 9, we have to add a parent labeled NN to
the flat word 憞䠮䞎 ‘Iraq’ so as not to change the
context-free rules contained inherently in the origi-
nal treebank.

(a) NN

NNf

憞䠮䞎

(b) NN
ll,,

JJf

卣

NNf

敯埚

Figure 9: Example word structure annotation. We add an
‘f’ to the POS tags of words with no further structures.

4 The Model

Given an observed raw sentences S, our generative
model tells a story about how this surface sequence
of Chinese characters is generated with a linguisti-
cally plausible morphological and syntactical pro-
cess, thereby defining a joint probability Pr(T, S)
where T is a parse tree carrying word structures as
well as phrase structures. With this model, the pars-
ing problem is to search for the tree T ∗ such that

T ∗ = arg max
T

Pr(T, S) (1)

The generation of S is defined in a top down fash-
ion, which can be roughly summarized as follows.
First, the lexicalized constituent structures are gen-
erated, then the lexicalized structure of each word
is generated. Finally, flat words with no structures
are generated. As soon as this is done, we get a tree
whose leaves are Chinese characters and can be con-
catenated to get the surface character sequence S.

4.1 Generation of Constituent Structures

Each node in the constituent tree corresponds to a
lexicalized context free rule

P → Ln Ln−1 · · ·L1HR1R2 · · ·Rm (2)

where P , Li, Ri and H are lexicalized nonterminals
and H is the head. To generate this constituent, first
P is generated, then the head child H is generated
conditioned on P , and finally each Li and Rj are
generated conditioned on P and H and a distance
metric. This breakdown of lexicalized PCFG rules
is essentially the Model 2 defined by Collins (1999).
We refer the readers to Collins’ thesis for further de-
tails.
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4.2 Generation of Words with Internal
Structures

Words with rich internal structures can be described
using a context-free grammar formalism as

word → root (3)

word → word suffix (4)

word → prefix word (5)

Here the root is any word without interesting internal
structures, and the prefixes and suffixes are not lim-
ited to single characters. For example,擌懂 ‘ism’ as
in她㦓擌懂 ‘modernism’ is a well known and very
productive suffix. Also, we can see that rules (4) and
(5) are recursive and hence can handle words with
very complex structures.

By (3)–(5), the generation of word structures is
exactly the same as that of ordinary phrase struc-
tures. Hence the probabilities of these words can be
defined in the same way as higher level constituents
in (2). Note that in our case, each word with struc-
tures is naturally lexicalized, since in the annotation
process we have been careful to record the head po-
sition of each complex word.

As an example, consider a word w = R(r)S(s)
where R is the root part-of-speech headed by the
word r, and S is the suffix part-of-speech headed
by s. If the head of this word is its suffix, then we
can define the probability of w by

Pr(w) = Pr(S, s) · Pr(R, r|S, s) (6)

This is equivalent to saying that to generate w, we
first generate its head S(s), then conditioned on this
head, other components of this word are generated.
In actual parsing, because a word always occurs in
some contexts, the above probability should also be
conditioned on these contexts, such as its parent and
the parent’s head word.

4.3 Generation of Flat Words
We say a word is flat if it contains only one mor-
pheme such as憞䠮䞎 ‘Iraq’, or if it is a compound
like 䝭䅵 ‘develop’ which does not have a produc-
tive component we are currently interested in. De-
pending on whether a flat word is known or not,
their generative probabilities are computed also dif-
ferently. Generation of flat words seen in training is

trivial and deterministic since every phrase and word
structure rules are lexicalized.

However, the generation of unknown flat words
is a different story. During training, words that oc-
cur less than 6 times are substituted with the symbol
UNKNOWN. In testing, unknown words are gener-
ated after the generation of symbol UNKNOWN, and
we define their probability by a first-order Markov
model. That is, given a flat word w = c1c2 · · · cn
not seen in training, we define its probability condi-
tioned with the part-of-speech p as

Pr(w|p) =
n+1∏
i=1

Pr(ci|ci−1, p) (7)

where c0 is taken to be a START symbol indicating
the left boundary of a word and cn+1 is the STOP

symbol to indicate the right boundary. Note that the
generation of w is only conditioned on its part-of-
speech p, ignoring the larger constituent or word in
which w occurs.

We use a back-off strategy to smooth the proba-
bilities in (7):

P̃r(ci|ci−1, p) = λ1 · P̂r(ci|ci−1, p)

+ λ2 · P̂r(ci|ci−1)

+λ3 · P̂r(ci) (8)

where λ1 + λ2 + λ3 = 1 to ensure the conditional
probability is well formed. These λs will be esti-
mated with held-out data. The probabilities on the
right side of (8) can be estimated with simple counts:

P̂r(ci|ci−1, p) =
COUNT(ci−1ci, p)

COUNT(ci−1, p)
(9)

The other probabilities can be estimated in the same
way.

4.4 Summary of the Generative Story
We make a brief summary of our generative story for
the integrated morphological and syntactic parsing
model. For a sentence S and its parse tree T , if we
denote the set of lexicalized phrase structures in T
by C, the set of lexicalized word structures by W ,
and the set of unknown flat words by F , then the
joint probability Pr(T, S) according to our model is

Pr(T, S) =
∏
c∈C

Pr(c)
∏

w∈W
Pr(w)

∏
f∈F

Pr(f) (10)
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In practice, the logarithm of this probability can be
calculated instead to avoid numerical difficulties.

5 The Parsing Algorithm

To find the parse tree with highest probability we
use a chart parser adapted from Collins (1999). Two
key changes must be made to the search process,
though. Firstly, because we are proposing a new
paradigm for Chinese word segmentation, the input
to the parser must be raw sentences by definition.
Hence to use the bottom-up parser, we need a lex-
icon of all characters together with what roles they
can play in a flat word. We can get this lexicon from
the treebank. For example, from the word撥愊/NNf
‘center’, we can extract a role bNNf for character撥
‘middle’ and a role eNNf for character 愊 ‘center’.
The role bNNf means the beginning of the flat la-
bel NNf, while eNNf stands for the end of the label
NNf. This scheme was first proposed by Luo (2003)
in his character-based Chinese parser, and we find it
quite adequate for our purpose here.

Secondly, in the bottom-up parser for head driven
models, whenever a new edge is found, we must as-
sign it a probability and a head word. If the newly
discovered constituent is a flat word (its label ends
with ‘f’), then we set its head word to be the con-
catenation of all its child characters, i.e. the word
itself. If it is an unknown word, we use (7) to assign
the probability, otherwise its probability is set to be
1. On the other hand, if the new edge is a phrase or
word with internal structures, the probability is set
according to (2), while the head word is found with
the appropriate head rules. In this bottom-up way,
the probability for a complete parse tree is known
as soon as it is completed. This probability includes
both word generation probabilities and constituent
probabilities.

6 Evaluation

For several reasons, it is a little tricky to evaluate the
accuracy of our model for integrated morphological
and syntactic parsing. First and foremost, we cur-
rently know of no other same effort in parsing the
structures of Chinese words, and we have to anno-
tate word structures by ourselves. Hence there is no
baseline performance to compare with. Secondly,
simply reporting the accuracy of labeled precision

and recall is not very informative because our parser
takes raw sentences as input, and its output includes
a lot of easy cases like word segmentation and part-
of-speech tagging results.

Despite these difficulties, we note that higher-
level constituent parsing results are still somewhat
comparable with previous performance in parsing
Penn Chinese Treebank, because constituent parsing
does not involve word structures directly. Having
said that, it must be pointed out that the comparison
is meaningful only in a limited sense, as in previous
literatures on Chinese parsing, the input is always
word segmented or even part-of-speech tagged. That
is, the bracketing in our case is around characters
instead of words. Another observation is we can
still evaluate Chinese word segmentation and part-
of-speech tagging accuracy, by reading off the cor-
responding result from parse trees. Again because
we split the words with internal structures into their
components, comparison with other systems should
be viewed with that in mind.

Based on these discussions, we divide the labels
of all constituents into three categories:

Phrase labels are the labels in Peen Chinese Tree-
bank for nonterminal phrase structures, includ-
ing NP, VP, PP, etc.

POS labels represent part-of-speech tags such as
NN, VV, DEG, etc.

Flat labels are generated in our annotation for
words with no interesting structures. Recall
that they always end with an ‘f’ such as NNf,
VVf and DEGf, etc.

With this classification, we report our parser’s ac-
curacy for phrase labels, which is approximately
the accuracy of constituent parsing of Penn Chinese
Treebank. We report our parser’s word segmenta-
tion accuracy based on the flat labels. This accu-
racy is in fact the joint accuracy of segmentation
and part-of-speech tagging. Most importantly, we
can report our parser’s accuracy in recovering word
structures based on POS labels and flat labels, since
word structures may contain only these two kinds of
labels.

With the standard split of CTB 5.0 data into train-
ing, development and test sets (Zhang and Clark,
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2009), the result are summarized in Table 1. For all
label categories, the PARSEEVAL measures (Abney
et al., 1991) are used in computing the labeled pre-
cision and recall.

Types LP LR F1

Phrase 79.3 80.1 79.7
Flat 93.2 93.8 93.5
Flat* 97.1 97.6 97.3

POS & Flat 92.7 93.2 92.9

Table 1: Labeled precision and recall for the three types
of labels. The line labeled ‘Flat*’ is for unlabeled met-
rics of flat words, which is effectively the ordinary word
segmentation accuracy.

Though not directly comparable, we can make
some remarks to the accuracy of our model. For
constituent parsing, the best result on CTB 5.0 is
reported to be 78% F1 measure for unlimited sen-
tences with automatically assigned POS tags (Zhang
and Clark, 2009). Our result for phrase labels is
close to this accuracy. Besides, the result for flat
labels compares favorably with the state of the art
accuracy of about 93% F1 for joint word segmen-
tation and part-of-speech tagging (Jiang et al., 2008;
Kruengkrai et al., 2009). For ordinary word segmen-
tation, the best result is reported to be around 97%
F1 on CTB 5.0 (Kruengkrai et al., 2009), while our
parser performs at 97.3%, though we should remem-
ber that the result concerns flat words only. Finally,
we see the performance of word structure recovery
is almost as good as the recognition of flat words.
This means that parsing word structures accurately
is possible with a generative model.

It is interesting to see how well the parser does
in recognizing the structure of words that were not
seen during training. For this, we sampled 100
such words including those with prefixes or suffixes
and personal names. We found that for 82 of these
words, our parser can correctly recognize their struc-
tures. This means our model has learnt something
that generalizes well to unseen words.

In error analysis, we found that the parser tends
to over generalize for prefix and suffix characters.
For example,㦌斊䕛 ‘great writer’ is a noun phrase
consisting of an adjective㦌 ‘great’ and a noun斊䕛
‘writer’, as shown in Figure 10(a), but our parser in-

correctly analyzed it into a root㦌斊 ‘masterpiece’
and a suffix 䕛 ‘expert’, as in Figure 10(b). This

(a) NP
ll,,

JJ

JJf

㦌

NN

NNf

斊䕛

(b) NN
ZZ��

NNf

㦌斊

NNf

䕛

Figure 10: Example of parser error. Tree (a) is correct,
and (b) is the wrong result by our parser.

is because the character 䕛 ‘expert’ is a very pro-
ductive suffix, as in 䑺惆䕛 ‘chemist’ and 堉䘂䕛
‘diplomat’. This observation is illuminating because
most errors of our parser follow this pattern. Cur-
rently we don’t have any non-ad hoc way of prevent-
ing such kind of over generalization.

7 Conclusion and Discussion

In this paper we proposed a new paradigm for Chi-
nese word segmentation in which not only flat words
were identified but words with structures were also
parsed. We gave good reasons why this should be
done, and we presented an effective method show-
ing how this could be done. With the progress in
statistical parsing technology and the development
of large scale treebanks, the time has now come for
this paradigm shift to happen. We believe such a
new paradigm for word segmentation is linguisti-
cally justified and pragmatically beneficial to real
world applications. We showed that word struc-
tures can be recovered with high precision, though
there’s still much room for improvement, especially
for higher level constituent parsing.

Our model is generative, but discriminative mod-
els such as maximum entropy technique (Berger
et al., 1996) can be used in parsing word struc-
tures too. Many parsers using these techniques
have been proved to be quite successful (Luo, 2003;
Fung et al., 2004; Wang et al., 2006). Another
possible direction is to combine generative models
with discriminative reranking to enhance the accu-
racy (Collins and Koo, 2005; Charniak and Johnson,
2005).

Finally, we must note that the use of flat labels
such as “NNf” is less than ideal. The most impor-

1412



tant reason these labels are used is we want to com-
pare the performance of our parser with previous re-
sults in constituent parsing, part-of-speech tagging
and word segmentation, as we did in Section 6. The
problem with this approach is that word structures
and phrase structures are then not treated in a truly
unified way, and besides the 33 part-of-speech tags
originally contained in Penn Chinese Treebank, an-
other 33 tags ending with ‘f’ are introduced. We
leave this problem open for now and plan to address
it in future work.
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