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Abstract 

Syntactic knowledge is important for dis-

course relation recognition. Yet only heu-

ristically selected flat paths and 2-level 

production rules have been used to incor-

porate such information so far. In this 

paper we propose using tree kernel based 

approach to automatically mine the syn-

tactic information from the parse trees for 

discourse analysis, applying kernel func-

tion to the tree structures directly. These 

structural syntactic features, together 

with other normal flat features are incor-

porated into our composite kernel to cap-

ture diverse knowledge for simultaneous 

discourse identification and classification 

for both explicit and implicit relations. 

The experiment shows tree kernel ap-

proach is able to give statistical signifi-

cant improvements over flat syntactic 

path feature. We also illustrate that tree 

kernel approach covers more structure in-

formation than the production rules, 

which allows tree kernel to further incor-

porate information from a higher dimen-

sion space for possible better discrimina-

tion. Besides, we further propose to leve-

rage on temporal ordering information to 

constrain the interpretation of discourse 

relation, which also demonstrate statistic-

al significant improvements for discourse 

relation recognition on PDTB 2.0 for 

both explicit and implicit as well. 

1 Introduction 

Discourse relations capture the internal structure 

and logical relationship of coherent text, includ-

ing Temporal, Causal and Contrastive relations 

etc. The ability of recognizing such relations be-

tween text units including identifying and classi-

fying provides important information to other 

natural language processing systems, such as 

language generation, document summarization, 

and question answering. For example, Causal 

relation can be used to answer more sophisti-

cated, non-factoid ‘Why’ questions. 

Lee et al. (2006) demonstrates that modeling 

discourse structure requires prior linguistic anal-

ysis on syntax. This shows the importance of 

syntactic knowledge to discourse analysis. How-

ever, most of previous work only deploys lexical 

and semantic features (Marcu and Echihabi, 

2002; Pettibone and PonBarry, 2003; Saito et al., 

2006; Ben and James, 2007; Lin et al., 2009; Pit-

ler et al., 2009) with only two exceptions (Ben 

and James, 2007; Lin et al., 2009). Nevertheless, 

Ben and James (2007) only uses flat syntactic 

path connecting connective and arguments in the 

parse tree. The hierarchical structured informa-

tion in the trees is not well preserved in their flat 

syntactic path features. Besides, such a syntactic 

feature selected and defined according to linguis-

tic intuition has its limitation, as it remains un-

clear what kinds of syntactic heuristics are effec-

tive for discourse analysis. 

The more recent work from Lin et al. (2009) 

uses 2-level production rules to represent parse 

tree information. Yet it doesn’t cover all the oth-

er sub-trees structural information which can be 

also useful for the recognition. 

In this paper we propose using tree kernel 

based method to automatically mine the syntactic 
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information from the parse trees for discourse 

analysis, applying kernel function to the parse 

tree structures directly. These structural syntactic 

features, together with other flat features are then 

incorporated into our composite kernel to capture 

diverse knowledge for simultaneous discourse 

identification and classification. The experiment    

shows that tree kernel is able to effectively in-

corporate syntactic structural information and 

produce statistical significant improvements over 

flat syntactic path feature for the recognition of 

both explicit and implicit relation in Penn Dis-

course Treebank (PDTB; Prasad et al., 2008). 

We also illustrate that tree kernel approach cov-

ers more structure information than the produc-

tion rules, which allows tree kernel to further 

work on a higher dimensional space for possible 

better discrimination. 

Besides, inspired by the linguistic study on 

tense and discourse anaphor (Webber, 1988), we 

further propose to incorporate temporal ordering 

information to constrain the interpretation of dis-

course relation, which also demonstrates statis-

tical significant improvements for discourse rela-

tion recognition on PDTB v2.0 for both explicit 

and implicit relations. 

The organization of the rest of the paper is as 

follows. We briefly introduce PDTB in Section 

2. Section 3 gives the related work on tree kernel 

approach in NLP and its difference with produc-

tion rules, and also linguistic study on tense and 

discourse anaphor. Section 4 introduces the 

frame work for discourse recognition, as well as 

the baseline feature space and the SVM classifi-

er. We present our kernel-based method in Sec-

tion 5, and the usage of temporal ordering feature 

in Section 6. Section 7 shows the experiments 

and discussions.  We conclude our works in Sec-

tion 8. 

2 Penn Discourse Tree Bank 

The Penn Discourse Treebank (PDTB) is the 

largest available annotated corpora of discourse 

relations (Prasad et al., 2008) over 2,312 Wall 

Street Journal articles. The PDTB models dis-

course relation in the predicate-argument view, 

where a discourse connective (e.g., but) is treated 

as a predicate taking two text spans as its argu-

ments. The argument that the discourse connec-

tive syntactically bounds to is called Arg2, and 

the other argument is called Arg1. 

The PDTB provides annotations for both ex-

plicit and implicit discourse relations. An explicit 

relation is triggered by an explicit connective. 

Example (1) shows an explicit Contrast relation 

signaled by the discourse connective ‘but’. 

 

     (1). Arg1. Yesterday, the retailing and finan-

cial services giant reported a 16% drop in 

third-quarter earnings to $257.5 million, 

or 75 cents a share, from a restated $305 

million, or 80 cents a share, a year earlier. 

             Arg2. But the news was even worse for 

Sears's core U.S. retailing operation, the 

largest in the nation. 

 

In the PDTB, local implicit relations are also 

annotated. The annotators insert a connective 

expression that best conveys the inferred implicit 

relation between adjacent sentences within the 

same paragraph. In Example (2), the annotators 

select ‘because’ as the most appropriate connec-

tive to express the inferred Causal relation be-

tween the sentences. There is one special label 

AltLex pre-defined for cases where the insertion 

of an Implicit connective to express an inferred 

relation led to a redundancy in the expression of 

the relation. In Example (3), the Causal relation 

derived between sentences is alternatively lexi-

calized by some non-connective expression 

shown in square brackets, so no implicit connec-

tive is inserted. In our experiments, we treat Alt-

Lex Relations the same way as normal Implicit 

relations. 

 

     (2). Arg1. Some have raised their cash posi-

tions to record levels. 

            Arg2. Implicit = Because High cash po-

sitions help buffer a fund when the market 

falls. 

 

     (3). Arg1. Ms. Bartlett’s previous work, 

which earned her an international reputa-

tion in the non-horticultural art world, of-

ten took gardens as its nominal subject. 

             Arg2. [Mayhap this metaphorical con-

nection made] the BPC Fine Arts Com-

mittee think she had a literal green thumb. 

 

The PDTB also captures two non-implicit cas-

es: (a) Entity relation where the relation between 

adjacent sentences is based on entity coherence 

(Knott et al., 2001) as in Example (4); and (b) No 

relation where no discourse or entity-based cohe-

rence relation can be inferred between adjacent 

sentences. 
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    (4).   But for South Garden, the grid was to be 

a 3-D network of masonry or hedge walls 

with real plants inside them. 

              In a Letter to the BPCA, kelly/varnell 

called this “arbitrary and amateurish.” 

 

Each Explicit, Implicit and AltLex relation is 

annotated with a sense. The senses in PDTB are 

arranged in a three-level hierarchy. The top level 

has four tags representing four major semantic 

classes: Temporal, Contingency, Comparison 

and Expansion. For each class, a second level of 

types is defined to further refine the semantic of 

the class levels. For example, Contingency has 

two types Cause and Condition. A third level of 

subtype specifies the semantic contribution of 

each argument. In our experiments, we use only 

the top level of the sense annotations. 

3 Related Work 

Tree Kernel based Approach in NLP.  While 

the feature based approach may not be able to 

fully utilize the syntactic information in a parse 

tree, an alternative to the feature-based methods, 

tree kernel methods (Haussler, 1999) have been 

proposed to implicitly explore features in a high 

dimensional space by employing a kernel func-

tion to calculate the similarity between two ob-

jects directly. In particular, the kernel methods 

could be very effective at reducing the burden of 

feature engineering for structured objects in NLP 

research (Culotta and Sorensen, 2004). This is 

because a kernel can measure the similarity be-

tween two discrete structured objects by directly 

using the original representation of the objects 

instead of explicitly enumerating their features. 

Indeed, using kernel methods to mine structur-

al knowledge has shown success in some NLP 

applications like parsing (Collins and Duffy, 

2001; Moschitti, 2004) and relation extraction 

(Zelenko et al., 2003; Zhang et al., 2006). How-

ever, to our knowledge, the application of such a 

technique to discourse relation recognition still 

remains unexplored. 

Lin et al. (2009) has explored the 2-level pro-

duction rules for discourse analysis. However, 

Figure 1 shows that only 2-level sub-tree struc-

tures (e.g. 𝑇𝑎 - 𝑇𝑒 ) are covered in production 

rules. Other sub-trees beyond 2-level (e.g. 𝑇𝑓 - 𝑇𝑗 ) 

are only captured in the tree kernel, which allows 

tree kernel to further leverage on information 

from higher dimension space for possible better 

discrimination. Especially, when there are 

enough training data, this is similar to the study  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on language modeling that N-gram beyond uni-

gram and bigram further improves the perfor-

mance in large corpus. 

Tense and Temporal Ordering Information.   

Linguistic studies (Webber, 1988) show that a 

tensed clause 𝐶𝑏  provides two pieces of semantic 

information: (a) a description of an event (or sit-

uation) 𝐸𝑏 ; and (b) a particular configuration of 

the point of event (𝐸𝑇), the point of reference 

(𝑅𝑇) and the point of speech (𝑆𝑇). Both the cha-

racteristics of 𝐸𝑏  and the configuration of 𝐸𝑇, 𝑅𝑇 

and 𝑆𝑇 are critical to interpret the relationship of 

event 𝐸𝑏  with other events in the discourse mod-

el. Our observation on temporal ordering infor-

mation is in line with the above, which is also 

incorporated in our discourse analyzer. 

4 The Recognition Framework 

In the learning framework, a training or testing 

instance is formed by a non-overlapping 

clause(s)/sentence(s) pair. Specifically, since im-

plicit relations in PDTB are defined to be local, 

only clauses from adjacent sentences are paired 

for implicit cases. During training, for each dis-

course relation encountered, a positive instance 

is created by pairing the two arguments. Also a 

Figure 1. Different sub-tree sets for 𝑇1 used by 

2-level production rules and convolution tree 

kernel approaches. 𝑇𝑎 -𝑇𝑗  and 𝑇1  itself are cov-

ered by tree kernel, while only 𝑇𝑎 -𝑇𝑒  are covered 

by production rules. 

Decomposition 

C 

E 

G 

F 

H 

A 

B 

D 

(𝑇1) A 

B C 

(𝑇𝑎) 
D 

F E 

(𝑇𝑏) 

C 

D 

(𝑇𝑐) 
E 

G 

(𝑇𝑑) 
F 

H 

(𝑇𝑒) 

D 

E 

G 

F 

H 

(𝑇𝑓) (𝑇𝑔) A 

C 

D 

B 

D 

E 

G 

F 

H 

C 
(𝑇𝑗 ) C (𝑇) 

D 

F E 

(𝑇𝑖) A 

C 

D 

B 

F E 

712



set of negative instances is formed by paring 

each argument with neighboring non-argument 

clauses or sentences. Based on the training in-

stances, a binary classifier is generated for each 

type using a particular learning algorithm. Dur-

ing resolution, (a) clauses within same sentence 

and sentences within three-sentence spans are 

paired to form an explicit testing instance; and 

(b) neighboring sentences within three-sentence 

spans are paired to form an implicit testing in-

stance. The instance is presented to each explicit 

or implicit relation classifier which then returns a 

class label with a confidence value indicating the 

likelihood that the candidate pair holds a particu-

lar discourse relation. The relation with the high-

est confidence value will be assigned to the pair. 

4.1 Base Features 

In our system, the base features adopted include 

lexical pair, distance and attribution etc. as listed 

in Table 1. All these base features have been 

proved effective for discourse analysis in pre-

vious work. 

 

 

 

4.2 Support Vector Machine 

In theory, any discriminative learning algorithm 

is applicable to learn the classifier for discourse 

analysis. In our study, we use Support Vector 

Machine (Vapnik, 1995) to allow the use of ker-

nels to incorporate the structure feature. 

Suppose the training set 𝑆 consists of labeled 

vectors { 𝑥𝑖 , 𝑦𝑖 }, where 𝑥𝑖  is the feature vector 

of a training instance and 𝑦𝑖  is its class label. The 

classifier learned by SVM is: 

𝑓 𝑥 = 𝑠𝑔𝑛   𝑦𝑖𝑎𝑖𝑥 ∗ 𝑥𝑖 + 𝑏
𝑖=1

  

where 𝑎𝑖  is the learned parameter for a feature 

vector 𝑥𝑖 , and 𝑏 is another parameter which can 

be derived from 𝑎𝑖  . A testing instance 𝑥 is clas-

sified as positive if 𝑓 𝑥 > 01. 

One advantage of SVM is that we can use tree 

kernel approach to capture syntactic parse tree 

information in a particular high-dimension space. 

In the next section, we will discuss how to use 

kernel to incorporate the more complex structure 

feature. 

5 Incorporating Structural Syntactic 

Information 

A parse tree that covers both discourse argu-

ments could provide us much syntactic informa-

tion related to the pair. Both the syntactic flat 

path connecting connective and arguments and 

the 2-level production rules in the parse tree used 

in previous study can be directly described by the 

tree structure. Other syntactic knowledge that 

may be helpful for discourse resolution could 

also be implicitly represented in the tree. There-

fore, by comparing the common sub-structures 

between two trees we can find out to which level 

two trees contain similar syntactic information, 

which can be done using a convolution tree ker-

nel. 

The value returned from the tree kernel re-

flects the similarity between two instances in 

syntax. Such syntactic similarity can be further 

combined with other flat linguistic features to 

compute the overall similarity between two in-

stances through a composite kernel. And thus an 

SVM classifier can be learned and then used for 

recognition. 

5.1 Structural Syntactic Feature 

Parsing is a sentence level processing. However, 

in many cases two discourse arguments do not 

occur in the same sentence. To present their syn-

tactic properties and relations in a single tree 

structure, we construct a syntax tree for each pa-

ragraph by attaching the parsing trees of all its 

sentences to an upper paragraph node. In this 

paper, we only consider discourse relations with-

in 3 sentences, which only occur within each pa-

                                                 
1 In our task, the result of 𝑓 𝑥  is used as the confidence 

value of the candidate argument pair 𝑥 to hold a particular 

discourse relation. 

Feature 

Names 

 Description 

(F1)  cue phrase 

(F2) neighboring punctuation 

(F3)  position of connective if 

presents 

(F4) extents of arguments 

(F5)  relative order of  arguments 

(F6)  distance between  arguments 

(F7)  grammatical role of  arguments 

(F8)  lexical pairs 

(F9) attribution  

Table 1. Base Feature Set 
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ragraph, thus paragraph parse trees are sufficient. 

Our 3-sentence spans cover 95% discourse rela-

tion cases in PDTB v2.0. 

Having obtained the parse tree of a paragraph, 

we shall consider how to select the appropriate 

portion of the tree as the structured feature for a 

given instance. As each instance is related to two 

arguments, the structured feature at least should 

be able to cover both of these two arguments. 

Generally, the more substructure of the tree is 

included, the more syntactic information would 

be provided, but at the same time the more noisy 

information would likely be introduced. In our 

study, we examine three structured features that 

contain different substructures of the paragraph 

parse tree: 

Min-Expansion This feature records the mi-

nimal structure covering both arguments 

and connective word in the parse tree. It 

only includes the nodes occurring in the 

shortest path connecting Arg1, Arg2 and 

connective, via the nearest commonly 

commanding node. For example, consi-

dering Example (5), Figure 2 illustrates 

the representation of the structured feature 

for this relation instance. Note that the 

two clauses underlined with dashed lines 

are attributions which are not part of the 

relation. 

 

     (5). Arg1. Suppression of the book, Judge 

Oakes observed, would operate as a prior 

restraint and thus involve the First 

Amendment. 

              Arg2. Moreover, and here Judge Oakes 

went to the heart of the question, “Respon-

sible biographers and historians constantly 

use primary sources, letters, diaries and 

memoranda.” 

 

Simple-Expansion Min-Expansion could, to 

some degree, describe the syntactic rela-

tionships between the connective and ar-

guments. However, the syntactic proper-

ties of the argument pair might not be 

captured, because the tree structure sur-

rounding the argument is not taken into 

consideration. To incorporate such infor-

mation, Simple-Expansion not only con-

tains all the nodes in Min-Expansion, but 

also includes the first-level children of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       these nodes2. Figure 3 illustrates such a 

feature for Example (5). We can see that 

the nodes “PRN” in both sentences are in-

cluded in the feature. 

Full-Expansion This feature focuses on the 

tree structure between two arguments. It 

not only includes all the nodes in Simple-

Expansion, but also the nodes (beneath 

the nearest commanding parent) that cov-

er the words between the two arguments. 

Such a feature keeps the most information 

related to the argument pair. Figure 4 

                                                 
2 We will not expand the nodes denoting the sentences other 

than where the arguments occur. 

Figure 2. Min-Expansion tree built from gol-

den standard parse tree for the explicit dis-

course relation in Example (5). Note that to 

distinguish from other words, we explicitly 

mark up in the structured feature the arguments 

and connective, by appending a string tag 

“Arg1”, “Arg2” and “Connective” respective-

ly. 

Figure 3. Simple-Expansion tree for the expli-

cit discourse relation in Example (5).  
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shows the structure for feature Full-

Expansion of Example (5). As illustrated, 

different from in Simple-Expansion, each 

sub-tree of “PRN” in each sentence is ful-

ly expanded and all its children nodes are 

included in Full-Expansion. 

 

 

 

 

 

 

 

 

 

 

 
 

 

5.2 Convolution Parse Tree Kernel 

Given the parse tree defined above, we use the 

same convolution tree kernel as described in 

(Collins and Duffy, 2002) and (Moschitti, 2004). 

In general, we can represent a parse tree 𝑇 by a 

vector of integer counts of each sub-tree type 

(regardless of its ancestors):  

∅ 𝑇 = (#𝑜𝑓 𝑠𝑢𝑏𝑡𝑟𝑒𝑒𝑠 𝑜𝑓 𝑡𝑦𝑝𝑒 1, … , # 𝑜𝑓  
     𝑠𝑢𝑏𝑡𝑟𝑒𝑒𝑠 𝑜𝑓𝑡𝑦𝑝𝑒 𝐼, … , # 𝑜𝑓 𝑠𝑢𝑏𝑡𝑟𝑒𝑒𝑠 𝑜𝑓   

     𝑡𝑦𝑝𝑒 𝑛). 

This results in a very high dimensionality 

since the number of different sub-trees is expo-

nential in its size. Thus, it is computational in-

feasible to directly use the feature vector ∅(𝑇). 

To solve the computational issue, a tree kernel 

function is introduced to calculate the dot prod-

uct between the above high dimensional vectors 

efficiently. 

Given two tree segments 𝑇1  and 𝑇2 , the tree 

kernel function is defined:  

   𝐾 𝑇1 , 𝑇2 = < ∅ 𝑇1 , ∅ 𝑇2 > 

                   =  ∅ 𝑇1  𝑖 , ∅ 𝑇2 [𝑖]𝑖  

                   =    𝐼𝑖 𝑛1 ∗ 𝐼𝑖(𝑛2)𝑖𝑛2∈𝑁2𝑛1∈𝑁1
 

where  𝑁1and 𝑁2 are the sets of all nodes in trees 

𝑇1and 𝑇2, respectively; and 𝐼𝑖(𝑛) is the indicator 

function that is 1 iff a subtree of type 𝑖  occurs 

with root at node 𝑛 or zero otherwise. (Collins 

and Duffy, 2002) shows that 𝐾(𝑇1 , 𝑇2) is an in-

stance of convolution kernels over tree struc-

tures, and can be computed in 𝑂( 𝑁1 ,  𝑁2 ) by 

the following recursive definitions: 

            ∆ 𝑛1 , 𝑛2 =  𝐼𝑖 𝑛1 ∗ 𝐼𝑖(𝑛2)𝑖                                                                                                   

(1) ∆ 𝑛1 , 𝑛2 = 0  if 𝑛1  and 𝑛2  do not have the 

same syntactic tag or their children are different; 

(2) else if both 𝑛1 and  𝑛2 are pre-terminals (i.e. 

POS tags), ∆ 𝑛1 , 𝑛2 = 1 × 𝜆; 

(3)  else, ∆ 𝑛1 , 𝑛2 = 

              𝜆  (1 + ∆(𝑐(
𝑛𝑐 (𝑛1)
𝑗 =1 𝑛1 , 𝑗), 𝑐(𝑛2 , 𝑗))),                                 

where 𝑛𝑐(𝑛1) is the number of the children of 

𝑛1 , 𝑐(𝑛, 𝑗)  is the 𝑗𝑡  child of node 𝑛  and 𝜆 

(0 < 𝜆 < 1) is the decay factor in order to make 

the kernel value less variable with respect to the 

sub-tree sizes. In addition, the recursive rule (3) 

holds because given two nodes with the same 

children, one can construct common sub-trees 

using these children and common sub-trees of 

further offspring. 

    The parse tree kernel counts the number of 

common sub-trees as the syntactic similarity 

measure between two instances. The time com-

plexity for computing this kernel is 𝑂( 𝑁1 ∙
 𝑁2 ). 

5.3 Composite Tree Kernel 

Besides the above convolution parse tree kernel 

𝐾 𝑡𝑟𝑒𝑒  𝑥1 , 𝑥2 = 𝐾(𝑇1 , 𝑇2) defined to capture the 

syntactic information between two instances 𝑥1 

and 𝑥2, we also use another kernel 𝐾 𝑓𝑙𝑎𝑡  to cap-

ture other flat features, such as base features (de-

scribed in Table 1) and temporal ordering infor-

mation (described in Section 6). In our study, the 

composite kernel is defined in the following 

way: 

𝐾 1 𝑥1 , 𝑥2 = 𝛼 ∙ 𝐾 𝑓𝑙𝑎𝑡  𝑥1 , 𝑥2 + 

                                    1 − 𝛼 ∙ 𝐾 𝑡𝑟𝑒𝑒  𝑥1 , 𝑥2 . 

Here, 𝐾 (∙,∙) can be normalized by 𝐾  𝑦, 𝑧 =

𝐾 𝑦, 𝑧  𝐾 𝑦, 𝑦 ∙ 𝐾 𝑧, 𝑧   and 𝛼 is the coeffi-

cient. 

6 Using Temporal Ordering Informa-

tion 

In our discourse analyzer, we also add in tem-

poral information to be used as features to pre-

dict discourse relations. This is because both our 

observations and some linguistic studies (Web-

ber, 1988) show that temporal ordering informa-

tion including tense, aspectual and event orders 

between two arguments may constrain the dis-

course relation type. For example, the connective 

Figure 4. Full-Expansion tree for the explicit 

discourse relation in Example (5).  
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word is the same in both Example (6) and (7), 

but the tense shift from progressive form in 

clause 6.a to simple past form in clause 6.b, indi-

cating that the twisting occurred during the state 

of running the marathon, usually signals a tem-

poral discourse relation; while in Example (7), 

both clauses are in past tense and it is marked as 

a Causal relation. 

 

     (6). a. Yesterday Holly was running a mara-

thon  

            b. when she twisted her ankle. 

 

      (7). a. Use of dispersants was approved 

            b. when a test on the third day showed  

some positive results. 

 

Inspired by the linguistic model from Webber 

(1988) as described in Section 3, we explore the 

temporal order of events in two adjacent sen-

tences for discourse relation interpretation. Here 

event is represented by the head of verb, and the 

temporal order refers to the logical occurrence 

(i.e. before/at/after) between events. For in-

stance, the event ordering in Example (8) can be 

interpreted as:  

     𝐸𝑣𝑒𝑛𝑡 𝑏𝑟𝑜𝑘𝑒𝑛 ≺𝑏𝑒𝑓𝑜𝑟𝑒 𝐸𝑣𝑒𝑛𝑡(𝑤𝑒𝑛𝑡) . 

 

     8.  a.  John went to the hospital.  

          b. He had broken his ankle on a patch of 

ice. 

 

We notice that the feasible temporal order of 

events differs for different discourse relations. 

For example, in causal relations, cause event 

usually happens before effect event, i.e.           

     𝐸𝑣𝑒𝑛𝑡 𝑐𝑎𝑢𝑠𝑒 ≺𝑏𝑒𝑓𝑜𝑟𝑒 𝐸𝑣𝑒𝑛𝑡(𝑒𝑓𝑓𝑒𝑐𝑡). 

So it is possible to infer a causal relation in 

Example (8) if and only if 8.b is taken to be the 

cause event and 8.a is taken to be the effect 

event. That is, 8.b is taken as happening prior to 

his going into hospital. 

In our experiments, we use the TARSQI3  sys-

tem to identify event, analyze tense and aspectual 

information, and label the temporal order of 

events. Then the tense and temporal ordering 

information is extracted as features for discourse 

relation recognition. 

 

                                                 
3 http://www.isi.edu/tarsqi/ 

7 Experiments and Results 

In this section we provide the results of a set of 

experiments focused on the task of simultaneous 

discourse identification and classification. 

7.1 Experimental Settings 

We experiment on PDTB v2.0 corpus. Besides 

four top-level discourse relations, we also con-

sider Entity and No relations described in Section 

2. We directly use the golden standard parse 

trees in Penn TreeBank. We employ an SVM 

coreference resolver trained and tested on ACE 

2005 with 79.5% Precision, 66.7% Recall and 

72.5% F1 to label coreference mentions of the 

same named entity in an article. For learning, we 

use the binary SVMLight developed by (Joa-

chims, 1998) and Tree Kernel Toolkits devel-

oped by (Moschitti, 2004). All classifiers are 

trained with default learning parameters. 

The performance is evaluated using Accuracy 

which is calculated as follow: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝐴𝑙𝑙
 

Sections 2-22 are used for training and Sec-

tions 23-24 for testing. In this paper, we only 

consider any non-overlapping clauses/sentences 

pair in 3-sentence spans. For training, there were 

14812, 12843 and 4410 instances for Explicit, 

Implicit and Entity+No relations respectively; 

while for testing, the number was 1489, 1167 and 

380. 

7.2 System with Structural Kernel 

Table 2 lists the performance of simultaneous 

identification and classification on level-1 dis-

course senses. In the first row, only base features 

described in Section 4 are used. In the second 

row, we test Ben and James (2007)’s algorithm 

which uses heuristically defined syntactic paths 

and acts as a good baseline to compare with our 

learned-based approach using the structured in-

formation. The last three rows of Table 2 reports 

the results combining base features with three 

syntactic structured features (i.e. Min-Expansion, 

Simple-Expansion and Full-Expansion) de-

scribed in Section 5. 

We can see that all our tree kernels outperform 

the manually constructed flat path feature in all 

three groups including Explicit only, Implicit 

only and All relations, with the accuracy increas-

ing by 1.8%, 6.7% and 3.1% respectively. Espe-

cially, it shows that structural syntactic informa-

tion is more helpful for Implicit cases which is 

generally much harder than Explicit cases. We  
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conduct chi square statistical significance test on 

All relations between flat path approach and 

Simple-Expansion approach, which shows the 

performance improvements are statistical signifi-

cant (𝜌 < 0.05) through incorporating tree ker-

nel. This proves that structural syntactic informa-

tion has good predication power for discourse 

analysis in both explicit and implicit relations. 

We also observe that among the three syntactic 

structured features, Min-Expansion and Simple-

Expansion achieve similar performances which 

are better than the result for Full-Expansion. This 

may be due to that most significant information 

is with the arguments and the shortest path con-

necting connectives and arguments. However, 

Full-Expansion that includes more information 

in other branches may introduce too many details 

which are rather tangential to discourse recogni-

tion. Our subsequent reports will focus on Sim-

ple-Expansion, unless otherwise specified. 

As described in Section 5, to compute the 

structural information, parse trees for different 

sentences are connected to form a large tree for a 

paragraph. It would be interesting to find how 

the structured information works for discourse 

relations whose arguments reside in different 

sentences. For this purpose, we test the accuracy 

for discourse relations with the two arguments 

occurring in the same sentence, one-sentence 

apart, and two-sentence apart. Table 3 compares 

the learning systems with/without the structured 

feature present. From the table, for all three cas-

es, the accuracies drop with the increase of the 

distances between the two arguments. However, 

adding the structured information would bring 

consistent improvement against the baselines 

regardless of the number of sentence distance. 

This observation suggests that the structured syn-

tactic information is more helpful for inter-

sentential discourse analysis.  

We also concern about how the structured in-

formation works for identification and classifica-

tion respectively. Table 4 lists the results for the 

two sub-tasks. As shown, with the structured in-

formation incorporated, the system (Base + Tree 

Kernel) can boost the performance of the two 

baselines (Base Features in the first row andBase 

+ Manually selected paths in the second row), for 

both identification and classification respective-

ly. We also observe that the structural syntactic 

information is more helpful for classification task 

which is generally harder than identification. 

This is in line with the intuition that classifica-

tion is generally a much harder task. We find that 

due to the weak modeling of Entity relations, 

many Entity relations which are non-discourse 

relation instances are mis-identified as implicit 

Expansion relations. Nevertheless, it clearly di-

rects our future work. 

 

 

 

 

 

 

 

 

 

 

 

7.3 System with Temporal Ordering Infor-

mation 

To examine the effectiveness of our temporal 

ordering information, we perform experiments 

Features 

 

Accuracy 

Explicit Implicit All 

Base Features 67.1 29 48.6 

Base + Manually 

selected flat path 

features 

70.3 32 52.6 

Base + Tree kernel 

(Min-Expansion) 

71.9 38.6 55.6 

Base + Tree kernel 
(Simple-Expansion) 

72.1 38.7 55.7 

Base + Tree kernel 

(Full-Expansion) 

71.8 38.4 55.4 

Sentence Dis-

tance 

0 

(959) 

1 

(1746) 

2 

(331) 

Base Features 52 49.2 35.5 

Base + Manually 

selected flat path 

features 

56.7 52 43.8 

Base + Tree 

Kernel 

58.3 55.6 49.7 

Tasks Identifica-
tion 

Classifica-
tion 

Base Features 58.6 50.5 

Base + Manually 

selected flat path 

features 

59.7 52.6 

Base + Tree 
Kernel 

63.3 59.3 

Table 3. Results of the syntactic structured kernel 

for discourse relations recognition with argu-

ments in different sentences apart. 

Table 4. Results of the syntactic structured ker-

nel for simultaneous discourse identification and 

classification subtasks. 

Table 2. Results of the syntactic structured ker-

nels on level-1 discourse relation recognition. 
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on simultaneous identification and classification 

of level-1 discourse relations to compare with 

using only base feature set as baseline. The re-

sults are shown in Table 5.  We observe that the 

use of temporal ordering information increases 

the accuracy by 3%, 3.6% and 3.2% for Explicit, 

Implicit and All groups respectively. We conduct 

chi square statistical significant test on All rela-

tions, which shows the performance improve-

ment is statistical significant (𝜌 < 0.05). It indi-

cates that temporal ordering information can 

constrain the discourse relation types inferred 

within a clause(s)/sentence(s) pair for both expli-

cit and implicit relations. 

 

 

 

 

We observe that although temporal ordering 

information is useful in both explicit and implicit 

relation recognition, the contributions of the spe-

cific information are quite different for the two 

cases. In our experiments, we use tense and as-

pectual information for explicit relations, while 

event ordering information is used for implicit 

relations. The reason is explicit connective itself 

provides a strong hint for explicit relation, so 

tense and aspectual analysis which yields a relia-

ble result can provide additional constraints, thus 

can help explicit relation recognition. However, 

event ordering which would inevitably involve 

more noises will adversely affect the explicit re-

lation recognition performance. On the other 

hand, for implicit relations with no explicit con-

nective words, tense and aspectual information 

alone is not enough for discourse analysis. Event 

ordering can provide more necessary information 

to further constrain the inferred relations. 

7.4 Overall Results 

We also evaluate our model which combines 

base features, tree kernel and tense/temporal or-

dering information together on Explicit, Implicit 

and All Relations respectively. The overall re-

sults are shown in Table 6. 

 

 

 

 

 

 

 

 

 

8 Conclusions and Future Works 

The purpose of this paper is to explore how to 

make use of the structural syntactic knowledge to 

do discourse relation recognition. In previous 

work, syntactic information from parse trees is 

represented as a set of heuristically selected flat 

paths or 2-level production rules. However, the 

features defined this way may not necessarily 

capture all useful syntactic information provided 

by the parse trees for discourse analysis. In the 

paper, we propose a kernel-based method to in-

corporate the structural information embedded in 

parse trees. Specifically, we directly utilize the 

syntactic parse tree as a structure feature, and 

then apply kernels to such a feature, together 

with other normal features. The experimental 

results on PDTB v2.0 show that our kernel-based 

approach is able to give statistical significant 

improvement over flat syntactic path method. In 

addition, we also propose to incorporate tempor-

al ordering information to constrain the interpre-

tation of discourse relations, which also demon-

strate statistical significant improvements for 

discourse relation recognition, both explicit and 

implicit. 

In future, we plan to model Entity relations 

which constitute 24% of Implicit+Entity+No re-

lation cases, thus to improve the accuracy of re-

lation detection. 
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