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Abstract

To capture salient contextual information for
spoken language understanding (SLU) of a di-
alogue, we propose time-aware models that
automatically learn the latent time-decay func-
tion of the history without a manual time-
decay function. We also propose a method to
identify and label the current speaker to im-
prove the SLU accuracy. In experiments on
the benchmark dataset used in Dialog State
Tracking Challenge 4, the proposed models
achieved significantly higher F1 scores than
the state-of-the-art contextual models. Finally,
we analyze the effectiveness of the introduced
models in detail. The analysis demonstrates
that the proposed methods were effective to
improve SLU accuracy individually.

1 Introduction

Spoken language understanding (SLU) is a com-
ponent that understands the user’s utterance of a
dialogue system. Given an utterance, SLU gen-
erates a structured meaning representation of the
utterance; i.e., a semantic frame. SLU can be de-
composed into several subtasks such as domain
identification, intent prediction and slot filling;
these subtasks can be jointly assigned using a
single model (Hakkani-Tür et al., 2016; Liu and
Lane, 2016; Chen et al., 2016b). The accuracy of
SLU is important for the dialogue system to gen-
erate an appropriate response to a user.

To improve the accuracy of SLU, much work
has used contextual information of dialogues to al-
leviate the ambiguity of recognition of the given
utterance. In SLU, selecting important history in-
formation is crucial, and it directly influences the
improvement of SLU accuracy. To summarize this
history, content-aware models (Chen et al., 2016a;
Kim et al., 2017) similar to attention models in
machine translation (Bahdanau et al., 2014) have

been proposed. However, content-aware models
are likely to select the wrong history when the
histories are similar in content. To alleviate this
problem, time-aware models (Chen et al., 2017;
Su et al., 2018a,b) which pay attention to recent
previous utterances by using the temporal distance
between a previous utterance and a current utter-
ance are being considered; the models are based
on mathematical formulas, time-decay functions,
which are formulated by human, and decomposed
into trainable parameters.

However, the previous time-aware models may
not be sufficiently accurate. In the models, ei-
ther a single time-decay function is used or a lim-
ited number of time-decay functions are linearly
combined; these manual functions may not be suf-
ficiently flexible to learn an optimal time-decay
function.

In this paper, we propose flexible and effective
time-aware attention models to improve SLU ac-
curacy. The proposed models do not need any
manual time-decay function, but learn a time-
decay tendency directly by introducing a trainable
distance vector, and therefore have good SLU ac-
curacy. The proposed models do not use long
short-term memory (LSTM) to summarize his-
tories, and therefore use fewer parameters than
previous time-aware models. We also propose
current-speaker modeling by using a speaker in-
dicator that identifies the current speaker.

To the best of our knowledge, this is the first
method that shows improvement by considering
the identity of the current speaker. This informa-
tion may be helpful for modeling multi-party con-
versations in addition to human-human conversa-
tions.

Prediction of the semantic label of the current
utterance even using a conventional time-aware
model can be difficult. (Figure 1). The nearest
utterance is “Right.”, but it is not the most rele-
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Figure 1: An example of utterances with their semantic labels (speech acts combined with associated attributes)
from DSTC 4. The semantic labels are italicized.

vant utterance to the current utterance; the most
relevant utterance is “What are the places that I
can have some memorable experiences there?”. If
we do not know the current speaker is Guide, we
cannot easily assess the relative importance of the
nearest histories of the two speakers. We believe
that the proposed ‘speaker indicator’ can help our
model to identify such information.

In experiments on the Dialog State Tracking
Challenge 4 (DSTC 4) dataset, the proposed mod-
els achieved significantly higher accuracy than the
state-of-the-art contextual models for SLU. Also,
we examine how the proposed methods affect the
SLU accuracy in detail. This result shows that
the proposed methods were effective to improve
SLU accuracy individually. Our contributions are
as follows:

• We propose a decay-function-free time-
aware attention model that automatically
learn the latent time-decay function of the
history without a manual time-decay func-
tion. The proposed model achieves a new
state-of-the-art F1 score.

• We propose a current-speaker modeling
method that uses a speaker indicator to iden-
tify the current speaker. We present how to
incorporate speaker indicator in the proposed
attention model for further improvement of
SLU accuracy.

• We propose a model that is aware of content

as well as time, which also achieved a higher
F1 score than the state-of-the-art contextual
models.

• We analyze the effectiveness of proposed
methods in detail.

Our source code to reproduce the
experimental results is available at
https://github.com/jgkimi/
Decay-Function-Free-Time-Aware.

2 Related Work

Joint semantic frame parsing has the goal of learn-
ing intent prediction and slot filling jointly. By
joint learning, the model learns their shared fea-
tures, and this ability is expected to improve the
accuracy on both tasks. A model based on bidi-
rectional LSTM for joint semantic frame pars-
ing (Hakkani-Tür et al., 2016) is trained on the
two tasks in sequence, by adding an intent la-
bel to the output of the final time-step of LSTM.
Similarly, an attention-based LSTM predicts slot
tags for each time-step, then feeds the hidden
vectors and their soft-aligned vectors to a fully-
connected layer for intent prediction (Liu and
Lane, 2016). Knowledge-guided joint seman-
tic frame parsing (Chen et al., 2016b) incorpo-
rates syntax or semantics-level parsing informa-
tion into a model by using a recurrent neural net-
work (RNN) for joint semantic frame parsing.
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Figure 2: Overall architecture of the decay-function-free time-aware attention with speaker indicator (role-level).
w1, ..., wT are word vectors of the current utterance, dt is the tth distance vector, ut is the tth utterance vector,
scur is the current speaker indicator, hT is the current utterance summary vector and αt is the importance of the
tth historic utterance. For simplicity, we represent bidirectional LSTM layers as unidirectional LSTM layers.

Other research on SLU uses context informa-
tion. A model based on support vector machine
and a hidden Markov model uses contextual infor-
mation to show the importance of contextual infor-
mation in SLU tasks, intent prediction and slot de-
tection (Bhargava et al., 2013). RNN-based mod-
els can exploit context to classify domains (Xu and
Sarikaya, 2014), and have been combined with
previously-estimated intent and slot labels to pre-
dict domain and intent (Shi et al., 2015). A mem-
ory network that contains historic utterance vec-
tors encoded by RNN has been used to select the
most relevant history vector by multiplicative soft-
attention (Chen et al., 2016a); the selected vector
is fed to an RNN-based slot tagger as context in-
formation.

A memory network can be regarded as use of
content-based similarity between the current utter-
ance and previous utterances. A memory network
can be separated to capture historic utterances for
each speaker independently (Kim et al., 2017), and
a contextual model can use different LSTM layers
to separately encode a history summary for each

speaker (Chi et al., 2017). For another task, ad-
dressee and response selection in multi-party con-
versations, a distinct RNN-based encoder for each
speaker-role (sender, addressee, or observer) has
been used to generate distinct history summaries
(Zhang et al., 2018).

Recent work on contextual SLU has introduced
time information of contexts into models because
content-based attention may cause a wrong choice
that introduce noises. The reciprocal of temporal
distance between a current utterance and contexts
can be used as a time-decay function, and the func-
tion can be decomposed into trainable parameters
(Chen et al., 2017). Similarly, a universal time-
aware attention model (Su et al., 2018a) has been
proposed; it is a trainable linear combination of
three distinct (convex, linear and concave) time-
decay functions . An extension of this model is
a context-sensitive time-decay attention (Su et al.,
2018b) that generates its parameters from the cur-
rent utterance by using a fully-connected layer so
that the content information of the current utter-
ance is also considered in the attention.
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3 Proposed Model

We propose a time-aware model that includes a
speaker indicator (Figure 2). In addition, we
propose a content-and-time-aware model that in-
cludes a speaker indicator. The models are trained
in an end-to-end way, in which every model pa-
rameter is automatically learned based on a down-
stream SLU task. The objective of the proposed
models are to optimize the conditional probabil-
ity of labels of SLU, given the current utterance
p(ŷ|x), by minimizing the cross-entropy loss.

The following description of the proposed
model considers three steps: current utterance
summary, context summary, and prediction.

3.1 Current Utterance Summary
To select salient parts of contextual histories, the
current utterance is used. To summarize a current
utterance matrix U that consists of words wi as a
vector (i.e., U = {w1 , w2,..., wT }), U is fed to
bidirectional LSTMs, and the final hidden vector
hT ∈ Rdim is taken as a current utterance sum-
mary.

3.2 Decay-Function-Free Time-Aware
Attention

In this subsection, we introduce a decay-function-
free time-aware attention model. To summarize
contexts, we use a time difference (distance) be-
tween a historic utterance and the current utter-
ance; this distance represents the interval between
the historic utterance and the current utterance.
We use the distance of the tth history from the cur-
rent utterance as an index to select a dense vector
from a distance-embedding matrixD ∈ Rdim×|D|,
then use the vector as the tth distance vector dt.

To compute the importance αt of the tth his-
tory, both in the sentence-level attention and in the
role-level attention, our time-aware attention uses
the current utterance summary hT and the history
distance dt simultaneously and additively:

αt = wT
attσ

(
hT + dt + batt

)
, (1)

where wT
att is the transpose of a trainable weight

vector for the attention, batt is a trainable bias vec-
tor for the attention, and σ is the hyperbolic tan-
gent function.

Computing a time-aware context summary vec-
tor shisttime depends on whether the role-level or
sentence-level attention is considered. For the
role-level attention, we use the softmax operation

applied to all αt of the same speaker, either a guide
or a tourist, to obtain a role-level probabilistic im-
portance αrole

t of tth history. We then multiply
αrole
t by tth history vector, which is a concatena-

tion of the corresponding intent-dense vector ut
and the distance vector dt. We use the element-
wise sum of the vectors of the same speaker to
construct two summary vectors sguidetime and stouristtime .
Finally, sguidetime and stouristtime are concatenated to
form a time-aware history summary vector shisttime

as:

αrole
t = softmaxrole(αt), (2)

sroletime =
∑
t

αrole
t (ut ⊕ dt), (3)

shisttime = sguidetime ⊕ s
tourist
time , (4)

where ⊕ represents a concatenation operation.
For the sentence-level attention to obtain a

sentence-level probabilistic importance αsent
t of

tth history, we use the softmax operation applied
to all αt regardless of the speaker, then multiply
αsent
t by the tth history vector, which is a concate-

nation of the corresponding intent dense vector ut
and the distance vector dt. We use the element-
wise sum of the vectors to construct a time-aware
summary vector shisttime as:

αsent
t = softmaxsent(αt), (5)

shisttime =
∑
t

αsent
t (ut ⊕ dt). (6)

Then, shisttime is used as a context summary shist

in the prediction step.

3.3 Decay-Function-Free
Content-and-Time-Aware Attention

Although a time-aware attention model is pow-
erful by itself, content can be considered at the
same time to improve accuracy. We propose an-
other contextual attention model that is aware of
content, in addition to time. This model is called
content-and-time-aware attention. The model uses
an importance value βt for the tth history. To com-
pute βt, we uses the trainable parameters watt and
batt of the time attention as:

βt = wT
attσ

(
hT + ut + batt

)
, (7)

where ut is the intent dense vector of tth history,
and σ is the hyperbolic tangent function.
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Then, βt is used in the same way as αt, but in-
dependently. shisttime is computed as in the previ-
ous subsection, βt is used to compute shistcont for the
role-level attention as:

βrolet = softmaxrole(βt), (8)

srolecont =
∑
t

βrolet (ut ⊕ dt), (9)

shistcont = sguidecont ⊕ stouristcont . (10)

To compute shistcont for the sentence-level atten-
tion, βt is used as:

βsentt = softmaxsent(βt), (11)

shistcont =
∑
t

βsentt (ut ⊕ dt). (12)

Finally, the time-aware history summary shisttime

and the content-aware history summary shistcont are
concatenated to generate a history summary shist

regardless of the attention level:

shist = shisttime ⊕ shistcont. (13)

3.4 Speaker Indicator
Speaker indicator is a trainable vector scur ∈
Rdim which indicates the identity of the current
speaker; i.e., either a tourist or a guide in DSTC
4. An embedding lookup method is used after a
speaker embedding matrix S ∈ Rdim×|S| is de-
fined. The speaker embedding matrix is randomly
initialized before the model is trained.

To use speaker indicator scur in the proposed
attentions, Eq. 1 is rewritten as:

αt = wT
attσ

(
hT + dt + scur + batt

)
, (14)

and Eq. 7 is rewritten as:

βt = wT
attσ

(
hT + ut + scur + batt

)
. (15)

3.5 Prediction
To predict the true label in spoken language under-
standing, our model consumes the current utter-
ance U again. We use another bidirectional LSTM
layer which is distinct from that of the current ut-
terance summary. To prepare for tth input vt of the
LSTM layer, we concatenate tth word vectorwt of
the current utterance U with the history summary
vector shist:

vt = wt ⊕ shist. (16)

Then, we feed each vt to the LSTM layer
sequentially, and the final hidden vector of the
LSTM layer is used as an input of a feed-forward
layer to predict the true label ŷ.

4 Experiments

To test the proposed models, we conducted
language-understanding experiments on a dataset
of human-human conversations.

4.1 Dataset and Settings

We conducted experiments on the DSTC 4 dataset
which consists of 35 dialogue sessions on touris-
tic information for Singapore; they were collected
from Skype calls of three tour guides with 35
tourists. The 35 dialogue sessions total 21 h,
and include 31,034 utterances and 273,580 words
(Kim et al., 2016). DSTC 4 is a suitable bench-
mark dataset for evaluation, because all of the dia-
logues have been manually transcribed and anno-
tated with speech acts and semantic labels at each
turn level. a semantic label consists of a speech act
and associated attribute(s). The speaker informa-
tion (guide and tourist) is also provided. Human-
human dialogues contain rich and complex human
behaviors and bring much difficulty to all tasks
that are involved in SLU. We used the same train-
ing dataset, the same test dataset and the same
validation set as in the DSTC 4 competition: 14
dialogues as the training dataset, 6 dialogues as
the validation dataset, and 9 dialogues as the test
dataset.

We used Adam (Kingma and Ba, 2015) as the
optimizer in training the model. We set the batch
size to 256, and used pretrained 200-dimensional
word embeddings GloVe (Pennington et al., 2014).
We applied 30 training epochs with early stopping.
We set the size dim of every hidden layer to 128,
and the context length to 7. We used the ground
truth intents (semantic labels) to form an intent-
dense vector like previous work. To evaluate SLU
accuracy, we used the F1 score, which is the har-
monic mean of precision and recall. To validate
the significance of improvements, we used a one-
tailed t-test. We ran each model ten times, and
report their average scores.

As baseline models, we used the state-of-the-art
contextual models, and most accurate participant
of DSTC 4 (DSTC 4 - Best) (Kim et al., 2016). For
comparison with our models, we used the scores
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F1 score
Model Sent.-Level Role-Level
DSTC 4 - Best 61.4
No Context 65.06
LSTM-Used Context Summary without Attention 72.15
LSTM-Used Content-Aware Attention 71.27 71.84
Speaker Role Modeling (Chi et al., 2017) 66.8 70.1
Convex Time-Aware Attention (Chen et al., 2017) 74.6 74.2
Universal Time-Aware Attention (Su et al., 2018a) 74.22 74.12
Universal Content + Time Attention (Su et al., 2018a) 74.40 74.33
Context-Sensitive Time Attention (Su et al., 2018b) 74.20 73.53
Decay-Function-Free Time-Aware Attention 75.58∗∗ 75.58∗∗

with Speaker Indicator 75.95∗∗ 76.56∗∗
Decay-Function-Free Content-and-Time-Aware Attention 75.59∗∗ 75.30∗∗

with Speaker Indicator 76.11∗∗ 76.14∗∗

Table 1: SLU accuracy on DSTC 4. ∗: p < 0.05; ∗∗, p < 0.01 compared to all the baseline models. Italicized
scores are reported in the references. Model names are described in the text.

reported in the papers1. We ran three additional
baseline models in which the prediction stage is
the same: (1) ‘No Context’ uses no context sum-
mary; (2) ‘LSTM-Used Context Summary with-
out Attention’ uses the context summary of bidi-
rectional LSTM without an attention mechanism,
and (3) ‘LSTM-Used Content-Aware Attention’
uses context summary of bidirectional LSTM af-
ter content-aware attention is applied to histories,
as in previous approaches.

4.2 Results

We conducted an experiment to compare the pro-
posed models with the baseline models in the SLU
accuracy (Table 1). All of the proposed mod-
els achieved significant improvements compared
to all the baseline models.

We conducted an experiment to identify de-
tails of how possible combinations of the proposed
methods affect the SLU accuracy (Table 2). In ad-
dition to the combinations of the proposed meth-
ods, we tested another content-and-time-aware at-
tention method (Content x Time) which computes
attention values using both intent and distance at
a time, and shares the values to compare with the
proposed content-and-time-aware attention.

1Su et al. (2018a) and Su et al. (2018b) specified that they
used different training/valid/test datasets that had been ran-
domly selected from the whole DSTC 4 data with different
rates for the experiments. Therefore, we do not use the re-
ported score in our comparison, but produced the results un-
der the same conditions by using the open-source code.

5 Discussion

In the first subsection, we analyze the effective-
ness of the decay-function-free time-aware at-
tention and decay-function-free content-and-time-
aware attention by comparison with others. In the
next subsection, we analyze the effectiveness of
the proposed methods in their possible combina-
tions. We also analyze the effectiveness of the
use of a distance vector in the history representa-
tion under the various conditions. Finally, we ana-
lyze attention weights of the proposed models in a
qualitative way to convince of the effectiveness of
them.

We also conducted an experiment to show the
effectiveness of the use of a distance vector in the
history representation under the same condition as
in the role-level attention (Table 3). Although we
propose to use both intent and distance by concate-
nating them as a history representation, intent can
be used alone; this approach is more intuitive than
using both intent and distance.

5.1 Comparison with Baseline Models

In Table 1, Decay-Function-Free Time-Aware
Attention and Decay-Function-Free Content-
and-Time-Aware Attention achieved significantly
higher F1 scores that all baseline models. Es-
pecially, the role-level Decay-Function-Free
Time-Aware Attention with speaker indicator
achieved an F1 score of 76.56 % (row 11), which
is a state-of-the-art SLU accuracy.
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F1 score
Attention Type Sent.-Level Role-Level
no attention 70.49 70.43
Content 73.03 72.87
Content 73.05 72.68
Time 75.58 75.58
Time 75.95∗∗ 76.56∗∗

Content + Time 75.59 75.30
Content + Time 75.83 75.96∗∗

Content + Time 75.94∗ 75.97∗∗

Content + Time 76.11∗∗ 76.14∗∗

Content x Time 75.59 75.50
Content x Time 75.63 75.64

Table 2: SLU accuracy of possible combinations of the
proposed methods. “no attention”: sum of all history
vectors without calculating α, “Content” is content-
aware attention (Decay-Function-Free Content-Aware
Attention), “Time” is the proposed time-aware at-
tention (Decay-Function-Free Time-Aware Attention),
“Content + Time” is the proposed content-and-time-
aware attention (Decay-Function-Free Content-and-
Time-Aware Attention), “Content x Time” is variant
content-and-time-aware attention (Decay-Function-
Free Inseparate Content-and-Time-Aware Attention).
∗: p < 0.05; ∗∗, p < 0.01 compared to the same at-
tention without speaker indicator. An attention type in
bold is the speaker-involved part.

F1 score
Attention Type Intent only Int. & Dist.
no attention 70.20 70.43
Content 71.09 72.87∗∗

Content 71.26 72.68∗∗

Time 75.17 75.58∗∗

Time 75.11 76.56∗∗
Content + Time 75.04 75.30∗∗

Content + Time 75.62 75.96∗

Content + Time 75.13 75.97∗∗

Content + Time 75.67 76.14∗∗

Content x Time 75.08 75.50∗∗

Content x Time 75.03 75.64∗∗

Table 3: SLU accuracy of possible combinations of the
proposed methods in role-level attention with different
history representations. Int. used intent vector; Dist.
used distance vector. ∗: p < 0.05; ∗∗, p < 0.01 com-
pared to using intent only. Other codes are as in Table
2.

5.2 Detailed Analysis on Proposed Methods

The proposed methods had good SLU accuracy
(Table 2). Every time-aware attention with and
without speaker indicator (rows 4 to 11) improved
the F1 score compared to the content-aware at-
tention with and without speaker indicator (rows
2 and 3) and to no attention (row 1). This result
means that the proposed time-aware attention was
effective to improve the SLU accuracy. Any of the
content-and-time-aware attention with or without
speaker indicator (rows 6 to 11) did not improve
the F1 score compared to the time-aware attention
with and without speaker indicator (rows 4 and
5). This result means that incorporating content
could not make further improvement of the accu-
racy. Also, without speaker indicator, all the time-
aware attention (rows 4, 6 and 10) achieved similar
F1 scores.

Use of speaker indicator also showed tenden-
cies. It did not significantly improve the SLU
accuracy of Decay-Function-Free Content-Aware
Attention (rows 2 and 3) or Decay-Function-
Free Inseparate Content-and-Time-Aware At-
tention (rows 10 and 11), but did improve
the accuracy of the proposed models, Decay-
Function-Free Time-Aware Attention (rows 4 and
5) and Decay-Function-Free Content-and-Time-
Aware Attention (rows 6 to 9). Decay-Function-
Free Content-and-Time-Aware Attention with
speaker indicator (rows 7 to 9) were more accurate
than Decay-Function-Free Inseparate Content-
and-Time-Aware Attention with speaker indicator
(row 11). This result means that using speaker in-
dicator, separation of content and time improved
the accuracy. The improvement in the role-level
tended to be greater than that in the sentence-level.
The improvement was greatest when speaker in-
dicator was involved in the proposed role-level
Decay-Function-Free Time-Aware Attention (row
5).

5.3 Effectiveness of Use of Distance in
History Representation

In all models, the use of both intent and distance
vectors significantly achieved higher F1 than the
use of an intent vector only (Table 3). The re-
sults indicate that distance embeddings are helpful
both for attention and for the history representa-
tion. Decay-Function-Free Time-Aware Attention
achieved the biggest improvement (row 5) among
all the models.
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Figure 3: The visualization of the attention weights of the proposed models and the baseline content-aware model.
Color gradient indicates intensity given a single datum after training. The color gradient at the left side indicates
attention intensities of Decay-Function-Free Time-Aware Model with Speaker Indicator, the color gradient in the
center indicates attention intensities of Decay-Function-Free Time-Aware Model without Speaker Indicator, and
the color gradient at the right side indicates attention intensities of Decay-Function-Free Content-Aware Model.

5.4 Qualitative Analysis

To assess whether the proposed time-aware atten-
tion and speaker indicator can learn a time-decay
tendency of the history effectively, we inspected
the weights trained in Decay-Function-Free Time-
Aware Attention with and without the speaker
indicator. We also inspected Decay-Function-
Free Content-Aware Attention to compare with
them. We observed (Figure 3) that the weights of
the proposed models were trained well compared
to Decay-Function-Free Content-Aware Attention.
The proposed time-aware attention with/without
speaker indicator tended to pay attention to re-
cent histories, whereas the content-aware attention
does not. As a result, Decay-Function-Free Time-
Aware Attention with speaker indicator could
generate the true label, QST-RECOMMEND, by
avoiding noisy contextual information like “uh
I’m staying there (FOL-EXPLAIN)” or “... uh we
do not encourage littering uh anywhere in the pub-
lic area (FOL-INFO)”.

6 Conclusion

In this paper, we propose decay-function-free
time-aware attention models for SLU. These
models summarize contextual information by
taking advantage of temporal information without
a manual time-decay function. We also propose

a current-speaker detector that identifies the
current speaker. In experiments on the DSTC 4
benchmark dataset, the proposed models achieved
a state-of-the-art SLU accuracy. Detailed analysis
of effectiveness of the proposed methods demon-
strated that the proposed methods increase the
accuracy of SLU individually.
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