
Proceedings of NAACL-HLT 2018, pages 76–83
New Orleans, Louisiana, June 1 - 6, 2018. c©2017 Association for Computational Linguistics

SystemT: Declarative Text Understanding for Enterprise

Laura Chiticariu† Marina Danilevsky‡ Yunyao Li‡ Frederick R. Reiss‡ Huaiyu Zhu‡
†IBM Watson ‡IBM Research - Almaden

650 Harry Rd
San Jose, CA 95120

{chiti,mdanile,yunyaoli,frreiss,huaiyu}@us.ibm.com

Abstract

The rise of enterprise applications over
unstructured and semi-structured documents
poses new challenges to text understanding
systems across multiple dimensions. We
present SystemT, a declarative text under-
standing system that addresses these chal-
lenges and has been deployed in a wide range
of enterprise applications. We highlight the
design considerations and decisions behind
SystemT in addressing the needs of the enter-
prise setting. We also summarize the impact of
SystemT on business and education.

1 Introduction

With the proliferation of information in unstruc-
tured and semi-structured form, text understand-
ing (TU) is becoming a fundamental building
block in enterprise applications. Numerous tools,
algorithms and APIs have been developed to ad-
dress various text understanding sub-tasks, rang-
ing from low-level text tasks (e.g., tokenization)
and core natural language processing (e.g., syntac-
tic and semantic parsing) to higher-level tasks such
as document classification, entity and relation ex-
traction, and sentiment analysis. Real world appli-
cations usually require several such components.

As an example, consider a Financial Investment
Research Analysis application, which leverages fi-
nancial market analyst reports such as the one
in Fig. 1 to inform automatic trading and finan-
cial recommendations. Information is conveyed in
both natural language (e.g., “We thus downgrade
US and global HY credits”) and tabular form, re-
quiring both natural language understanding prim-
itives (e.g., syntactic or semantic parsing) and doc-
ument structure understanding primitives (e.g., ta-
ble titles, row and column headers, and the associ-
ation of table cells and headers). Furthermore, the
business problem involves higher-level tasks such

Figure 1: Fragment of investment report.

as financial entity extraction (e.g., equities, bonds,
currencies) in natural language and tabular forms,
and sentiment analysis for such entities.

While approaches for solving individual TU
sub-tasks have proliferated, considerably less ef-
fort has been dedicated to developing systems that
enable building end-to-end TU applications in a
principled, systematic and replicable fashion. In
the absence of such systems, building a TU appli-
cation involves piecing together individual com-
ponents in an ad hoc fashion, usually requiring
custom code to address the impedance mismatch
in data models between the different components,
and to bridge gaps in functionality. Different im-
plementations of the same application may yield
vastly different runtime performance characteris-
tics as well as, even more worryingly, different
output semantics. For example, two develop-
ers may make disparate assumptions implement-
ing even such a seemingly simple text operation
as dictionary matching: Should dictionary terms
match the input text only on token boundaries,
or is matching allowed in the middle of a token?
Which tokenization approach should be used? Is
matching case sensitive or insensitive? In an enter-

76



prise environment, such ad-hoc approaches pro-
duce code repositories that are difficult to under-
stand, maintain, reuse in new applications, or op-
timize for runtime performance.

This paper presents SystemT, an industrial-
strength system for developing end-to-end TU ap-
plications in a declarative fashion. SystemT was
developed at IBM Research and has been widely
adopted inside and outside IBM (Sec. 4) Borrow-
ing ideas from database systems, commonly used
text operations are abstracted away as built-in op-
erators with clean, well-specified semantics and
highly optimized internal implementations, and
exposed through a formal declarative language
called AQL (Annotation Query Language). Fig. 2
illustrates a fragment of AQL for extracting fi-
nancial entities and associated sentiment from fi-
nancial reports as in Fig. 1. The snippet illus-
trates several types of declarative TU structures
(or rules) expressible in AQL, including sequential
structures (AssetClass), semantic understanding
structures (RecommendationNU), and table under-
standing structures (RecommendationTable). The
rules leverage built-in text operators readily avail-
able in AQL, including dictionary matching (As-
setClassSuffixes), core NLP operators such as Se-
mantic Role Labeling (SRL) (Verbs, Arguments),
and document structure operators such as table
structure understanding (AllCells). Sec. 3 details
the data model and semantics of AQL.

Architecture Overview. As illustrated in (Fig. 3),
SystemT consists of two major components: the
Compiler and the Runtime.

The Compiler takes as input a TU program
specified in AQL and compiles it into an execu-
tion plan. AQL is a purely declarative language:
the developer specifies what should be extracted,
but not how to do it. The Optimizer computes the
how automatically by enumerating multiple logi-
cal equivalent plans, and choosing a plan with the
least estimated cost. Since each operator has well-
specified semantics, the Optimizer can automati-
cally determine when operators can be reordered,
merged, or even discarded without affecting the
output semantics, while significantly increasing
the runtime performance of the TU program. The
Operator Graph captures the execution plan gen-
erated by the Optimizer and is used by the Runtime
to decide the actual sequence of operations.

The Runtime is a lightweight engine that loads
the Operator Graph and then processes inputs

Figure 2: Example AQL specifications expressing a se-
quential structure (AssetClass), a semantic structure (Recom-
mendationNU) and a table structure (RecommendationTable).
(Simplified for presentation.)

Figure 3: SystemT Overall Architecture

document-at-a-time (DAAT), with the text and
metadata of each document acting like a separate
“database” from the perspective of the AQL rules.
This DAAT model speeds up join and aggregation
operations within a document, as the entire docu-
ment’s data is in memory. It also simplifies scale-
out processing and can be scaled up by utilizing
multithreading and multiple processes, as well as
various cluster and cloud environments.
Related Work. SystemT’s declarative approach
is a departure from other rule-based TU systems.
Early systems (Cunningham et al., 2000; Bogu-
raev, 2003; Drozdzynski et al., 2004) are based
on the Common Pattern Specification Language
(CPSL) (Appelt and Onyshkevych, 1998), a cas-

77



cading grammar formalism where the input text is
viewed as a sequence of annotations, and extrac-
tion rules are written as pattern/action rules over
the lexical features of these annotations. Each
grammar consists of a set of rules evaluated in
a left-to-right fashion over the input annotations,
with multiple grammars cascaded together and
evaluated bottom-up.

As discussed in (Chiticariu et al., 2010),
grammar-based systems suffer from two funda-
mental limitations: expressivity and performance.
Formal studies of AQL semantics have shown
that AQL is strictly more expressive than reg-
ular expression-based languages such as CPSL
(Sec. 3.2.5). Furthermore, the rigid evaluation or-
der imposed in grammar-based systems has sig-
nificant runtime performance implications, as the
system is effectively forced into a fixed pipeline
execution strategy, leaving little opportunity for
global optimization. While the expressivity of
grammar-based systems has been extended in
different ways, such as additional built-in con-
structs (Boguraev, 2003; Drozdzynski et al., 2004;
Cunningham et al., 2000), or allowing a mix of se-
quential patterns and rules over dependency parse
trees (Valenzuela-Escárcega et al., 2016), such ex-
tensions do not fundamentally address the inher-
ent expressivity and performance limitations due
to the intertwining of rule language semantics and
execution strategy. In contrast, SystemT’s declar-
ative approach enables the optimizer to explore a
variety of execution plans, resulting in orders of
magnitude higher throughput and a lower memory
footprint (Chiticariu et al., 2010).

2 Requirements for Enterprise TU

While the traditional accuracy requirement re-
mains important, emerging enterprising appli-
cations introduce additional requirements for
enterprise-scale TU systems.
Scalability. Compared to conventional TU task
corpora, such as those available via the Linguistic
Data Consortium, enterprise TU corpora comprise
much larger volumes of data from a wider vari-
ety of sources, ranging from user-created content
and public data, to proprietary data such as call-
center logs. The TU system must scale for both
documents (e.g., a single financial report runs in
the tens of MBs) and document collections (e.g.,
500 million new tweets posted daily on Twitter;
terabytes of system logs produced hourly in a

medium-size data center).
Expressivity. Enterprise TU must handle an am-
ple variety of functionalities required by different
enterprise applications, from known natural lan-
guage processing tasks such as entity extraction
to more practical challenges such as table struc-
ture understanding. Data may come from plain
text, semi-structured text (e.g., HTML or XML),
or the conversion of a binary format (PDF, Word)
to text. Different degrees of noise may be present,
from manually introduced noise such as typos and
acronyms (e.g., in tweets) to systematic errors
such as those resulting from format conversion.
Transparency. Enterprise TU must be transparent
and enable ease of comprehension, debugging and
enhancement, to avoid TU development becoming
the bottleneck for building enterprise applications.
Furthermore, as the underlying data or application
requirements change, it must be easy to adapt ex-
isting TU programs in response.
Extensibility. Enterprise TU, no matter how well
designed, might not provide all of the capabilities
required by a real-world use case out-of-the-box.
As such, it should be extensible to gracefully han-
dle tasks that are not natively supported.

3 SystemT Highlights

We now describe the key design considerations
and decisions behind SystemT and discuss how
they help address the requirements in Sec. 2.

3.1 Preliminaries

Data model. AQL operates over a simple rela-
tional data model with three basic data structures:
field value, tuple, and view. A tuple (aka an anno-
tation) consists of a list of named and typed fields.
The field values can be of the text-specific type
span, representing a region of text within a docu-
ment identified by its “begin” and “end” positions,
or any of a collection of familiar data types such
as text, integer, scalar List, and null (with 3-value
logic, similar to SQL). A view is a set of tuples
with the same schema (field name and field type).
Statements and modules. Each AQL statement
defines a view as the result of some operations on
one or more other views, which are defined by pre-
vious statements. A special view called Document
is created automatically, which contains a single
tuple with the document text. AQL code is orga-
nized in modules which provide a namespace for
the views. The modules are compiled. At run time

78



the modules are loaded on demand and executed.

3.2 Expressivity
AQL1 is similar in syntax to the database language
SQL, chosen for its expressivity and its familiar-
ity to enterprise developers. It provides a number
of TU constructs, including primitive extraction
operators for finding parts of speech, matches of
regular expressions and dictionaries, as well as set
operators such as sequence, union, filter and con-
solidate. Each operator implements a single basic
atomic operation, producing and consuming sets
of tuples. AQL developers create TU programs
by composing these operators together into sets of
rules, or statements.

3.2.1 Basic Primitives
Three of the most basic operators of AQL include:
Extract (E) performs character level operations
such as regular expression and dictionary match-
ing over text, creating a tuple for each match.
Select (τ ) applies a predicate to a set of tuples, and
outputs all those tuples that satisfy the predicate.
Join (./) applies a predicate to pairs of tuples from
two sets of input tuples, outputting all pairs that
satisfy the predicate.

AQL also provides a sequence pattern nota-
tion, similar in its grammar-like syntax to that of
CPSL (Appelt and Onyshkevych, 1998), which is
translated internally into one or more select and
extract statements. Other operators include De-
tag for removing HTML tags and retaining the
locations of important HTML metadata such as
section, lists and table markup, PartOfSpeech for
part-of-speech detection, Consolidate for remov-
ing overlapping annotations, Block and Group for
grouping together similar annotations occurring
within close proximity to each other, as well as ex-
pressing more general types of aggregation, Sort
and Limit for sorting and truncating output, and
Union and Minus for expressing set union and set
difference, respectively. Rules can also be easily
customized to particular TU domains using exter-
nal dictionary and table structures, which can be
rapidly populated with relevant terms without the
need to alter existing AQL code.

3.2.2 Advanced Primitives
SystemT has built-in multilingual support includ-
ing tokenization, part of speech and lemmatization
for over 20 languages. TU developers can utilize

1AQL manual: https://ibm.biz/BdZpjX.

the multilingual support via AQL without having
to configure or manage any additional resources.
Language expansion is enabled as described in
Sec. 3.4. SystemT also has advanced primitives
for semantic role labeling (SRL), the task of label-
ing predicate-argument structure in sentences with
shallow semantic information. Such advanced
primitives enable the creation of cross-lingual TU
programs (see, e.g., (Akbik et al., 2016).)

3.2.3 Extensions with Pre-Built Libraries
Corpora can introduce a variety of additional TU
challenges, including having a high degree of
noise (e.g., non-standard word forms or infor-
mal usage patterns), exposing data through non-
free-text structures (e.g., tables), or existing in a
difficult-to-digest format (e.g., PDF). We have ex-
tended the functionality of SystemT by creating
pre-built libraries with advanced TU capabilities
such as text normalization (Baldwin and Li, 2015),
semantic table processing (Chen et al., 2017), and
document format conversion.

3.2.4 An AQL Example
As discussed in Sec.1, Fig. 2 shows AQL snip-
pets for extracting sentiment around financial as-
sets from investment reports such as the one in
Fig. 1. View AssetClass identifies financial enti-
ties using syntactic constructs: a geographical re-
gion followed within 0 to 1 tokens by a common
suffix (e.g., ‘credits’, ‘equities’).

View RecommendationNU uses semantic parse
primitives to identify recommendations expressed
in natural language such as ‘We downgrade ...
from neutral to underweight’. In order to assign
the correct polarity to ‘underweight’ and ‘neutral’,
SRL information exposed in views Verbs, Argu-
ments and Contexts is joined with the view As-
setClass and the AQL table PolarityAdj, mapping
domain terminology (e.g., ‘UW’, ‘underweight’)
to sentiment polarities. The view uses several
AQL built-in join and selection predicates (equal-
ity, span containment, dictionary matching.)

Finally, view RecommendationTable identifies
recommendations present in tabular form. It lever-
ages table semantic understanding primitives ex-
posed through the view AllCells, which connects
the span of each table cell with additional row and
column metadata such as row and column ids and
headers. RecommendationTable identifies all cells
that appear in the same row under specific column
headers, and assigns polarity using PolarityAdj.

79



3.2.5 Formal Analysis
Fagin et al (Fagin et al., 2013, 2016) formalized
the semantics of relational-based extraction lan-
guages like AQL with the theoretical framework
document spanners. The initial paper showed
that a restricted version of document spanners
are broadly equivalent in expressivity to regular-
expression-based languages such as CPSL. The
follow-on paper described how consolidation, a
facility also supported by SystemT for addressing
overlapping spans in intermediate results, extends
the expressivity of the spanners framework.

3.3 Scalability
SystemT is architected to achieve scalability along
three dimensions: (1) Cost-based Optimizer to se-
lect the most efficient execution plan for a given
declarative specification and input documents; (2)
Document-centric Runtime engine, scalable by
trivial parallelization, leveraging the advances in
parallel computing (e.g., via Hadoop/Spark); (3)
Hardware acceleration for sped up computation.

3.3.1 Optimizer
Internally, the declarative AQL specification com-
piles into an algebra consisting of individual op-
erators with well-specified semantics and proper-
ties that compose to form an execution plan. The
SystemT Optimizer chooses an efficient execution
plan among all possible equivalent execution plans
for a given AQL specification. The Optimizer
is inspired by relational query optimizers, which
have been operational in commercial database sys-
tems for over 40 years (Astrahan et al., 1979),
with one important difference: While SQL op-
timizers are designed to minimize I/O costs, the
SystemT Optimizer focuses on minimizing CPU-
intensive text operations. We briefly describe the
two classes of optimization techniques used, and
refer the reader to (Reiss et al., 2008) for a detailed
description.
Cost-based optimizations are used to select an ef-
ficient join ordering for AQL statements that join
two or more relations (as in Fig. 2). The search
algorithm uses dynamic programming to build up
larger sub-plan candidates from smaller sub-plans.
The Optimizer uses a text-centric cost model to es-
timate the execution time of each operator based
on the input size, selectivity of the join predicate,
and choice of join algorithm.
Rewrite-based optimizations include plan
rewrites known to always speed up the execution

time, including (1) text-centric optimizations such
as Shared Dictionary Matching and Shared Regex
Matching, which group multiple dictionaries or
regular expressions together to be executed in a
single pass over the document; and (2) relational-
style query rewrites, such as pushing down select
and project operators.

3.3.2 Runtime
The SystemT Runtime engine is architected as a
compact in-memory embeddable Java library (<2
MB). It is purely document-centric, leaving the
storage of document collections and extracted ar-
tifacts to the embedding application. The engine
exposes two low-level Java APIs: (1) instantiate()
creates an OperatorGraph instance, an in-memory
representation of the execution plan generated by
the Optimizer, and (2) execute() takes as input an
in-memory representation of the input document
and returns an in-memory representation of the
objects extracted from that document. The APIs
are reentrant and thread safe. The execute() API
is multithreaded (a single OperatorGraph instance
can be used simultaneously by multiple threads,
each annotating a different document.)

This document-centric in-memory design has
provided the flexibility necessary to embed the
SystemT Runtime in a variety of environments,
including: (1) Big Data platforms (e.g., Hadoop,
Spark) (2) Cloud platforms (e.g., Kubernetes),
and (3) custom applications. We enable SystemT
in Big Data and Cloud platforms by providing
platform-specific APIs that mirror the low-level
Java APIs, but are tailored to the platform’s com-
pute and data models. Custom applications not
built on Big Data or Cloud platforms (e.g., a desk-
top email client, a travel app, or a compliance pro-
gram) can embed the SystemT runtime in any way
suitable for the application.

3.3.3 Hardware Acceleration
The separation of specification from implementa-
tion has the added advantage that new hardware
can be relatively easy to take advantage of, with no
changes in the declarative specification of the pro-
gram. For example, recent work on hardware ac-
celeration for low level text operators such as reg-
ular expressions (Atasu et al., 2013) can be lever-
aged by extending the Optimizer’s search space
and cost model to incorporate alternative hardware
implementations of individual operators and asso-
ciated cost model (Polig et al., 2018).

80



(a) Declaring UDF Function

(b) Using UDF Function

Figure 4: Example UDF function: document-level sentiment
classification

3.4 Extensibility

SystemT has been built with extensibility in mind.
With a grey-box design, users are able to extend
its capabilities via the following mechanisms.
User-Defined Functions (UDFs) can be defined
to extend AQL by performing operations that are
not supported natively by SystemT. Using a UDF
requires three simple steps: (1) Implementing the
function in Java or PMML; (2) Declaring it in
AQL; and (3) Using it in AQL. Fig. 4 illustrates
how to extend AQL to support a simple document-
level sentiment classifier for asset classes using
features extracted with sentiment extractors de-
fined earlier in Sec. 3.2.4. The example illustrates
several other AQL constructs, including unioning,
grouping and counting annotations.
NLP Primitive API. Low-level language-
dependent primitives such as tokenization,
part-of-speech tagging, lemmatization or se-
mantic role labeling are pluggable through an
internal API, and automatically exposed to all
AQL constructs. For example, the matching of
AssetClassSuffixes dictionary on lemma form in
Fig. 2 is enabled by the underlying tokenizer and
lemmatizer for the given language. This has two
advantages: (1) isolating language-dependent
primitives from the rest of the system, without
requiring changes to the AQL language itself; and
(2) leveraging newer primitive models as they

become available, without requiring changes to
existing AQL programs.

3.5 Transparency and Machine Learning
A common criticism of pure machine learning
(ML) systems in the enterprise world is that sta-
tistical models are opaque to the application using
them, making the results difficult to explain or be
quickly fixed (Chiticariu et al., 2013). SystemT
addresses this challenge by using a declarative
language for specifying the TU program. Since
the results are produced by constructs with well-
understood semantics, it is possible to automati-
cally generate explanations of why a certain output
was or was not produced.

At the same time, SystemT has the flexibility
to leverage ML techniques in the context of its
overall declarative framework in two dimensions.
First, primitive APIs and the user-defined interface
(Sec. 3.4) allow for plugging in low-level NLP
primitives, as well as trained models for higher-
level tasks such as entity extraction. The former
makes NLP primitives available to all AQL con-
structs. The latter allows AQL specifications to
provide features to the model, post-process the
result of the model, or use the model as build-
ing block in solving a higher-level task. Second,
ML techniques are leveraged to learn AQL pro-
grams, thereby generating a deterministic, trans-
parent model in lieu of a probabilistic one. Such
algorithms can be incorporated in the SystemT
IDEs (Sec. 3.6) to speed up AQL development.

3.6 Integrated Development Environments
SystemT provides integrated development envi-
ronments (IDEs) designed for a wide spectrum of
users. The professional IDE allows expert devel-
opers to create complex TU programs in AQL (Li
et al., 2012). The visual IDE enables novice users
and non-programmers to construct drag-and-drop
TU programs without learning AQL (Li et al.,
2015). Both IDEs leverage ML and human-
computer interaction techniques as those summa-
rized in (Chiticariu et al., 2015) to support typical
development life cycles of TU tasks (Fig. 5).

3.7 Empirical Evaluation
In addition to theoretical studies of AQL expres-
sivity and runtime performance, we have also eval-
uated SystemT empirically on multiple TU tasks.
We show that extractors built in AQL yield results
of comparable quality to the best published results

81



Domain Application

Compliance

Multilingual named entity extraction for document retention
Element extraction and classification in legal documents (e.g. contract, regulations)
Named entity extraction for document retention and regulation compliance

Email/Online Chat Entity and event extraction in emails and online chat for AI assistant
Named entity extraction in emails for search

Finance
Extracting financial information from public records to estimate the true cost of water
Extracting company fundamentals (e.g. financial metrics and key personnel) from regulatory filings
to create a knowledge base

General domain
Building text understanding programs for entity extraction and sentiment analysis
Building text understanding programs

Life science Extracting features (e.g. entities and relations) from life science literature to speed up the discovery
of new drugs

Material science Extracting entities and relations from natural language and tables in material science literature to speed
up the discovery for new materials

Security and privacy Personal information extraction and redaction for security and privacy
Social media Sentiment analysis over social media for indepth understanding of social behavior
Travel Extracting information and sentiment from online reviews to build AI assist for travel

Table 1: Partial list of SystemT applications

Figure 5: Development life cycles using SystemT

on several competition datasets, while achieving
orders of magnitude speed-up in processing time,
and requiring smaller memory utilization (Krish-
namurthy et al., 2009; Chiticariu et al., 2010;
Nagesh et al., 2012; Wang et al., 2017).

4 Impact of SystemT

Business Impact. Started as a research prototype,
SystemT has been widely adopted within IBM and
its clients. It is embedded in over 10 commercial
product offerings and used in numerous internal
and external projects2 for a wide variety of enter-
prise applications, a small subset of which is high-
lighted in Table 1.
Research Impact. Various aspects of SystemT
have been published in 40+ major research con-
ferences and journals in diverse areas, including
natural language processing, database systems, ar-
tificial intelligence and human-computer interac-
tion. This is the first time that all aspects of the

2 Example products exposing or embedding SystemT in-
clude: IBM BigInsights, IBM Streams, IBM Watson for Drug
Discovery

system, including design considerations and cur-
rent functionality, are described in a single paper.
Education Impact. SystemT is available to teach-
ers and students under a free academic license.
We have developed a full graduate-level course on
text understanding using SystemT, which has been
taught in several universities. A version of this
class has been made available3 as a MOOC with
10,000+ students enrolled in less than 18 months.

5 Conclusion

In this paper, we discuss new challenges posed
by enterprise applications to text understanding
(TU) systems. We present SystemT, an industrial-
strength system for developing end-to-end TU ap-
plications in a declarative fashion. We highlight
the key design decisions and discuss how they help
meet the needs of the enterprise setting. SystemT
has been used to build enterprise applications in a
wide range of domains, and is publicly available
for commercial and academic usage.

References

Alan Akbik, Laura Chiticariu, Marina Danilevsky,
Yonas Kbrom, Yunyao Li, and Huaiyu Zhu.
2016. Multilingual information extraction with
PolyglotIE. In COLING’16.

Douglas E. Appelt and Boyan Onyshkevych. 1998.
The common pattern specification language. In Pro-

3https://cognitiveclass.ai/learn/text_
analytics/

82



ceedings of a Workshop held at Baltimore, Mary-
land, October 13-15, 1998, TIPSTER ’98, pages
23–30.

Morton M. Astrahan, Mike W. Blasgen, Donald D.
Chamberlin, Jim Gray, W. Frank King III, Bruce G.
Lindsay, Raymond A. Lorie, James W. Mehl,
Thomas G. Price, Gianfranco R. Putzolu, Mario
Schkolnick, Patricia G. Selinger, Donald R. Slutz,
H. Raymond Strong, Paolo Tiberio, Irving L.
Traiger, Bradford W. Wade, and Robert A. Yost.
1979. System R: A relational data base management
system. IEEE Computer, 12(5):42–48.

Kubilay Atasu, Raphael Polig, Christoph Hagleitner,
and Frederick R. Reiss. 2013. Hardware-accelerated
regular expression matching for high-throughput
text analytics. In FPL 2013, pages 1–7.

Tyler Baldwin and Yunyao Li. 2015. An in-depth anal-
ysis of the effect of text normalization in social me-
dia. In HLT-NAACL, pages 420–429.

Branimir Boguraev. 2003. Annotation-based finite
state processing in a large-scale nlp arhitecture. In
RANLP, pages 61–80.

Xilun Chen, Laura Chiticariu, Marina Danilevsky,
Alexandre Evfimievski, and Prithviraj Sen. 2017. A
rectangle mining method for understanding the se-
mantics of financial tables. In International Con-
ference on Document Analysis and Recognition (IC-
DAR).

Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao
Li, Sriram Raghavan, Frederick R. Reiss, and Shiv-
akumar Vaithyanathan. 2010. Systemt: An alge-
braic approach to declarative information extraction.
ACL ’10, pages 128–137.

Laura Chiticariu, Yunyao Li, and Frederick Reiss.
2015. Transparent machine learning for informa-
tion extraction: State-of-the-art and the future. In
EMNLP.

Laura Chiticariu, Yunyao Li, and Frederick R. Reiss.
2013. Rule-based information extraction is dead!
long live rule-based information extraction systems!
In EMNLP 2013, pages 827–832.

H. Cunningham, D. Maynard, and V. Tablan. 2000.
JAPE: a Java Annotation Patterns Engine (Sec-
ond Edition). Research Memorandum CS–00–10,
Department of Computer Science, University of
Sheffield.

Witold Drozdzynski, Hans-Ulrich Krieger, Jakub
Piskorski, Ulrich Schäfer, and Feiyu Xu. 2004.
Shallow processing with unification and typed fea-
ture structures — foundations and applications.
Künstliche Intelligenz, 1:17–23.

Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and
Stijn Vansummeren. 2013. Spanners: a formal
framework for information extraction. In PODS
2013, pages 37–48.

Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and
Stijn Vansummeren. 2016. A relational framework
for information extraction. SIGMOD Rec., 44(4):5–
16.

Rajasekar Krishnamurthy, Yunyao Li, Sriram Ragha-
van, Frederick Reiss, Shivakumar Vaithyanathan,
and Huaiyu Zhu. 2009. Systemt: A system for
declarative information extraction. SIGMOD Rec.,
37(4):7–13.

Yunyao Li, Laura Chiticariu, Huahai Yang, Frederick
Reiss, and Arnaldo Carreno-fuentes. 2012. WizIE:
A best practices guided development environment
for information extraction. In ACL 2012 System
Demonstrations, pages 109–114.

Yunyao Li, Elmer Kim, Marc A. Touchette, Ramiya
Venkatachalam, and Hao Wang. 2015. VINERy: A
visual ide for information extraction. Proc. VLDB
Endow., 8(12):1948–1951.

Ajay Nagesh, Ganesh Ramakrishnan, Laura Chiti-
cariu, Rajasekar Krishnamurthy, Ankush Dharkar,
and Pushpak Bhattacharyya. 2012. Towards effi-
cient named-entity rule induction for customizabil-
ity. EMNLP-CoNLL ’12, pages 128–138.

Raphael Polig, Kubilay Atasu, Heiner Giefers,
Christoph Hagleitner, Laura Chiticariu, Frederick
Reiss, Huaiyu Zhu, and Peter Hofstee. 2018. A
hardware compilation framework for text analytics
queries. J. Parallel Distrib. Comput., 111:260–272.

Frederick Reiss, Sriram Raghavan, Rajasekar Kr-
ishnamurthy, Huaiyu Zhu, and Shivakumar
Vaithyanathan. 2008. An algebraic approach to
rule-based information extraction. In ICDE 2008,
pages 933–942.

Marco Antonio Valenzuela-Escárcega, Gus Hahn-
Powell, and Mihai Surdeanu. 2016. Odin’s runes:
A rule language for information extraction. In
LREC. European Language Resources Association
(ELRA).

Chenguang Wang, Doug Burdick, Laura Chiticariu,
Rajasekar Krishnamurthy, Yunyao Li, and Huaiyu
Zhu. 2017. Towards re-defining relation understand-
ing in financial domain. In DSMM’17, pages 8:1–
8:6.

83


