
Proceedings of NAACL-HLT 2016, pages 1175–1180,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Integrating Morphological Desegmentation into Phrase-based Decoding

Mohammad Salameh† Colin Cherry‡ Grzegorz Kondrak†

†Department of Computing Science ‡National Research Council Canada
University of Alberta 1200 Montreal Road

Edmonton, AB, T6G 2E8, Canada Ottawa, ON, K1A 0R6, Canada
{msalameh,gkondrak}@ualberta.ca Colin.Cherry@nrc-cnrc.gc.ca

Abstract

When translating into a morphologically com-
plex language, segmenting the target language
can reduce data sparsity, while introducing
the complication of desegmenting the system
output. We present a method for decoder-
integrated desegmentation, allowing features
that consider the desegmented target, such as a
word-level language model, to be considered
throughout the entire search space. Our re-
sults on a large-scale, English to Arabic trans-
lation task show significant improvement over
the 1-best desegmentation baseline.

1 Introduction

State-of-the-art systems for translating into morpho-
logically complex languages, such as Arabic, em-
ploy morphological segmentation of the target lan-
guage in order to reduce data sparsity and improve
translation quality. For example, the Arabic word
Ñî �DËðYË ldwlthm “for their country” is segmented
into the prefix +Ë l+ “for”, the stem �éËðX dwlp “coun-
try” and the suffix Ñë+ +hm “their.” The segmen-
tation sometimes involves performing orthographic
normalizations, such as transforming the stem-final t
to p. The result is not only a reduction in the number
of word types, but also better token-to-token corre-
spondence with the source language.

Morphological segmentation is typically per-
formed as a pre-processing step before the train-
ing phase, which results in a model that translates
the source language into segmented target language.
Desegmentation is the process of transforming the
segmented output into a readable word sequence,

which can be performed using a table lookup com-
bined with a small set of rules. Desegmentation is
usually applied to the 1-best output of the decoder.
However, this pipeline suffers from error propaga-
tion: errors made during decoding cannot be cor-
rected, even when desegmentation results in an ille-
gal or extremely unlikely word. Two principal types
of solutions have been proposed for this problem:
rescoring and phrase-table desegmentation.

The rescoring approach desegments either an
n-best list (Oflazer and Durgar El-Kahlout, 2007)
or lattice (Salameh et al., 2014), and then re-ranks
with features that consider the desegmented word
sequence of each hypothesis. Rescoring features
include the score from an unsegmented target lan-
guage model and contiguity indicators that flag
target words that were translated from contiguous
source tokens. Rescoring widens the desegmenta-
tion pipeline, allowing desegmentation features to
reduce the number of translation errors. However,
these features are calculated for only a subset of the
search space, and the extra rescoring step compli-
cates the training and translation processes.

Phrase-table desegmentation (Luong et al., 2010)
also translates into a segmented target language,
but alters training to perform word-boundary-aware
phrase extraction. The extracted phrases are con-
strained to contain only complete target words, with-
out any dangling affixes. With this restriction in
place, the phrase table can be desegmented before
decoding begins, allowing the decoder to track fea-
tures over both the segmented and desegmented
target. This ensures that desegmentation features
are integrated into the complete search space, and

1175



side-steps the complications of rescoring. How-
ever, Salameh et al. (2015) show experimentally that
these benefits are not worth giving up phrase-pairs
with dangling affixes, which are eliminated by word-
boundary-aware phrase extraction.

We present a method for decoder-integrated de-
segmentation that combines the strengths of these
two approaches. Like a rescoring approach, it places
no restrictions on what morpheme sequences can ap-
pear in the target side of a phrase pair. Like phrase-
table desegmentation, its desegmentation features
are integrated directly into decoding and considered
throughout the entire search space. We achieve this
by augmenting the decoder to desegment hypotheses
on the fly, allowing the inclusion of an unsegmented
language model and other features. Our results on
a large-scale, NIST-data English to Arabic transla-
tion task show significant improvements over the 1-
best desegmentation baseline, and match the perfor-
mance of the state-of-the-art lattice desegmentation
approach of Salameh et al. (2014), while eliminating
the complication and cost of its rescoring step. Our
approach is implemented as a single stateful feature
function in Moses (Koehn et al., 2007), which we
will submit back to the community.

2 Method

Our approach extends the multi-stack phrase-based
decoding paradigm to enable the extraction of word-
level features inside morpheme-segmented models.1

We assume that the target side of the parallel cor-
pus has been segmented into morphemes with pre-
fixes and suffixes marked.2 This allows us to define
a complete word as a maximal morpheme sequence
consisting of 0 or more prefixes, followed by at most
one stem, and then 0 or more suffixes.

We also assume access to a desegmentation func-
tion that takes as input a morpheme sequence match-
ing the above definition, and returns the correspond-
ing word as output. Depending on the complexity of
the segmentation, desegmentation can be achieved
through simple concatenation, a small set of rules,
a statistical table (Badr et al., 2008), or a statis-

1The ideas presented here could also be applied to hierarchi-
cal decoding, which would require generalizing them to account
for right context as well as left.

2Throughout this paper, we use a token-final “+” to denote a
prefix, and a token-initial “+” for a suffix.

tical transducer (Salameh et al., 2013). El Kholy
and Habash (2012) provide an extensive study on
the influence of segmentation and desegmentation
on English-to-Arabic SMT. In this work, we adopt
the Table+Rules technique of El Kholy and Habash
(2012) for English-Arabic SMT. The technique re-
lies on a look-up table that stores mappings of
segmented-unsegmented forms, and falls back on
manually crafted rules for segmented sequences not
found in the table. When a segmented form has mul-
tiple desegmentation options available in the table,
we select the most frequent option.

The output of a phrase-based decoder is built from
left to right, and at each step, a hypothesis is ex-
panded with a phrasal translation of a previously un-
covered source segment. We augment this process
with in-decoder desegmentation, which monitors the
target sequence of each translation hypothesis as it
grows, detecting morpheme sequences that corre-
spond to complete words and desegmenting them on
the fly to generate new features. This is described in
detail in Section 2.1.

The task of determining whether a word is com-
plete is non-trivial. We are never sure if we will
see another suffix as we expand the hypothesis, so
we can only recognize a complete word as we begin
the next word. For example, take hyp1 in Figure 1.
This hypothesis ends with a stem nšr, which may
end a complete word, as is the case when we ex-
pand to hyp2, or may represent a word that is still in
progress, which occurs as we extend to hyp3. This
means that the word-based scoring of the morpheme
sequence l+ nšr must be delayed or approximated
until we know what follows. A related challenge
involves scoring phrase-pairs out of context, as is
required for future-cost estimates. Take, for exam-
ple, the target phrase +h AfkAr added by hyp3 in
Figure 1. Without the context, we have insufficient
information at the left boundary to score +h with
word-based models, while AfkAr at the right bound-
ary may or may not form a complete word. Here,
there is no choice but to approximate. The quality
of these approximations and the length of our delays
will determine how effective our new features will
be when incorporated into beam search.

1176



Figure 1: Decoding the Arabic translation of the phrase “to

spread his ideas through”.

2.1 Decoder Integration

A typical phrase-based decoder represents a hy-
pothesis with a state that contains the information
to guide search and calculate features, such as the
source coverage vector and the target context for the
language model. Hypotheses with identical states
can be recombined to improve search efficiency. We
augment the state with two structures: (1) a buffer
Q containing all of the morphemes that contribute
to the current word in progress, represented as a
queue of tokens; and (2) n-gram context C for the
word-level target language model. The search’s
initial state begins with an empty Q and with n-1
beginning-of-sentence tokens in C.

When a state is extended with a target phrase P,
we update the in-decoder desegmentation structures
Q and C with Algorithm 1. Tokens are appended
to Q until a token t would begin a new word, at
which point the tokens from Q are desegmented and
the resulting word is used to calculate features and
update the target context. Following the lower de-
coding path in Figure 1, Q would be emptied and
desegmented first during hyp3 when t = AfkAr, cal-
culating features for W = lnšrh.

The main cost of in-decoder desegmentation
comes from maintaining the context necessary to
evaluate the n-gram, word-level language model.
As each desegmented word in C will correspond
to at least one segmented token, the system’s effec-
tive language-model order in terms of segmented to-
kens will frequently be much larger than n. Storing
larger language-model contexts make it less likely
that states will be equal to one another, which re-
duces the amount of recombination the system can
do, and increases the number of states that must be
expanded during search.

Algorithm 1 Desegmentation State Update
1: Input: State variables Q, C
2: Input: Extending phrase P
3: for each token t in P do
4: if t cannot continue the word in Q then
5: W = Desegmentation of tokens in Q
6: Extract word-level features for W
7: (Word-level LM score is p(W |C ))
8: Update current feature vector
9: Update C with W

10: Empty Q
11: Append token t to Q

2.2 Delayed and Optimistic Scoring

In the above approach, desegmentation and feature
scoring are applied only when a complete word is
formed. We refer to this as delayed scoring because
the features for a token are not applied until other to-
kens have been added to the hypothesis. For exam-
ple, in Figure 1, the tokens l+ nšr added in hyp1 are
not evaluated with word-level features until hyp2 or
hyp3 completes the word. This delay results in inac-
curate scoring of hypotheses, as the cost from these
tokens is hidden until Q is emptied. These inaccu-
racies can lead to poor pruning choices and search
errors during beam search.

Alternatively, we can perform optimistic scoring,
which tries to score the contents of Q as early as pos-
sible. In this case, we assume that the contents of Q
form a complete word, without waiting for the next
token to confirm it. With each hypothesis extension,
when the last token in P is processed and added to
the queue, we desegment the contents of Q and ex-
tract features, but without emptying Q. The scores
of these features are cached in a variable S that does
not affect recombination, as the scores are determin-
istic given Q, C and the model. When a later token
confirms the end of the word, we subtract S from the
scores derived from the actual desegmented word,
to account for our earlier approximation. Note that
for a Q containing only a prefix, we must still delay
scoring.

2.3 Features

Three features are extracted from each desegmented
form: an unsegmented language model, contiguity

1177



indicators, and a desegmented word penalty.
The unsegmented n-gram language model scores

W in the context of C, as shown in Algorithm 1.
This language model will heavily penalize mal-
formed Arabic words, as they will appear as out-
of-vocabulary items. Furthermore, it will evalu-
ate well-formed Arabic words in a larger, word-
level context, complementing the morpheme-level
n-gram language model that is naturally included in
SMT systems built over a segmented target.

We also implement the contiguity features pro-
posed by Salameh et al. (2014). These indicators
check if the desegmented form is generated from
a contiguous block of source tokens, a block with
1 discontiguity, or a block with multiple disconti-
guities. These features enable the decoder to pre-
fer desegmented words whose component segments
were translated from contiguous or nearly contigu-
ous source sequences. This encourages the system
to select a more local, and hopefully safer, transla-
tion path when possible.

Finally, most phrase-based decoders incorporate
a “word penalty” feature that counts the number of
target tokens in a hypothesis. When the target lan-
guage has been segmented into morphemes, this ac-
tually corresponds to a morpheme penalty. However,
with in-decoder desegmentation, we now have the
option to count either words or morphemes. There is
reason to believe that by counting words, instead of
morphemes, we will give the system greater control
over the length of its output word sequence, which
is particularly relevant because of BLEU’s brevity
penalty. We try both options in our experiments.
Unfortunately, the obvious solution of including two
features, a word count and a morpheme count, did
not perform well during development.

2.4 Future costs
For future cost estimates, we must also provide out-
of-context feature scores for each phrase-pair in our
system. To do so, we ignore suffixes appearing at
the beginning of a target phrase and prefixes appear-
ing at the end. We assume that the remaining to-
kens form complete words, and desegment and score
them to provide out-of-context scores. We also con-
sider dangling affixes as half words, with a count of
0.5, for out-of-context scoring of the word penalty
feature.

3 Experiments

We use the NIST 2012 dataset (1.49 million sen-
tence pairs excluding UN pairs) to train an English-
to-Arabic system. The system is tuned with the
NIST 2004 (1353 pairs) evaluation set and tested us-
ing NIST 2005 (1056 sentences) and the newswire
portion of NIST 2008 (813 pairs) and NIST 2009
(586 pairs). As there are multiple English reference
translations provided for these evaluation sets, we
use the first reference as our source text.

The Arabic part of the training set is mor-
phologically segmented and tokenized by MADA
3.2 (Habash et al., 2009) using the Penn Arabic
Treebank (PATB) segmentation scheme. Variants
of Alif and Ya characters are uniformly normalized.
We generate a desegmentation table from the Arabic
side of the training data by collecting mappings of
segmented forms to surface forms.

We align the parallel data with GIZA++ (Och et
al., 2003), and decode with Moses (Koehn et al.,
2007). The decoder’s log-linear model uses a stan-
dard feature set, including four phrase table scores,
six features from a lexicalized distortion model,
along with a phrase penalty and a distance-based
distortion penalty. KN-smoothed 5-gram language
models are trained on both the segmented and un-
segmented views of the target side of the parallel
data. We experiment with word penalties based on
either morphemes or desegmented words. The de-
coder uses Moses’ default search parameters, ex-
cept for the maximum phrase length, which is set
to 8, and the translation table limit, which is set to
40. The decoder’s log-linear model is tuned with
MERT (Och, 2003) using unsegmented Arabic ref-
erence translations. When necessary, we desegment
our 100-best-lists before MERT evaluates each hy-
pothesis. We evaluate with BLEU (Papineni et al.,
2002) measured on unsegmented Arabic, and test
statistical significance with multeval (Clark et al.,
2011) over 3 tuning replications.

We test four systems that differ in their deseg-
mentation approach. The NoSegm. baseline in-
volves no segmentation. The One-best baseline
translates into segmented Arabic and desegments the
decoder’s 1-best output. The Lattice system is the
lattice-desegmentation approach of Salameh et al.
(2014). We implement our in-Decoder desegmenta-

1178



System WP mt05 mt08 mt09
NoSegm. word 33.2 18.6 25.6
One-best morph. 33.8 19.1 26.8
Lattice morph. 34.4 19.7 27.4

Delayed morph. 34.1 19.4 27.0
word 34.1 19.5 26.8

Optimistic morph. 34.2 19.6 27.2
word 34.5 19.7 27.2

Table 1: Evaluation of the desegmentation methods using

BLEU score. Both Delayed and Optimistic refer to in-Decoder

Desegmentation method used. WP shows whether Word

Penalty feature is based on a complete desegmented word or

a morpheme.

tion approach as a feature functions in Moses, test-
ing scoring variants (delayed vs. optimistic), and
word penalty variants (morpheme vs. word).

Table 1 shows the results on three NIST test sets,
each averaged over 3 tuning replications. The lat-
tice approach is significantly better than the 1-best
system, which in turn is significantly better than the
unsegmented baseline. Our Optimistic in-decoder
approach with word penalty calculated on word to-
kens is significantly (p < 0.05) better than the 1-best
approach, and effectively matches the quality of the
more complex lattice approach.

All of the systems with word-level features im-
prove over 1-best desegmentation, as their features
penalize desegmentations resulting in illegal words
or unlikely word sequences. We see a small, con-
sistent benefit from optimistic scoring. Error anal-
ysis reveals that translations with many consecu-
tive stems benefit the most from this variant, which
makes sense, as our approximations would be exact
in these cases. Using a word penalty calculated on
word tokens appears to work slightly better on aver-
age than one calculated on morphemes.

Typically, one would hope to surpass a rescoring
approach with decoder integration; however, our lat-
tice implementation fully searches its lattice, even
if composition with the word-level language model
would cause the lattice to explode in size. That is,
lattice desegmentation has an advantage, as it trades
time-efficiency for a perfect search that ignores the
complexity introduced by expanded n-gram con-
text. A lattice beam search that dynamically calcu-
lates word-level language model scores while prun-

ing away unlikely paths would provide a more fair,
and more efficient, comparison point.

Lattice rescoring also involves many steps, requir-
ing one to train and tune a complete segmented sys-
tem with segmented references, then desegment lat-
tices and compose them with a word LM, and then
tune a lattice rescorer on unsegmented references.
In contrast, our system is implemented as a single
decoder feature function in Moses.3 This one func-
tion replaces the lattice desegmentation, LM com-
position, and lattice rescoring steps, greatly simpli-
fying the translation pipeline.

4 Conclusions and Future Work

We have presented a method for in-decoder deseg-
mentation, which allows a phrase-based decoder to
simultaneously consider both segmented and deseg-
mented views of the target language. We have
shown that this approach outperforms 1-best deseg-
mentation, and matches the performance of lattice
desegmentation, while eliminating the complication
of its lattice transformation and rescoring steps.

We are interested in building an unsegmented,
word-level language model that can provide mean-
ingful estimates for morphological segments, which
would improve scoring for out-of-context phrases
and incomplete words. Also, our system currently
considers only the most likely desegmentation of
each segmented word. Inspired by the disambiguat-
ing desegmentation system of El Kholy and Habash
(2012), we would like to extend our system to pro-
pose multiple desegmentation candidates for each
word, and allow the decoder to select the correct
form using its other features.

Acknowledgments

This research was supported by the Natural Sci-
ences and Engineering Research Council of Canada
(NSERC).

3This function references a desegmentation table and an un-
segmented language model, which are needed to carry out Al-
gorithm 1. Even though it is conceptually one function, it pro-
duces a vector of feature scores, producing the various features
described in Section 2.3.

1179



References
Ibrahim Badr, Rabih Zbib, and James Glass. 2008. Seg-

mentation for English-to-Arabic statistical machine
translation. In Proceedings of ACL, pages 153–156.

Jonathan H. Clark, Chris Dyer, Alon Lavie, and Noah A.
Smith. 2011. Better hypothesis testing for statistical
machine translation: Controlling for optimizer insta-
bility. In Proceedings of ACL, pages 176–181.

Ahmed El Kholy and Nizar Habash. 2012. Ortho-
graphic and morphological processing for English—
Arabic statistical machine translation. Machine Trans-
lation, 26(1-2):25–45, March.

Nizar Habash, Owen Rambow, and Ryan Roth. 2009.
Mada+tokan: A toolkit for Arabic tokenization, dia-
critization, morphological disambiguation, POS tag-
ging, stemming and lemmatization. In Khalid Choukri
and Bente Maegaard, editors, Proceedings of the Sec-
ond International Conference on Arabic Language Re-
sources and Tools, Cairo, Egypt, April. The MEDAR
Consortium.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In Proceed-
ings of the 45th Annual Meeting of the Association for
Computational Linguistics Companion Volume Pro-
ceedings of the Demo and Poster Sessions, pages 177–
180, Prague, Czech Republic, June.

Minh-Thang Luong, Preslav Nakov, and Min-Yen Kan.
2010. A hybrid morpheme-word representation
for machine translation of morphologically rich lan-
guages. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing,
pages 148–157, Cambridge, MA, October.

Franz Josef Och, Hermann Ney, Franz Josef, and
Och Hermann Ney. 2003. A systematic comparison of
various statistical alignment models. Computational
Linguistics, 29.

Franz Joseph Och. 2003. Minimum error rate training
for statistical machine translation. In Proceedings of
ACL, pages 160–167.

Kemal Oflazer and Ilknur Durgar El-Kahlout. 2007. Ex-
ploring different representational units in English-to-
Turkish statistical machine translation. In Proceedings
of the Second Workshop on Statistical Machine Trans-
lation, pages 25–32, Prague, Czech Republic, June.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei
jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of 40th
Annual Meeting of the Association for Computational
Linguistics, pages 311–318.

Mohammad Salameh, Colin Cherry, and Grzegorz Kon-
drak. 2013. Reversing morphological tokenization in
English-to-Arabic SMT. In Proceedings of the 2013
NAACL HLT Student Research Workshop, pages 47–
53, Atlanta, Georgia, June.

Mohammad Salameh, Colin Cherry, and Grzegorz Kon-
drak. 2014. Lattice desegmentation for statistical ma-
chine translation. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 100–110.

Mohammad Salameh, Colin Cherry, and Grzegorz Kon-
drak. 2015. What matters most in morphologically
segmented smt models? In Proceedings of the Ninth
Workshop on Syntax, Semantics and Structure in Sta-
tistical Translation, pages 65–73, Denver, Colorado,
USA, June. Association for Computational Linguis-
tics.

1180


