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Abstract

In this paper, we address the task of language-
independent, knowledge-lean and unsuper-
vised compound splitting, which is an essen-
tial component for many natural language pro-
cessing tasks such as machine translation. Pre-
vious methods on statistical compound split-
ting either include language-specific knowl-
edge (e.g., linking elements) or rely on parallel
data, which results in limited applicability. We
aim to overcome these limitations by learning
compounding morphology from inflectional
information derived from lemmatized mono-
lingual corpora. In experiments for Germanic
languages, we show that our approach signifi-
cantly outperforms language-dependent state-
of-the-art methods in finding the correct split
point and that word inflection is a good ap-
proximation for compounding morphology.

1 Introduction

Compounding represents one of the most productive
word formation types in many languages. In partic-
ular, Germanic languages (e.g., German or Dutch)
show high productivity in closed compounding, i.e.,
in creating one-word compounds such as the Ger-
man Armutsbekämpfungsprogramm ‘poverty elimi-
nation program’. Previous studies on German cor-
pora reveal that almost half of the corpus types
are compounds, whereas individual compounds are
very infrequent (Baroni et al., 2002). Therefore, an
automatic compound analysis is indispensable and
represents an essential component in many natural
language processing (NLP) tasks such as machine
translation (MT) or information retrieval (IR).

Besides determining the concatenated constituent
forms, i.e., the correct split points (e.g., Armuts
| bekämpfungs | programm), a compound split-
ter needs to normalize each part (e.g., Armut +
Bekämpfung + Programm), because down-stream
applications such as MT systems expect lemma-
tized words as input. However, normalization
of constituent forms is non-trivial and usually re-
quires language-specific knowledge (e.g., linking el-
ements). State-of-the-art lemmatizers, designed for
regular word inflection, would fail, because con-
stituent forms often contain linking elements lead-
ing to a non-paradigmatic word form of the corre-
sponding lexeme (e.g., Armuts ‘poverty + s’ never
occurs as an isolated token in German corpora, since
the s-suffix, often used for genitive or pluralization,
is not used with Armut). Moreover, morphologi-
cal operations during compounding vary a lot across
languages and lexemes: we find cases that start
from the lemma and have additions (e.g., linking
elements), truncations (e.g., reductions to a verbal
stem), word-internal operations (e.g., Umlautung)
and combinations thereof (e.g., the first constituent
of the German Weihnachts|baum ‘Christmas tree’,
Weihnachten, undergoes both the en-truncation and
the s-suffixation).

In this paper, we present a language-independent,
unsupervised compound splitter that normalizes
constituent forms by tolerantly retrieving candi-
date lemmas using an Ngram index and weighting
string differences with inflectional information de-
rived from lemmatized corpora.

Most previous work on compound splitting in-
cludes language-specific knowledge such as large
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lexicons and morphological analyzers (Fritzinger
and Fraser, 2010) or hand-crafted lists of link-
ing elements and rules for modeling morphologi-
cal transitions (Koehn and Knight, 2003; Stymne,
2008; Weller and Heid, 2012), which makes the
approaches language-dependent. Macherey et al.,
(2011) were the first to overcome this limitation
by learning morphological compounding operations
automatically by retrieving compounds and their
constituents from parallel corpora including English
as support language.

We would like to take this one step further by
avoiding the usage of parallel data, which are known
to be sparse and frequently domain-specific, while
Bretschneider and Zillner (2015) showed that com-
pounding morphology varies between different do-
mains. Instead, we exploit lemmatized corpora and
use word inflection as an approximation to com-
pounding morphology. This way, we are able to pro-
cess compounds of any type of domain.

Our contributions are as follows. Firstly, we
develop a language-independent and unsupervised
compound splitter that does not rely on parallel data.
As we will show, our system significantly outper-
forms language-dependent, knowledge-rich state-
of-the-art methods in predicting the best split point.
Secondly, in a controlled experiment, we show that
compound splitting based on inflectional morphol-
ogy performs similarly to splitting based on an ex-
tensive hand-crafted set of rules for compounding
morphology. Thirdly, we perform a comprehensive,
intrinsic evaluation of compound splitting, which is
often missing in previous work that focuses on task-
based evaluation (e.g., MT), and thus evaluates per-
formance only indirectly. We compare splitting per-
formance for several languages for two disciplines:
(1) prediction of the correct split points and (2) nor-
malization of the constituent forms. To the best of
our knowledge, we are the first to evaluate these dis-
ciplines separately.

The paper is structured as follows. Section 2 out-
lines previous work on compound splitting. Sec-
tion 3 discusses some theoretical assumptions on
which we base our splitting method. Section 4
shows two efficient and flexible data structures used
for our statistical compound splitter, which is de-
scribed in Section 5. Section 6 presents some split-
ting experiments performed on German, Dutch and

Afrikaans. Finally, Section 7 concludes and points
to future work.

2 Related work

In the following discussion, we focus on splitting
approaches that address morphological transforma-
tions, as these are most relevant for our work. Previ-
ous work on compound splitting can be roughly di-
vided into two groups: (1) statistical approaches that
are mainly based on large corpora and (2) linguisti-
cally based splitters, usually relying on knowledge-
rich morphological analyzers or rules.

Statistical approaches generate all possible splits
and rank them according to corpus statistics. Al-
though independent of lexical resources, most meth-
ods contain morphological knowledge in terms of
linking elements. The most influential statistical
splitter is developed by Koehn and Knight (2003)
who addressed German compound splitting by scor-
ing splits according to the geometric mean of the
potential constituents’ frequencies. For normaliza-
tion, they selected the two fillers +©s and +©es.
Stymne (2008) performed several experiments to
measure the impact of varying parameters of Koehn
and Knight’s (2003) algorithm for factored statisti-
cal MT. Instead of using two single fillers, she im-
plemented the collection of the 20 most frequent
morphological transformations for German com-
pounding as presented by Langer (1998). She ob-
served that splitting parameters should not neces-
sarily be the same for translating in different di-
rections. Bretschneider and Zillner (2015) com-
pared the splitting performance between Koehn and
Knight’s (2003) two fillers and Langer’s (1998) col-
lection, illustrating the necessity of an exhaustive
set of linking elements. Moreover, they showed
that Langer’s (1998) data is still not sufficient for
domain-specific targets. Macherey et al., (2011)
were the first to overcome the need for manual mor-
phological input and the limitation to a fixed set of
linking elements by learning morphological oper-
ations automatically from parallel corpora includ-
ing a support language which creates open com-
pounds and has only little inflection, such as En-
glish. We take this one step further by avoiding
the dependence on such parallel corpora, known to
be sparse, and by approximating compounding mor-
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phology with word inflection learned from monolin-
gual preprocessed data.

Linguistically based splitters are usually rely-
ing on a lexical database or a set of linguistic
rules. While these splitters outperform statisti-
cal approaches (Escartı́n, 2014), they are designed
for a specific language and thus less applicable
to other languages. Nießen and Ney (2000) used
the morpho-syntactic analyzer GERTWOL (Mariikka
Haapalainen and Ari Majorin, 1995) for splitting
compounds. Schmid (2004) developed the mor-
phological analyzer SMOR, that enumerates linguis-
tically motivated compound splits. Fritzinger and
Fraser (2010) combined SMOR with Koehn and
Knight’s (2003) statistical approach and outper-
formed both individual methods. Weller and Heid
(2012) extended the splitter of Koehn and Knight
(2003) with a list of PoS-tagged lemmas and a hand-
crafted set of morphological transition rules. While
our approach similarly exploits lemma and PoS in-
formation, we avoid the manual input of transition
rules.

3 Theoretical preliminaries

The splitting architecture, data structure, features
and evaluation we propose in this paper are based
on a number of assumptions and considerations that
we would like to discuss first.

3.1 Morphological transformation
Closed (or concatenative) compounding is the main
spelling form in many languages around the world,
e.g., Germanic languages such as German, Dutch,
Swedish, Afrikaans or Danish, Uralic languages
such as Estonian or Finnish, Hellenic languages
such as Modern Greek, Slavic languages such as
Russian and many more. Most closed-compounding
languages use morphological transformations. Ger-
man or Dutch often insert a linking element between
the constituents while Greek reduces the first con-
stituent to its morphological stem and adds a com-
pound marker. In contrast to conjugations of ir-
regular verbs (such as to be), there is only a mi-
nor string difference (e.g., in terms of edit distance
(ED)) between constituent form and corresponding
lemma (usually they differ in at most two charac-
ters). This minimal difference makes it possible to
interpret constituent normalization as a kind of tol-

erant string retrieval (which is presented for the case
of spelling correction within IR by Manning et al.,
(2008)). This is why we are using an Ngram index
for retrieving the candidate lemmas with the highest
string similarity to the constituent form.

3.2 Inflectional morphology

Relying exclusively on the highest string similarity
for the normalization, would lead to candidate lem-
mas that result from linguistically unmotivated op-
erations, e.g., the German Hühner ‘chickens’ would
be normalized to the most string-similar lemma
Hüne ‘giant’ (ED=2) and not to the correct but less
string-similar lemma Huhn ‘chicken’ (ED=3). Thus,
a linguistic restrictor is indispensable for finding the
underlying lemma for a given constituent.

In many languages, inflectional morphology
shares operations with compounding morphology,
e.g., the German Hühner in Hühner|suppe ‘chicken
soup’ is equivalent to the plural form of Huhn. But
even for non-paradigmatic constituent forms (e.g.,
Armuts ‘poverty’), we can find cases of inflection
that use the transformation at hand (e.g., the geni-
tive form of window: Fensters).

We thus decided to approximate compounding
morphology by using inflectional morphology as de-
rived from lemmatized corpus tokens. We realize
that the inflectional approximation does not work for
all closed-compounding languages but it does for a
large subset that is known to have a large variety of
linking elements and is therefore most in need of
unsupervised morphology induction, the Germanic
languages. Moreover, our flexible system can be
easily supported with morphological information,
which is suitable for languages like Greek, that use
a special compound marker.

3.3 Compound headedness

Most closed-compounding languages usually follow
the righthand head rule (RHHR), i.e., the head of a
compound is the right-most constituent and encodes
the principal semantics and the PoS of the com-
pound. As done by previous splitting approaches
(Stymne, 2008; Weller and Heid, 2012), we assume
the RHHR and allow only splits for which the right-
hand side constituents has the same PoS as the com-
pound.
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3.4 Splitting depth

The granularity of the morphological analysis
needed differs with the type of application. For MT,
a compound should not be split deeper than into
parts for which a translation is known, whereas for
linguistic research, a deeper morphological analysis
is desirable.

Fernsehzeitschrift
Score = 2,409,641

fernsehen
Score = 646,988

fern sehen

zeitschrift
Score = 16,219,561

zeit schrift
Figure 1: Linguistically motivated split

For example, while an MT system needs a binary
split for the German Fernsehzeitschrift ‘television
journal’, for a linguistic analysis, a split into four
parts as given in Figure 1 is also valid and introduces
etymological clues (e.g., how far is Zeit ‘time’ re-
lated to Zeitschrift ‘journal’). Our flexible approach
caters for all tasks1.

3.5 Constituent length balance

While compounds can be build up from almost any
semantic concept pair, we observed a bias towards
constituent pairs having a similar word length.

For the German, Dutch and Afrikaans compound
splitting gold standards (described in Section 6.2)
comprising m split compounds, we randomly re-
combine all modifiers with all heads to a set ofm re-
combinations. For both original compounds and re-
combined compounds, we measure the character dif-
ference in length between modifier and head form.

Compound set German Dutch Afrikaans
Original 2.62 2.26 2.87

Recombination 3.43 2.74 2.92
Table 1: Average constituent length difference in characters

As shown in Table 1, all original compounds have
a smaller difference than the recombinations. There-

1As the splitting depth is very dependent on the task at hand
and the gold standard we used is not created with a specific
task in mind, we do not evaluate our system with respect to
splitting depth but treat it as given. Our system cuts off subtrees
with the lowest splitting score until the desired splitting depth
is achieved.

fore, we decided to promote compound splits with
more balanced constituent lengths.

4 Data preparation

4.1 Ngram index

As described in Section 3.1, we tolerantly retrieve
candidate lemmas using an Ngram index, in order
to limit the search space and allow for a quick can-
didate lookup during splitting.

Ngram Lemma length (LL) Lemmas
ˆhund 4 hund#13162
ˆhund 11 hundeführer#251,

hundehalter#81,
hundesteuer#64

ˆh*hn 4 hahn#2078,
huhn#1839,
hohn#506

Table 2: Examples from the German Ngram index

As search key, we use Ngrams of variable length
(N ≤ 15). Word-initial Ngrams are indicated by ˆ
and word-finalNgrams end on $. By usingNgrams,
we are able to capture any kind of transformation a
lemma can undergo when involved in compounding.

Sometimes, a transformation includes a charac-
ter replacement within the word (e.g., Umlautung).
This leads to a very small set of Ngrams a con-
stituent has in common with its underlying lemma.
For example Hühner and Huhn only have the bi-
grams ˆh and hn in common, which is also true for
many irrelevant words such as ˆHaarschnitt ‘hair-
cut’. In order to reduce noise and increase efficiency,
we include the wildcard ∗ for a single character in
Ngrams2. This way, Hühner and Huhn have the
common 5gram ˆH*hn. As a further cue, we con-
sider the lemma length (assuming that there is only
a minor difference to the constituent’s length).

For a given lemmatized and PoS-tagged corpus,
we index all content words (i.e., nouns, adjectives
and verbs) by generating all Ngrams and mapping
them to a list of frequency-ranked lemma-freq pairs.
Table 2 shows some examples for German3.

2For efficiency reasons, we add wildcard Ngrams only for
3 ≤ N ≤ 7.

3Note that the lemmas include compounds, because these
are necessary for our binary recursive splitter, described in Sec-
tion 5.
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Language MOP Corpus frequency Examples

German
u/ü:$/er$ 117K <Huhn, Hühner> ‘chicken’, <Buch, Bücher> ‘book’
um$/en$ 264K <Studium, Studien> ‘study’, <Medium, Medien> ‘medium’

Dutch $/en$ 1.6M <arts, artsen> ‘doctor’, <band, banden> ‘tyre’
Afrikaans $/se$ 34K <proses, prosesse> ‘process’

Table 3: Examples of MOPs for German, Dutch and Afrikaans

4.2 Morphological operation patterns

Macherey et al., (2011) describe a representation of
compounding morphology using a single character
replacement at either the beginning, the middle or
the end of a word. For our experiments, we adopt
this format. Since it is possible that a morpholog-
ical operation takes place at several positions of a
word, we combine all atomic replacements into a
pattern describing a series of operations. This trans-
formation from a word Σ to a word Ω is referred
to as morphological operation pattern (MOP). For
compiling an MOP, we use the Levenshtein edit dis-
tance algorithm including the four operations IN-
SERT (adding a character), DELETE (removing a
character), REPLACE (exchanging a character σi by
ωi) and COPY (retaining a character). In a back-
trace step, we determine the first set of operations
that lead to a minimum edit distance. Except for
COPY, we interpret all operations as replacements
(insertion and deletion are replacements of or by an
empty element ε respectively). We merge all adja-
cent replacements by concatenating the source and
target characters. Word-initial source and target se-
quences start with ˆ and word-final sequences end on
$. Sequences of adjacent COPY operations are repre-
sented by ‘:’ and separate the merged replacements.
For example, in Hühner|suppe, the modifier lemma
Huhn is transformed to Hühner by replacing u by
ü (i.e., Umlautung) and adding the suffix er. The
corresponding MOP is ‘u/ü:$/er$’. The second
column in Table 3 shows some additional German,
Dutch and Afrikaans examples of MOPs.

As discussed in Section 3.2, we try to approxi-
mate compounding MOPs using inflectional MOPs.
In a lemmatized corpus, for each lemmatized word
token, we determine the MOP that represents the
transformation from lemma to word form. We col-
lect all inflectional MOPs with their token-based
corpus frequency. The third column in Table 3

shows the corpus frequencies for the corresponding
MOPs.

5 Compound splitting method
Our compound splitter can process compounds
composed of any content word type (i.e., nouns,
verbs and adjectives) and of any number of con-
stituents, and provides both the split points (e.g.,
Hühner|suppe) and the normalized constituents
(e.g., Huhn + Suppe). The splitter is designed recur-
sively, which allows us to represent the compound
split both hierarchical (i.e., as a tree structure) and as
a linear sequence. Figure 2 shows the architecture of
our splitting algorithm. The recursive main method
starts with the target word as a single constituent and
recursively splits the constituents produced by the
binary splitter (Section 5.1) until an atomic result is
returned. The binary splitter has two subtasks: (1)
for each potential constituent form, a set of candi-
date lemmas is retrieved (Section 5.2) and (2) all
candidate lemma combinations are ranked and the
best split is returned (Section 5.3).

5.1 Binary splitter

We first generate all possible binary splits with a
minimum constituent length of 2 (e.g., for Ölpreis
‘oil price’, we generate Öl|preis, . . . , Ölpre|is) and
add a non-split option. For each potential constituent
among the generated splits, we retrieve the M most
probable lemmas as described in Section 5.2. We
consider all M2 lemma combinations of all possible
splits and rank them as described in Section 5.3. The
highest-ranked split is returned.

5.2 Candidate lemma retrieval

In this step, we retrieve the M most probable can-
didate lemmas for a given constituent. For this task,
we make use of the Ngram index, described in Sec-
tion 4.1. Instead of applying MOPs directly which
would be the classical and more efficient way, we
decided to look up candidates using the Ngram in-
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Figure 2: Architecture of our splitting algorithm

dex first, thereby following the assumption that there
is only a minor string difference between lemma and
constituent form (cf. Section 3.1). In a second step,
the inflectional MOPs are used to rank the candi-
date lemmas. While following this order, we put
less weight on our approximation and thereby avoid
false lemmas due to irrelevant inflectional MOPs.
The pseudocode for the candidate lemma retrieval
is given in Algorithm 1.

Algorithm 1 Candidate lemma retrieval
1: Constituent c
2: LLs← lemma lengths, ±∆ around len(c)
3: CLs← [ ] . the candidate lemmas
4: for L← len(c) to 1 do
5: LGs← generate all Lgrams of c
6: for Lg in LGs do
7: CLs← CLs + topλ(IDX[Lg][LLs])
8: if len(CLs) > 1 then
9: break . otherwise, L is decremented

10: score(CLs) . according to a lemma model
11: rank(CLs) . according to the scores
12: return topM (CLs)

For a given constituent c, we search for lemmas
with a minimum lemma length (LL) of 2 which
ranges between ±∆ around the length of c (lines
1-2). All retrieved candidate lemmas are stored in
the list CLs (line 3). Starting with the L = len(c),
we inspect all Lgrams of c (lines 4-5). For a given
Lgram, we retrieve the top λ most frequent lemmas
that have a length ±∆ around the length of c (lines

6-7). If there are no lemmas retrieved, we decre-
ment L (lines 8-9)4. All retrieved candidate lemmas
are scored (line 10) according to our lemma model,
for which we present two lemma features.

LP (li) = cf(li) · count(li,CLs) (1)
The first feature is based on the lemma promi-

nence (LP) as given in (1), i.e., we multiply the cor-
pus frequency (cf ) of a lemma li (as given in the
Ngram index) with the token number of li in CLs
(i.e., with the prominence of li among all inspected
Lgrams).

The second feature estimates the suitability of
the MOP (MS) transforming the candidate lemma
li to the constituent form at hand, c, (represented
as ‘MOP [li, c]’), as given in (2). As the first com-
ponent, we use the corpus frequency extracted with
the inflectional MOPs as described in Section 4.2.
We rescale the MOP frequency with the resulting
edit distance between the candidate lemma li and
the constituent form at hand, c, (represented as
ED(li, c))5. As motivated in Section 3.1, we ex-
pect MOPs having a small edit distance to be more
prominent in compounding. Such MOPs are not
necessarily most frequent in inflection, e.g., the fre-
quent irregular Afrikaans verb wees (to be) leads to
MOPs like MOP[wees,is] = ˆwee/ˆi, which has
an ED of 3.

MS(li) =
cf(MOP [li, c])
ED(li, c) + 1

(2)

4For noise reduction due to lemmatizer errors, we can pre-
define a minimum number of L decrements.

5For avoiding a division by zero, we add 1.
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All candidate lemmas are finally scored as prod-
uct of lemma prominence and MOP suitability, as
given in (3).

score(li) = LP (li) ·MS(li) (3)

We rank all candidate lemmas and return the top
M candidates (lines 11-12).

5.3 Best split determination
In the final step, we determine the best split among
all split combinations (i.e., pairs of retrieved can-
didate lemmas for modifier (lm) and head (lh), and
corresponding split point) and the non-split option.
For this task, we use a combination model, which
considers the interaction between lm and lh. In-
spired by Koehn and Knight (2003), as a first fea-
ture, we take the geometric mean of the products
of lemma score multiplied by the length of the cor-
responding constituent form, as given in (4). The
length factor promotes splits with more balanced
lengths (as motivated in Section 3.5), which miti-
gates the impact of short and high-frequent words
on the overall score. For binary splits, we use the
constituent set con = {lm, lh} and for the non-split
option, we use con = {lh}.

geoLen(con) = |con|

√ ∏
li∈con

score(li) · len(cli) (4)

The second feature is based on the assumption
that the PoS of a compound word Ψ usually equals
the PoS of its head lh, as discussed in Section 3.3.
Since our splitter works out of context, we try
to subsume all possible PoS tags by representing
them as a distribution over the PoS probabilities
p(PoS|word) = freq(PoS∩word)

freq(word) acquired from the
monolingual PoS-tagged corpus. The value of the
head-PoS-equality (hEQ) feature is defined as the
the cosine similarity between the PoS probability
distributions of compound word Ψ and head lh,
hEQ(Ψ, lh). If the PoS tag of the compound is un-
known, we take 1.0 as default value.

split(con) = geoLen(con) · hEQ(Ψ, lh) (5)

Finally, all candidate lemma combinations (in-
cluding the non-split option) are ranked according to
the splitting score given in (5). The highest-scored
split is returned as output of the binary splitter, being

subject to the recursive process. Figure 3 shows an
example of the recursive splitter output for the Ger-
man compound Studienbescheinigungsablaufdatum
‘enrollment certification expiration date’ with the re-
lated MOPs.

Studienbescheinigungsablaufdatum
$/s$

studienbescheinigung
um$/en$

studium bescheinigung

ablauf datum
en$/$

ablaufen datum

Figure 3: Example of a split tree structure with related MOPs

6 Experiments

In our experiments, we focus on German, Dutch and
Afrikaans, but expect to see similar performance for
other Germanic languages.

6.1 Data
We use the German and Dutch version of
Wikipedia6 and the Afrikaans Taalkommissie cor-
pus7. For tokenizing, PoS-tagging and lemmatizing
Wikipedia, we use Treetagger (Schmid, 1995).

Corpus # tokens # types
language words words lemmas MOPs
German 665M 9.0M 8.8M 1201
Dutch 114M 2.0M 1.9M 920

Afrikaans 57M 748K 696K 459
Table 4: Corpus statistics

We tokenize the Taalkommissie corpus using the
approach of Augustinus and Dirix (2013). We PoS-
tag the corpus using the tool described in Eiselen and
Puttkammer (2014) and use the lemmatizer of Peter
Dirix, the second author of the previous paper.

Table 4 shows some statistics of the three prepro-
cessed corpora. Since the Afrikaans corpus is one
order of magnitude smaller than the German corpus,
we expect a lower performance for the Afrikaans
splitter.

6{de,nl}.wikipedia.org
7Taalkommissie van die Suid-Afrikaanse Akademie vir

Wetenskap en Kuns (2011)
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System SPAcc NormAcc
@1 @2 @3 @1 @2 @3

(A) LP.MSinfl 95.2%B,C 98.9%B,C 99.4%B,C 86.6% 94.6%B,C 96.5%B,C

(B) WH2012 93.3% 95.6% 95.7% 81.0% 85.9% 86.4%
(C) FF2010 91.4% 92.3% 93.0% 88.4%A,B 89.7% 90.2%
(D) LP.∅ 54.1% 70.5% 78.4% 28.4% 42.6% 50.8%
(E) LP.MSLanger 94.5% 98.7% 99.1% 87.1% 94.2% 95.4%
(F) LP.MSGS 95.4% 99.0% 99.4% 87.8% 95.6% 97.2%

Table 5: German results for binary compound splitting, scores δΦ outperform the system Φ significantly

6.2 Gold standard

For evaluating our splitting method on German,
we use the binary split compound set developed
for GermaNet8 by Henrich and Hinrichs (2011).
After removing hyphenated compounds9, it com-
prises 51,230 binary split samples. For Dutch and
Afrikaans, we use the split point gold standards de-
veloped by Verhoeven et al., (2014), which comprise
21,941 samples for Dutch and 17,369 for Afrikaans.

6.3 Evaluation measures

We evaluate the splitting quality with respect to two
disciplines: (1) determination of the correct split
points and (2) normalization of the resulting mod-
ifier constituents10. For both disciplines, we use the
accuracy measure as described in Koehn and Knight
(2003). The split point accuracy (SPAcc) refers to
the correctness of the split points (on word level)
and the normalization accuracy (NormAcc) mea-
sures the amount of both correct split points and
modifier lemmas. All systems presented in this pa-
per provide a ranked list of splits. This allows for
a more fine-grained ranking evaluation of the binary
splitting decisions with respect to the first n posi-
tions. Accuracy@n refers to the amount of correct
splits among the top n splits. We stop at n = 3, be-
cause we do not expect to see a crucial difference in
the performance gap for higher values of n.

8sfs.uni-tuebingen.de/GermaNet
9We consider hyphenated compounds as trivial cases of

splitting that can be disregarded for our purpose.
10Since for Germanic languages compounding morphology

is exclusively found on the modifier, we disregard the head.

6.4 Parameter setting and models in
comparison

There are three parameters presented in the candi-
date lemma retrieval. For efficiency reasons, we
set the number of lemmas retrieved per Lgram and
lemma length (λ) to 20 and the final number of re-
trieved candidate lemmas (M ) to 3. For the maxi-
mum difference in length between lemma and con-
stituent form, we observed that ∆ = 2 covers all
compounding operations for Germanic languages.

For German, we compare our system based on in-
flectional MOPs (LP.MSinfl) against the LP baseline
(LP.∅), which lacks a linguistic restrictor after can-
didate lemma lookup from theNgram index, against
an upper bound (LP.MSGS), which uses the MOPs
and frequencies derived from the normalizations in
the gold standard and against a version that uses a
hand-crafted set of MOPs and frequencies derived
from Langer’s (1998) set of fillers (LP.MSLanger). In
addition, we compare our system against previous
work: the splitting methods of Fritzinger and Fraser
(2010) and of Weller and Heid (2012)11. For Dutch
and Afrikaans, we compare with the SPAcc numbers
of Verhoeven et al., (2014).

6.5 Results and discussion
Table 5 shows the German results for the binary
compound splitting. We present the split point accu-
racy (SPAcc) and the normalization accuracy (Nor-
mAcc) for the splits ranked @1-3. We first compare
LP.MSinfl against the previous work of FF2010 and
WH2012. Our system significantly12 outperforms
both systems with respect to SPAcc and reaches

11We use an updated version of Weller and Heid (2012) de-
veloped and provided to us by Marion Di Marco.

12Approximate randomization test (Yeh, 2000), p < 0.05
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99.4% for SPAcc@3. While for NormAcc@1 our
splitter’s performance is less than 2 percentage point
lower than the system of FF2010, which heavily re-
lies on language-dependent and knowledge-rich re-
sources, we significantly outperform both systems
in comparison for NormAcc@2 and NormAcc@3.
This proves that one can attain state-of-the-art per-
formance on compound splitting by using language-
independent and unsupervised methods, and in par-
ticular by means of inflectional information.

In an error analysis, it turned out that FF2010
(i.e., SMOR) cannot process 2% of the gold samples.
However on a common processable test set, we still
find our system to outperform FF2010 significantly,
which indicates that the difference in performance
is not just a matter of coverage. WH2012 leaves
several compounds unsplit, for which our splitter
provides the correct analysis. This is partly due to
the hand-crafted transition rules of WH2012, which
cannot capture all morphological operations, such as
in Hilfs|bereitschaft ‘cooperativeness’, for which the
MOP e$/s$ (i.e., the combination of e-truncation
and s-suffixation) is not even covered by Langer’s
(1998) published collection.

To evaluate whether our assumption about the us-
ability of inflectional MOPs holds, we run some con-
trolled experiments with two variants of our system,
shown in the last two lines of Table 5. The exhaus-
tive set of inflectional MOPs (LP.MSinfl) shows com-
petitive performance in SPAcc with the hand-crafted
set of Langer (1998) (LP.MSLanger) and with the upper
bound (LP.MSGS). The latter outperforms LP.MSinfl

by only 1 percentage point in NormAcc.
Our separate evaluation of SPAcc and NormAcc

reveals a lower performance for the normalization
across all systems, as this is a much harder disci-
pline. In addition, we can conclude that normal-
ization requires more linguistic knowledge: while
the LP-baseline (LP.∅) underperforms heavily, both
FF2010 and LP.MSLanger, systems with a lot of lex-
ical and morphological information, outperform all
systems in comparison at NormAcc@1.

For illustrating the multilingual applicability of
our splitter, we perform an experiment on Dutch and
Afrikaans. Table 6 shows the SPAcc13 results for

13The Dutch and Afrikaans gold standard only provides split
points and no reliable normalized constituents.

N -ary splits. While Verhoeven et al., (2014) use a
supervised approach for predicting the correct split
points, our unsupervised splitter outperforms their
Dutch results significantly14. Although Dutch and
Afrikaans are similar languages, the SPAcc achieved
by our system for Afrikaans is 3.6% worse than the
method presented by Verhoeven et al., (2014). This
result is partly due to the crucial corpus size differ-
ences presented in Table 4.

System Dutch Afrikaans

LP.MSinfl 93.4% 84.7%
Verh.et.al.2014 91.5% 88.3%

Table 6: SPAcc results for N -ary splits in Dutch and Afrikaans

7 Conclusion

We presented a language-independent, unsupervised
compound splitter based on inflectional morphology
that significantly outperforms state-of-the-art meth-
ods in finding the correct split points, relying only on
monolingual PoS-tagged and lemmatized corpora.
We provided a comprehensive, intrinsic evaluation
of several systems in comparison for several lan-
guages on two separate disciplines: split point deter-
mination and constituent normalization. As a result,
we draw the conclusions that inflectional morphol-
ogy is a practical approximation for compounding
in Germanic languages and overcomes the neces-
sity of manual input, because both hand-crafted sets
of compounding operations and operations derived
from the gold standard lead to small differences in
performance only. In future work, we plan to adapt
our methods for learning compounding morphology
for languages such as Greek, that have a special
compound marker.
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