
Proceedings of NAACL-HLT 2015, pages 101–105,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

Natural Language Question Answering and Analytics for Diverse and
Interlinked Datasets

Dezhao Song Frank Schilder Charese Smiley
Research and Development, Thomson Reuters

610 Opperman Drive
Eagan, MN 55123, USA

Chris Brew
Research and Development, Thomson Reuters

1 Mark Square
London, UK

{dezhao.song, frank.schilder, charese.smiley, chris.brew}@thomsonreuters.com

Abstract

Previous systems for natural language ques-
tions over complex linked datasets require
the user to enter a complete and well-formed
question, and present the answers as raw lists
of entities. Using a feature-based grammar
with a full formal semantics, we have devel-
oped a system that is able to support rich auto-
suggest, and to deliver dynamically generated
analytics for each result that it returns.

1 Introduction

In order to retrieve data from a knowledge base
(KB), knowledge workers, such as physicians or fi-
nancial analysts, often face the challenge of hav-
ing to learn specific query languages (e.g., SQL
and SPARQL1). However, the fast pace of chang-
ing query languages to different types of KBs (e.g.,
Relational Databases, Triple Stores, NoSQL stores,
etc.) makes it difficult for users to keep up with
the latest developments of such query languages that
allow them to access the data they need for their
work. This situation prevents users without exten-
sive computer training from effectively utilizing the
available information in the KB. Developing user-
friendly natural language interfaces will make it eas-
ier for non-technical users to access the information
in the KB in an intuitive way.

In this paper, we present a Natural Language In-
terface that allows users to query the underlying KBs
with natural language questions. Unlike previous
approaches, instead of asking the users to provide

1http://www.w3.org/TR/rdf-sparql-query/

the entire question on their own, our system makes
suggestions to help the users to complete their ques-
tions. Given a complete question, our system parses
it to its First Order Logic (FOL) representation using
a grammar derived from interlinked datasets; differ-
ent translators are developed to further translate the
FOL of a query into executable queries, including
both SQL and SPARQL. Finally, our system gener-
ates dynamic analytics for the result sets in order to
help users to gain a better understanding of the data.

2 Related Work

Keyword-based search (Ding et al., 2004; Tum-
marello et al., 2007; d’Aquin and Motta, 2011) and
faceted search (Zhang et al., 2013; Zhang et al.,
2014) have been frequently adopted for retrieving
information from KBs. However, users have to fig-
ure out the most effective queries in order to retrieve
relevant information. Furthermore, without appro-
priate ranking methods, users may be overwhelmed
by the information available in the search results.

Early Natural Language Interfaces (NLIs) re-
quired a handcrafted interface solution for each
database thereby restricting its portability (Green et
al., 1961; Hendrix et al., 1978; Woods, 1973). Re-
cent research has focused more on developing open
domain systems (Kwiatkowski et al., 2013; Yao and
Durme, 2014; Bordes et al., 2014), but there remains
a need for specialized NLIs (Minock, 2005). One
unique feature of our system is to help users to build
a complete question by providing suggestions ac-
cording to a partial question and a grammar.

Much of prior work translates a natural language
question into SPARQL and retrieves answers from a

101



triple store (Lopez et al., 2005; Unger et al., 2012;
Lehmann et al., 2012; Yahya et al., 2013; He et al.,
2014); however, SPARQL queries have been criti-
cized to have unsatisfying query response time. In
this work, we maintain flexibility by first parsing
a question into First Order Logic, which is further
translated into both SQL and SPARQL. This enables
us to easily adapt to new query languages and allows
us to choose the most appropriate query language
technology for a given use case.

Finally, to the best of our knowledge, none of ex-
isting NLIs provide dynamic analytics for the re-
sults. Our system performs descriptive analytics and
comparisons on various dimensions of the data, con-
ducts sentiment analysis, and analyzes trends over
time in the data. Such analytics would enable users
to better conduct further analyses and derive insights
from the data. This feature of our system is a clear
advantage over other NLI systems that only retrieve
a simple result list of documents/entities.

3 Overall Architecture

Figure 1 shows the overall architecture of our pro-
posed NLI system. Users can input their questions

Figure 1: System Architecture

on the Web Interface and our Auto-suggestion com-
ponent will guide the users in completing their ques-
tions. A complete question is then sent to the Ques-
tion Understanding module again to be parsed into
its first order logic representation with the grammar.
As the next step, the FOL of a query is translated
into an executable query with the Query Translation
module. A translated query is then executed against

an underlying knowledge base/graph for retrieving
answers and generating corresponding analytics.

Our system currently focuses on the following do-
mains: Drugs, Organizations, Patents, People, Fi-
nance and News. The underlying knowledge base
contains about 1 million entities and 12 million rela-
tionships.

4 Question Understanding

Our system utilizes a feature-based context-free
grammar (FCFG) that consists of grammar rules
on non-terminal nodes and lexical rules on leaf
nodes. Grammatical entries on non-terminal syntac-
tic nodes are largely domain-independent, thus en-
abling our grammar to be easily adaptable to new
domains. Each lexical entry to the grammar contains
domain-specific features which are used to constrain
the number of parses computed by the parser prefer-
ably to a single, unambiguous parse.

The following are two rules in our grammar.

1. N[TYPE=drug, NUM=pl, SEM=<λx.drug(x)>]→ ’drugs’

2. V[TYPE=[org,drug],SEM=λXx.X(λy.develop org drug(x,y))>,
TNS=prog, NUM=?n]→ ’developing’

Rule 1 shows a lexical entry for the word drugs, in-
dicating that its TYPE is drug, is plural, and has the
following semantic: λx.drug(x). Rule 2 specifies
the verb develop, describing its tense (TNS) and indi-
cating that it connects an organization and a drug via
the TYPE feature. By utilizing the type constraints,
we can then license the query companies develop-
ing drugs while rejecting nonsensical queries like
rabbits develop drugs on the basis of the mismatch
in semantic type. Furthermore, our grammar also
covers wh-questions, e.g., what, which, how many,
where, and nominal phrases and imperatives.

Disambiguation relies on the presence of features
on non-terminal syntactic nodes. We mark prepo-
sitional phrases (PPs) with features that determine
their attachment preference. E.g., the PP for pain in
how many companies develop drugs for pain? must
attach to an NP rather than a VP; thus, it must attach
to drugs rather than develop. Together with other
features, we filter out many of the logically possible
but undesired PP-attachments in queries with many
modifiers. E.g., our approach is able to generate a
single parse for companies headquartered in Ger-
many developing drugs for pain or cancer.

102



5 Auto-suggestion

Our NLI provides suggestions to help users to com-
plete their questions. Unlike Google’s query auto-
completion that is based on query logs (Cornea and
Weininger, 2014), our auto-suggestion utilizes the
linguistic constraints encoded in the grammar.

Our auto-suggestion is based on the idea of left-
corner parsing. Given a query segment qs (e.g.,
drugs, developed by, etc.), we find all grammar rules
whose left corner fe on the right side matches the
left side of the lexical entry of qs. We then find all
leaf nodes in the grammar that can be reached by us-
ing the adjacent element of fe. For all reachable leaf
nodes (i.e., lexical entries in our grammar), if a lex-
ical entry also satisfies all the linguistic constraints,
we then treat it as a valid suggestion.

Specifically, for the query segment Drugs, ac-
cording to our grammar, we could be looking for a
verb as the next part of the question. In our lexicon,
we may have many verbs, e.g., drive and developed
by. Here, developed by is a valid suggestion because
its semantic constraints match that of drugs. We con-
tinue our suggestions to the end of the user-entered
query string, and never try to interpolate material ei-
ther before or inside the string.

In our current system, the automatically generated
suggestions are ranked by considering their popular-
ity. We associate each lexical entry with a node in
a knowledge graph. This graph contains nodes for
the entities corresponding to the lexical entries, fur-
ther nodes for generic types such as Drug, Company
and Technology, and yet further nodes for predicates
such as developed by and granted to.The edges of
the graph represent relations such as developed by
and filed by. For ranking, the degree of a node is
as a proxy for its quality. For example, if the node
“Google” filed 10 patents and is also involved in 20
lawsuits, then its popularity will be 30.

6 Query Translation and Execution

The interpreted FOL (Section 4) of a question is fur-
ther analyzed by another parser (implemented with
ANTLR (Bovet and Parr, 2008)) that parses FOL
expressions. Figure 3 shows the parse tree of the
FOL for the query Drugs developed by Merck. We
then traverse this parse tree, and put all the atomic
logical conditions and the logical connectors into a

Figure 3: Parse Tree for the First Order Logic Represen-
tation of the Query “Drugs developed by Merck”

stack. When we finish traversing the entire tree, we
pop the conditions out of the stack to build the query
constraints; predicates in the FOL are also mapped
to their corresponding attribute names (SQL) or on-
tology properties (SPARQL).

The following summarizes the translation from a
natural language question to a SQL and SPARQL
query via a FOL representation:

Natural Language: ‘‘Drugs developed by Merck’’

First Order Logic (FOL) Representation: all x.(drug(x) →
(develop(id042,x) & type(id042,Company) &
label(id042,Merck)))

SQL Query: select drug.* from drug
where drug.originator company = ’Merck’

SPARQL Query (prefixes for RDF and RDFS omitted):
PREFIX example: <http://www.example.com#>
select ?x ?id123 ?id042
where {
?id042 rdfs:label ’Merck’.
?id042 rdf:type example:Company .
?x rdf:type example:Drug .
?id042 example:develops ?x . }

We execute the SQL queries using Apache Spark
(Zaharia et al., 2010), a distributed computing en-
vironment, thus providing us the potential to handle
large-scale datasets. We run SPARQL queries with
Jena (Carroll et al., 2004). If a question cannot be
parsed into FOL or translated to SQL or SPARQL,
we then treat it as a keyword query and retrieve the
results from an inverted index built out of our data.

7 Analytics

Instead of only retrieving a list of entities, our sys-
tem provides several different types of analytics for
different result sets. In many situations, the result
is a set of records rather than one single entry. This

103



Figure 2: System Screenshot

provides us the opportunity to perform and provide
further analyses of the result set for the users.

Our system provides several types of analytics.
Descriptive analytics summarize the facts in the re-
sult set. For instance, for the question “show me all
drugs targeting pain”, our system shows the distri-
bution of all technologies used for such drugs in the
result set. We also compare the drugs in the result
set on different dimensions (e.g., diseases). More-
over, we compute trends via exponential smoothing
for entities that have a temporal dimension.

By linking entities from our KB to entity men-
tions in a large news corpus (14 million articles and
147 million sentences), we are able to perform ad-
ditional analytics based on named entity recognition
and sentiment analysis techniques. We adopted the
Stanford CoreNLP toolkit (Manning et al., 2014)
for recognizing person, organization, and location
from the news corpus. Given an entity, we show its
frequency count and how its sentiment may change
over time. This information may provide further in-
sights to users in order to support their own analysis.

8 Demonstration Script Outline

Figure 2 shows the beginning of the sample query:
companies developing drugs having an indication of
. . . ? While the user is typing, a variety of possible
extensions to the query are offered, and the user se-

lects Hypertension (1). Our system shows a pie chart
of each company’s market share for hypertension
drugs (2); we also show news mentions and senti-
ment analysis for the most discussed companies (3).

For the demo, we will first motivate the use of nat-
ural language question answering for extracting in-
formation from complex, interlinked datasets. Next,
we will demonstrate how the user can compose a
variety of questions with auto-suggestion. Finally,
we will walk through the generated analytics and
various visualizations for different natural language
questions in order to show how it allows the user to
gain deeper insights into the data.

9 Conclusion and Future Work

In this paper, we presented a Natural Language In-
terface for answering complex questions over linked
data. Our system parses natural language questions
to an intermediate logical representation based on a
grammar derived from multiple interlinked datasets.
Different translators are developed to translate a
question from its FOL representation to SQL and
SPARQL queries, which are then executed against
an underlying knowledge graph/base for retrieving
the answers and generating corresponding analytics.
In future work, we intend to cover more domains
and provide more complex analytics. We will also
perform a thorough evaluation of our system.

104



References
Antoine Bordes, Sumit Chopra, and Jason Weston. 2014.

Question answering with subgraph embeddings. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, pages 615–
620.

Jean Bovet and Terence Parr. 2008. Antlrworks: an
ANTLR grammar development environment. Soft-
ware: Practice and Experience, 38(12):1305–1332.

Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave
Reynolds, Andy Seaborne, and Kevin Wilkinson.
2004. Jena: implementing the semantic web recom-
mendations. In Proceedings of the 13th international
conference on World Wide Web - Alternate Track Pa-
pers & Posters, pages 74–83.

Radu C Cornea and Nicholas B Weininger. 2014. Pro-
viding autocomplete suggestions, February 4. US
Patent 8,645,825.

Mathieu d’Aquin and Enrico Motta. 2011. Watson, more
than a semantic web search engine. Semantic Web
Journal, 2(1):55–63.

Li Ding, Timothy W. Finin, Anupam Joshi, Rong Pan,
R. Scott Cost, Yun Peng, Pavan Reddivari, Vishal
Doshi, and Joel Sachs. 2004. Swoogle: a search and
metadata engine for the semantic web. In Proceedings
of the 2004 ACM International Conference on Infor-
mation and Knowledge Management, pages 652–659.

Bert F. Green, Jr., Alice K. Wolf, Carol Chomsky, and
Kenneth Laughery. 1961. Baseball: An automatic
question-answerer. In Papers Presented at the Western
Joint IRE-AIEE-ACM Computer Conference, pages
219–224.

Shizhu He, Kang Liu, Yuanzhe Zhang, Liheng Xu, and
Jun Zhao. 2014. Question answering over linked data
using first-order logic. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1092–1103.

Gary G. Hendrix, Earl D. Sacerdoti, Daniel Sagalowicz,
and Jonathan Slocum. 1978. Developing a natural lan-
guage interface to complex data. ACM Transactions
on Database Systems, 3(2):105–147.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke S.
Zettlemoyer. 2013. Scaling semantic parsers with on-
the-fly ontology matching. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, pages 1545–1556.

Jens Lehmann, Tim Furche, Giovanni Grasso, Axel-
Cyrille Ngonga Ngomo, Christian Schallhart, An-
drew Jon Sellers, Christina Unger, Lorenz Bühmann,
Daniel Gerber, Konrad Höffner, David Liu, and Sören
Auer. 2012. DEQA: Deep web extraction for ques-
tion answering. In 11th International Semantic Web
Conference, pages 131–147.

Vanessa Lopez, Michele Pasin, and Enrico Motta. 2005.
Aqualog: An ontology-portable question answering
system for the semantic web. In The Semantic Web:
Research and Applications, Second European Seman-
tic Web Conference, pages 546–562.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguis-
tics, pages 55–60.

Michael Minock. 2005. Where are the killer applications
of restricted domain question answering. In Proceed-
ings of the IJCAI Workshop on Knowledge Reasoning
in Question Answering, page 4.

Giovanni Tummarello, Renaud Delbru, and Eyal Oren.
2007. Sindice.com: Weaving the open linked data.
In The Semantic Web, 6th International Semantic Web
Conference, 2nd Asian Semantic Web Conference,
pages 552–565.

Christina Unger, Lorenz Bühmann, Jens Lehmann, Axel-
Cyrille Ngonga Ngomo, Daniel Gerber, and Philipp
Cimiano. 2012. Template-based question answering
over RDF data. In Proceedings of the 21st World Wide
Web Conference, pages 639–648.

William A. Woods. 1973. Progress in natural language
understanding: an application to lunar geology. In
American Federation of Information Processing So-
cieties: 1973 National Computer Conference, vol-
ume 42, pages 441–450.

Mohamed Yahya, Klaus Berberich, Shady Elbassuoni,
and Gerhard Weikum. 2013. Robust question answer-
ing over the web of linked data. In 22nd ACM Inter-
national Conference on Information and Knowledge
Management, pages 1107–1116.

Xuchen Yao and Benjamin Van Durme. 2014. Informa-
tion extraction over structured data: Question answer-
ing with freebase. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguis-
tics, pages 956–966.

Matei Zaharia, Mosharaf Chowdhury, Michael J.
Franklin, Scott Shenker, and Ion Stoica. 2010. Spark:
Cluster computing with working sets. In 2nd USENIX
Workshop on Hot Topics in Cloud Computing, pages
1–10.

Xingjian Zhang, Dezhao Song, Sambhawa Priya, and Jeff
Heflin. 2013. Infrastructure for efficient exploration
of large scale linked data via contextual tag clouds.
In 12th International Semantic Web Conference, pages
687–702.

Xingjian Zhang, Dezhao Song, Sambhawa Priya,
Zachary Daniels, Kelly Reynolds, and Jeff Heflin.
2014. Exploring linked data with contextual tag
clouds. Journal of Web Semantics, 24:33–39.

105


