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Abstract
In this paper we explore the potential of
quantum theory as a formal framework for
capturing lexical meaning. We present a
novel semantic space model that is syntacti-
cally aware, takes word order into account,
and features key quantum aspects such as
superposition and entanglement. We define
a dependency-based Hilbert space and show
how to represent the meaning of words by den-
sity matrices that encode dependency neigh-
borhoods. Experiments on word similarity
and association reveal that our model achieves
results competitive with a variety of classical
models.

1 Introduction
The fields of cognitive science and natural language
processing have recently produced an ensemble of
semantic models which have an impressive track
record of replicating human behavior and enabling
real-world applications. Examples include simula-
tions of word association (Denhière and Lemaire,
2004; Griffiths et al., 2007), semantic priming (Lund
and Burgess, 1996; Landauer and Dumais, 1997;
Griffiths et al., 2007), categorization (Laham, 2000),
numerous studies of lexicon acquisition (Grefen-
stette, 1994; Lin, 1998), word sense discrimination
(Schütze, 1998), and paraphrase recognition (Socher
et al., 2011). The term “semantic” derives from the
intuition that words seen in the context of a given
word contribute to its meaning (Firth, 1957). Al-
though the specific details of the individual models
differ, they all process a corpus of text as input and
represent words (or concepts) in a (reduced) high-
dimensional space.

In this paper, we explore the potential of quan-
tum theory as a formal framework for capturing lex-
ical meaning and modeling semantic processes such

as word similarity and association (see Section 6
for an overview of related research in this area).
We use the term quantum theory to refer to the ab-
stract mathematical foundation of quantum mechan-
ics which is not specifically tied to physics (Hughes,
1989; Isham, 1989). Quantum theory is in prin-
ciple applicable in any discipline where there is a
need to formalize uncertainty. Indeed, researchers
have been pursuing applications in areas as diverse
as economics (Baaquie, 2004), information theory
(Nielsen and Chuang, 2010), psychology (Khren-
nikov, 2010; Pothos and Busemeyer, 2012), and cog-
nitive science (Busemeyer and Bruza, 2012; Aerts,
2009; Bruza et al., 2008). But what are the features
of quantum theory which make it a promising frame-
work for modeling meaning?

Superposition, entanglement, incompatibility,
and interference are all related aspects of quantum
theory, which endow it with a unique character.1 Su-
perposition is a way of modeling uncertainty, more
so than in classical probability theory. It contains in-
formation about the potentialities of a system’s state.
An electron whose location in an atom is uncertain
can be modeled as being in a superposition of loca-
tions. Analogously, words in natural language can
have multiple meanings. In isolation, the word pen
may refer to a writing implement, an enclosure for
confining livestock, a playpen, a penitentiary or a fe-
male swan. However, when observed in the context
of the word ink the ambiguity resolves into the sense
of the word dealing with writing. The meanings of
words in a semantic space are superposed in a way
which is intuitively similar to the atom’s electron.

Entanglement concerns the relationship between

1It is outside the scope of the current paper to give a detailed
introduction on the history of quantum mechanics. We refer
the interested reader to Vedral (2006) and Kleppner and Jackiw
(2000) for comprehensive overviews.
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systems for which it is impossible to specify a joint
probability distribution from the probability distri-
butions of their constituent parts. With regard to
word meanings, entanglement encodes (hidden) re-
lationships between concepts. The different senses
of a word “exist in parallel” until it is observed
in some context. This reduction of ambiguity has
effects on other concepts connected via entangle-
ment. The notion of incompatibility is fundamen-
tal to quantum systems. In classical systems, it is
assumed by default that measurements are compati-
ble, that is, independent, and as a result the order in
which these take place does not matter. By contrast
in quantum theory, measurements may share (hid-
den) order-sensitive inter-dependencies and the out-
come of the first measurement can change the out-
come of the second measurement.

Interference is a feature of quantum probability
that can cause classical assumptions such as the law
of total probability to be violated. When concepts
interact their joint representation can exhibit non-
classical behavior, e.g., with regard to conjunction
and disjunction (Aerts, 2009). An often cited ex-
ample is the “guppy effect”. Although guppy is an
example of a pet-fish it is neither a very typical pet
nor fish (Osherson and Smith, 1981).

In the following we use the rich mathematical
framework of quantum theory to model semantic in-
formation. Specifically, we show how word mean-
ings can be expressed as quantum states. A word
brings with it its own subspace which is spanned by
vectors representing its potential usages. We present
a specific implementation of a semantic space that is
syntactically aware, takes word order into account,
and features key aspects of quantum theory. We em-
pirically evaluate our model on word similarity and
association and show that it achieves results com-
petitive with a variety of classical models. We be-
gin by introducing some of the mathematical back-
ground needed for describing our approach (Sec-
tion 2). Next, we present our semantic space model
(Section 3) and our evaluation experiments (Sec-
tions 4 and 5). We conclude by discussing related
work (Section 6).

2 Preliminaries

Let c = r eiθ be a complex number, expressed in po-
lar form, with absolute value r = |c| and phase θ. Its
complex conjugate c∗ = r e−iθ has the inverse phase.
Thus, their product cc∗ = (r eiθ)(r e−iθ) = r2 is real.

2.1 Vectors

We are interested in finite-dimensional, complex-
valued vector spaces Cn with an inner product, oth-
erwise known as Hilbert space. A column vector−→
ψ ∈ Cn can be written as an ordered vertical array
of its n complex-valued components, or alternatively
as a weighted sum of base vectors:

−→
ψ =


ψ1
ψ2
...

ψn

=ψ1


1
0
...
0

+ . . .+ψn


0
...
0
1

 (1)

Whereas Equation (1) uses base vectors from the
standard base Bstd = {

−→
b1 , ...,

−→
bn}, any other set of n

orthonormal vectors serves just as well as a base for
the same space. Dirac (1939) introduced the so-
called bra-ket notation which is equally expressive
but notationally more convenient. A column vector
becomes a ket:

−→
ψ ≡ |ψ〉= ψ1|b1〉+ψ2|b2〉+ . . .+ψn|bn〉 (2)

and a row vector becomes a bra 〈ψ|. Transposing
a complex-valued vector or matrix (via the super-
script “†”) involves complex-conjugating all compo-
nents:

|ψ〉† = 〈ψ|= ψ
∗
1〈b1|+ψ

∗
2〈b2|+ . . .+ψ

∗
n〈bn| (3)

The Dirac notation for the inner product 〈·|·〉 il-
lustrates the origin of the terminology “bra-ket”.
Since Bstd’s elements are normalised and pairwise
orthogonal their inner product is:

〈bi|b j〉=
{

1, if i = j
0, otherwise (4)

The inner product is also applicable to pairs of non-
base kets:

(ψ∗1 ψ∗2 · · · ψ∗n)


φ1
φ2
...

φn

≡ 〈ψ|φ〉
= (∑i ψ∗i 〈bi|)

(
∑ j φ j|b j〉

)
= ∑i, j ψ∗i φ j〈bi|b j〉= ∑i ψ∗i φi〈bi|bi〉

= ∑i ψ∗i φi

(5)
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Reversing the order of an inner product complex-
conjugates it:

(〈ψ|φ〉)∗ = 〈φ|ψ〉 (6)

2.2 Matrices

Matrices are sums of outer products |·〉〈·|. For ex-
ample, the matrix (Mi, j)i, j can be thought of as
the weighted sum of “base-matrices” Bi, j ≡ |bi〉〈b j|,
whose components are all 0 except for a 1 in the i-th
row and j-th column. The outer product extends lin-
early to non-base kets in the following manor:

|ψ〉〈φ|= (∑i ψi|bi〉)
(

∑ j φ∗j〈b j|
)

= ∑i, j ψiφ
∗
j |bi〉〈b j|

(7)

This is analogous to the conventional multiplication: ψ1
...

ψn

(φ∗1 · · · φ
∗
n)=

 ψ1φ∗1 · · · ψ1φ∗n
...

. . .
...

ψnφ∗1 · · · ψnφ∗n

 (8)

We will also make use of the tensor product. Its ap-
plication to kets, bras and outer products is linear:

(|a〉+ |b〉)⊗|c〉= |a〉⊗ |c〉+ |b〉⊗ |c〉

(〈a|+ 〈b|)⊗〈c|= 〈a|⊗ 〈c|+ 〈b|⊗ 〈c|

(|a〉〈b|+ |c〉〈d|)⊗|e〉〈 f |=

(|a〉⊗ |e〉)(〈b|⊗ 〈 f |)+(|c〉⊗ |e〉)(〈d|⊗ 〈 f |)

(9)

For convenience we omit “⊗” where no confusion
arises, e.g., |a〉 ⊗ |b〉 = |a〉|b〉. When applied to
Hilbert spaces, the tensor product creates the com-
posed Hilbert space H = H1⊗ ...⊗Hn whose base
kets are simply induced by the tensor product of its
subspaces’ base kets:

base(H1⊗ ...⊗Hn) ={
nO

i=1

|b〉i : |b〉i ∈ base(Hi), 1≤ i≤ n

} (10)

Whereas the order of composed kets |a〉|b〉|c〉 usu-
ally suffices to identify which subket lives in which
subspace, we make this explicit by giving subkets

the same subscript as the corresponding subspace.
Thus, the order no longer matters, as in the follow-
ing inner product of composed kets:

(〈a|1〈b|2〈c|3)(|e〉3|d〉1| f 〉2) = 〈a|d〉〈b| f 〉〈c|e〉 (11)

Definition 1. Self-adjoint Matrix

A matrix M is self-adjoint iff Mi, j = M∗j,i for all i, j.
Consequently, all diagonal elements are real-valued,
and M = M† is its own transpose conjugate.

Definition 2. Density Matrix

A self-adjoint matrix M is a density matrix iff
it is positive semi-definite, i.e., 〈φ|M|φ〉 ≥ 0 for
all |φ〉 ∈ Cn, and it has unit trace, i.e., Tr(M) =
∑|b〉∈B 〈b|M|b〉= 1.

The term “density matrix” is synonymous with
“density operator”. Any density matrix ρ can
be decomposed arbitrarily as ρ = ∑i pi|si〉〈si|, the
weighted sum of sub-matrices |si〉〈si| with pi ∈ R>0
and 〈si|si〉= 1. The pi need not sum to 1. In fact the
decomposition where the pi sum to 1 and the |si〉 are
mutually orthogonal is unique and is called the eigen
decomposition. Consequently Beig = {|si〉}i consti-
tutes an orthonormal base, ρ’s so-called eigen base.
Density operators are used in quantum theory to de-
scribe the state of some system. If the system’s state
ρ is certain we call it a pure state and write ρ = |s〉〈s|
for some unit ket |s〉. Systems whose state is uncer-
tain are described by a mixed state ρ = ∑i pi|si〉〈si|
which represents an ensemble of substates or pure
states {(pi,si)}i where the system is in substate si
with probability pi. Hence, the term “density” as in
probability density.

It is possible to normalize a density matrix
without committing to any particular decomposi-
tion. Only the trace function is required, because
norm(ρ) = ρ/Tr(ρ). Definition 2 mentions what the
trace function does. However, notice that the same
result is produced for any orthonormal base B , in-
cluding ρ’s eigen base Beig = {|ei〉}i. Even though
we do not know the content of Beig, we know that it
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exists. So we use it to show that dividing ρ by:

Tr(ρ) = Tr(∑i pi|ei〉〈ei|)

= ∑ j〈e j|(∑i pi|ei〉〈ei|)|e j〉

= ∑i, j pi〈e j|ei〉〈ei|e j〉

= ∑i pi〈ei|ei〉〈ei|ei〉= ∑i pi

(12)

normalizes its probability distribution over eigen
kets:

ρ

Tr(ρ) = ∑i pi|ei〉〈ei|
∑ j p j

=

∑i
pi

∑ j p j
|ei〉〈ei|

(13)

3 Semantic Space Model

We represent the meaning of words by density ma-
trices. Specifically, a lexical item w is modeled as
an ensemble Uw = {(pi,ui)}i of usages ui and the
corresponding probabilities pi that w gets used “in
the i-th manor”. A word’s usage is comprised of
distributional information about its syntactic and se-
mantic preferences, in the form of a ket |ui〉. The
density matrix ρw = ∑i pi|ui〉〈ui| represents the en-
semble Uw. This section explains our method of ex-
tracting lexical density matrices from a dependency-
parsed corpus. Once density matrices have been
learned, we can predict the expected usage similar-
ity of two words as a simple function of their density
matrices. Our explication will be formally precise,
but at the same time illustrate each principle through
a toy example.

3.1 Dependency Hilbert Space
Our model learns the meaning of words from a
dependency-parsed corpus. Our experiments have
used the Stanford parser (de Marneffe and Man-
ning, 2008), however any other dependency parser
with broadly similar output could be used instead.
A word’s usage is learned from the type of depen-
dency relations it has with its immediate neighbors
in dependency graphs. Its semantic content is thus
approximated by its “neighborhood”, i.e., its co-
occurrence frequency with neighboring words.

Neighborhoods are defined by a vocabu-
lary V = {w1, ...,wnV } of the nV most fre-
quent (non-stop) words in the corpus. Let
Rel = {sub−1,dobj−1,amod,num,poss, ...} denote

Document 1:

(1a)
the man see two angry jaguar

det subj

dobj

num

anod

(1b)
we see two angry elephant

subj

dobj

num

amod

(1c)
two elephant run

num nsubj

Document 2:

(2a)
she buy a nice new jaguar

subj

dobj

det

amod

amod

(2b)
I like my jaguar

subj

dobj

poss

Figure 1: Example dependency trees in a toy corpus. Dot-
ted arcs are ignored because they are either not connected
to the target words jaguar and elephant or because their
relation is not taken into account in constructing the se-
mantic space. Words are shown as lemmas.

a subset of all dependency relations provided by
the parser and their inverses. The choice of Rel is a
model parameter. We considered only the most fre-
quently occuring relations above a certain threshold,
which turned out to be about half of the full inven-
tory. Relation symbols with the superscript “−1”
indicate the inversion of the dependency direction
(dependent to head). All other relation symbols
have the conventional direction (head to dependent).

Hence, w
xyz→ v is equivalent to v

xyz−1→ w. We then
partition Rel into disjoint clusters of syntactically
similar relations Part = {RC1, ...,RCnPart}. For
example, we consider syntactically similar relations
which connect target words with neighbors with
the same part of speech. Each relation cluster RCk
is assigned a Hilbert space Hk whose base kets
{|w(k)

j 〉} j correspond to the words in V = {w j} j.
Figure 1 shows the dependency parses for a

toy corpus consisting of two documents and five
sentences. To create a density matrix for the target
words jaguar and elephant, let us assume that we
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will consider the following relation clusters:
RC1 = {dobj−1,iobj−1,agent−1,nsubj−1, ...},
RC2 = {advmod,amod,tmod, ...} and RC3 = {nn,
appos,num,poss, ...}.

3.2 Mapping from Dependency Graphs to Kets

Next, we create kets which encode syntactic and se-
mantic relations as follows. For each occurrence of
the target word w in a dependency graph, we only
consider the subtree made up of w and the immedi-
ate neighbors connected to it via a relation in Rel.
In Figure 1, arcs from the dependency parse that we
ignore are shown as dotted. Let the subtree of in-
terest be st = {(RC1,v1), ...,(RCnPart ,vnPart )}, that is,
w is connected to vk via some relation in RCk, for
k ∈ {1, ...,nPart}. For any relation cluster RCk that
does not feature in the subtree, let RCk be paired with
the abstract symbol w /0 in st. This symbol represents
uncertainty about a potential RCk-neighbor.

We convert all subtrees st in the corpus for the tar-
get word w into kets |ψst〉 ∈ H1⊗ ...⊗HnPart . These
in turn make up the word’s density matrix ρw. Be-
fore we do so, we assign each relation cluster RCk
a complex value αk = eiθk . The idea behind these
values is to control for how much each subtree con-
tributes to the overall density matrix. This becomes
more apparent after we formulate our method of in-
ducing usage kets and density matrices.

|ψst〉= αst
O

(RCk,v)∈st

|v〉k, (14)

where αst = ∑(RCk,v)∈st,v 6=w /0
αk. Every RCk paired

with some neighbor v ∈ V induces a basic subket
|v〉k ∈ base(Hk), i.e., a base ket of the k-th sub-
space or subsystem. All other subkets |w /0〉k =
∑v∈V |V |−

1
2 |v〉k are in a uniformly weighted super-

position of all base kets. The factor |V |− 1
2 ensures

that 〈w /0|w /0〉 = 1. The composed ket for the sub-
tree st is again weighted by the complex-valued αst .

αst is the sum of complex values αk = eiθk , each
with absolute value 1. Therefore, its own abso-
lute value depends highly on the relative orienta-
tion θk among its summands: equal phases reinforce
absolute value, but the more phases are opposed
(i.e., their difference approaches π), the more they
cancel out the sum’s absolute value. Only those αk
contribute to this sum whose relation cluster is not
paired with w /0. The choice of the parameters θk al-
lows us to put more weight on some combinations

(a)

〈ψst1 | 〈ψst2 | 〈ψst3 |
|ψst1〉
|ψst2〉
|ψst3〉

6= 0 6= 0 6= 0
6= 0 6= 0 6= 0
6= 0 6= 0 6= 0

(b)

〈ψst1 | 〈ψst2 | 〈ψst3 |
|ψst1〉
|ψst2〉
|ψst3〉

6= 0 0 0
0 6= 0 0
0 0 6= 0

Figure 2: Excerpts of density matrices that result from
the dependency subtrees st1,st2,st3. Element mi, j in row i
and column j is mi, j|ψsti〉〈ψst j | in Dirac notation. (a) All
three subtrees are in the same document. Thus their kets
contribute to diagonal and off-diagonal matrix elements.
(b) Each subtree is in a separate document. Therefore
their kets do not group, affecting only diagonal matrix
elements.

of dependency relations than others.
Arbitrarily choosing θ1 = π

4 , θ2 = 7π

4 ,
and θ3 = 3π

4 renders the subtrees in Fig-
ure 1 as |ψst1a〉 = eiπ/4|see〉1|angry〉2|two〉3,
|ψst2a〉=

√
2|buy〉1(|nice〉2 + |new〉2)|w /0〉3, |ψst2b〉=√

2eiπ/2|like〉1|w /0〉2|my〉3, which are relevant for
jaguar, and |ψst1b〉 = eiπ/4|see〉1|angry〉2|two〉3,
|ψst1c〉 =

√
2eiπ/2|run〉1|w /0〉2|two〉3, which are

relevant for elephant. The subscripts outside of the
subkets correspond to those of the relation clusters
RC1,RC2,RC3 chosen in Section 3.1.

In sentence 2a, jaguar has two neighbors under
RC2. Therefore the subket from H2 is a superpo-
sition of the base kets |nice〉2 and |new〉2. This is
a more intuitive formulation of the equivalent ap-
proach which first splits the subtree for buy nice new
jaguar into two similar subtrees for buy nice jaguar
and for buy new jaguar, and then processes them as
seperate subtrees within the same document.

3.3 Creating Lexical Density Matrices
We assume that a word’s usage is uniform through-
out the same document. In our toy corpus in Fig-
ure 1, jaguar is always the direct object of the main
verb. However, in Document 1 it is used in the an-
imal sense, whereas in Document 2 it is used in the
car sense. Even though the usage of jaguar in sen-
tence (2b) is ambiguous, we group it with that of
sentence (2a).

These considerations can all be comfortably en-
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ρ jaguar = (|ψst1a〉〈ψst1a |+(|ψst2a〉+ |ψst2b〉)(〈ψst2a |+ 〈ψst2b |))/7 =
0.14|see〉1|angry〉2|two〉3〈see|1〈angry|2〈two|3+ 0.29|buy〉1|nice〉2|w /0〉3〈buy|1〈nice|2〈w /0|3+
0.29|buy〉1|nice〉2|w /0〉3〈buy|1〈new|2〈w /0|3+ 0.29|buy〉1|new〉2|w /0〉3〈buy|1〈nice|2〈w /0|3+
0.29|buy〉1|new〉2|w /0〉3〈buy|1〈new|2〈w /0|3+ 0.29eπ/2|like〉1|w /0〉2|my〉3〈buy|1〈nice|2〈w /0|3+
0.29eπ/2|like〉1|w /0〉2|my〉3〈buy|1〈new|2〈w /0|3+ 0.29e−π/2|buy〉1|nice〉2|w /0〉3〈like|1〈w /0|2〈my|3+
0.29e−π/2|buy〉1|new〉2|w /0〉3〈like|1〈w /0|2〈my|3+ 0.29|like〉1|w /0〉2|my〉3〈like|1〈w /0|2〈my|3

ρelephant = ((|ψst1b〉+ |ψst1c〉)(〈ψst1b |+ 〈ψst1c |))/3 =
0.33|see〉1|angry〉2|two〉3〈see|1〈angry|2〈two|3+ 0.47eπ/4|run〉1|w /0〉2|two〉3〈see|1〈angry|2〈two|3+
0.47e−π/4|see〉1|angry〉2|two〉3〈run|1〈w /0|2〈two|3+ 0.67|run〉1|w /0〉2|two〉3〈run|1〈w /0|2〈two|3

Tr(ρ jaguarρelephant)=Tr(0.05|ψst1a〉〈ψst1b |+0.05eiπ/4|ψst1a〉〈ψst1c |)=Tr(0.05|see〉1|angry〉2|two〉3〈see|1〈angry|2〈two|3+
0.07e−π/4|see〉1|angry〉2|two〉3〈run|1〈w /0|2〈two|3) = ∑

|b〉∈base(H1⊗H2⊗H3)
〈b|(0.05|see〉1|angry〉2|two〉3〈see|1〈angry|2〈two|3+

0.07e−π/4|see〉1|angry〉2|two〉3〈run|1〈w /0|2〈two|3)|b〉= 0.05

Figure 3: Lexical density matrices for the words jaguar and elephant and their similarity.

coded in a density matrix. This is simply gener-
ated via the outer product of our subtree kets |ψst〉.
For example, ρD1, jaguar = |ψst1a〉〈ψst1a | represents
the contribution that document D1 makes to ρ jaguar.
Document D2, however, has more than one ket
relevant to ρ jaguar. Due to our assumption of
document-internal uniformity of word usage, we
group D2’s subtree-kets additively: ρD2, jaguar =
(|ψst2a〉+ |ψst2b〉)(〈ψst2a |+〈ψst2b |). The target word’s
density matrix ρw is the normalized sum of all den-
sity matrices ρD,w obtained from each D:

ρD,w =

(
∑

st∈STD,w

|ψst〉

)(
∑

st∈STD,w

〈ψst |

)
(15)

where STD,w is the set of all subtrees for target
word w in document D. To illustrate the differ-
ence that this grouping makes, consider the den-
sity matrices in Figure 2. Whereas in (a) the sub-
trees st1,st2,st3 share a document, in (b) they are
from distinct documents. This grouping causes them
to not only contribute to diagonal matrix elements,
e.g., |ψst2〉〈ψst2 |, as in (b), but also to off diagonal
ones, e.g., |ψst2〉〈ψst1 |, as in (a).

Over the course of many documents the summa-
tion of all contributions, no matter how small or
large the groups are, causes “clusters of weight”
to form, which hopefully coincide with word us-
ages. As mentioned in Section 3.2, adding complex-
valued matrix elements increases or decreases the
sum’s absolute value depending on relative phase
orientation. This makes it possible for interference

to occur. Since the same word appears in varying
contexts, the corresponding complex-valued outer
products interact upon summation. Finally, the den-
sity matrix gets normalized, i.e., divided by its trace.
This leaves the distributional information intact and
merely normalizes the probabilities. Figure 3 illus-
trates the estimation of the density matrices for the
words jaguar and elephant from the toy corpus in
Figure 1.

3.4 Usage Similarity

Decomposing the density matrix of the target
word w, ρw = ∑i pi|ui〉〈ui| recovers the usage ensem-
ble Uw = {(pi,ui)}i. However, in general there are
infinitely many possible ensembles which ρw might
represent. This subsection explains our metric for
estimating the usage similarity of two words. The
math involved shows that we can avoid the question
of how to best decompose ρw.

We compute the usage similarity of two words w
and v by comparing each usage of w with each us-
age of v and weighting these similarity values with
the corresponding usage probabilities. Let ρw =
∑i p(w)

i |u
(w)
i 〉〈u

(w)
i | and ρv = ∑i p(v)

i |u
(v)
i 〉〈u

(v)
i |. The

similarity of some usage kets |u(w)
i 〉 and |u(v)

j 〉 is ob-
tained, as is common in the literature, by their in-
ner product 〈u(w)

i |u
(v)
j 〉. However, as this is a com-

plex value, we multiply it with its complex conju-
gate, rendering the real value 〈u(v)

j |u
(w)
i 〉〈u

(w)
i |u

(v)
j 〉=

|〈u(w)
i |u

(v)
j 〉|2. Therefore, in total the expected simi-

larity of w and v is:
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(16)sim(w,v) = ∑
i, j

p(w)
i p(v)

j 〈u
(v)
j |u

(w)
i 〉〈u

(w)
i |u

(v)
j 〉

= Tr

(
∑
i, j

p(w)
i p(v)

j |u
(w)
i 〉〈u

(w)
i |u

(v)
j 〉〈u

(v)
j |

)
=

Tr

(
(∑

i
p(w)

i |u
(w)
i 〉〈u

(w)
i |)(∑

j
p(v)

j |u
(v)
j 〉〈u

(v)
j |)

)
= Tr(ρwρv)

We see that the similarity function simply reduces to
multiplying ρw with ρv and applying the trace func-
tion. The so-called cyclic property of the trace func-
tion (i.e., Tr(M1M2) = Tr(M2M1) for any two matri-
ces M1,M2) gives us the corollary that this particular
similarity function is symmetric.

Figure 3 (bottom) shows how to calculate the sim-
ilarity of jaguar and elephant. Only the coefficient
of the first outer product survives the tracing pro-
cess because its ket and bra are equal modulo trans-
pose conjugate. As for the second outer product,
0.05eiπ/4〈b|ψst1a〉〈ψst1c |b〉 is 0 for all base kets |b〉.

3.5 What Does This Achieve?

We represent word meanings as described above for
several reasons. The density matrix decomposes into
usages each of which are a superposition of combi-
nations of dependents. Internally, these usages are
established automatically by way of “clustering”.

Our model is parameterized with regard to the
phases of sub-systems (i.e., clusters of syntactic re-
lations) which allows us to make optimal use of in-
terference, as this plays a large role in the over-
all quality of representation. It is possible for a
combination of (groups of) dependents to get en-
tangled if they repeatedly appear together under the
same word, and only in that combination. If the
co-occurence of (groups of) dependents is uncorre-
lated, though, they remain unentangled. Quantum
entanglement gives our semantic structures the po-
tential for long-distance effects, once quantum mea-
surement becomes involved. This is in analogy to
the nonlocal correlation between properties of sub-
atomic particles, such as the magnetic spin of elec-
trons or the polarization of photons. Such an exten-
sion to our implementation will also uncover which
sets of measurements are order-sensitive, i.e., in-
compatible.

Our similarity metric allows two words to “select”
each other’s usages via their pairwise inner prod-

ucts. Usage pairs with a high distributional simi-
larity roughly “align” and then get weighted by the
probabilities of those usages. Two words are similar
if they are substitutable, that is, if they can be used
in the same syntactic environment and have the same
meaning. Hopefully, this leads to more accurate es-
timation of distributional similarity and can be used
to compute word meaning in context.

4 Experimental Setup

Data All our experiments used a dependency
parsed and lemmatized version of the British Na-
tional Corpus (BNC). As mentioned in Section 3, we
obtained dependencies from the output of the Stan-
ford parser (de Marneffe and Manning, 2008). The
BNC comprises 4,049 texts totalling approximately
100 million words.

Evaluation Tasks We evaluated our model on
word similarity and association. Both tasks are em-
ployed routinely to assess how well semantic models
predict human judgments of word relatedness. We
used the WordSim353 test collection (Finkelstein et
al., 2002) which consists of similarity judgments for
word pairs. Participants gave each pair a similar-
ity rating using a 0 to 10 scale (e.g., tiger–cat are
very similar, whereas delay–racism are not). The
average rating for each pair represents an estimate of
the perceived similarity of the two words. The col-
lection contains ratings for 437 unique words (353
pairs) all of which appeared in our corpus. Word as-
sociation is a slightly different task: Participants are
given a cue word (e.g., rice) and asked to name an
associate in response (e.g., Chinese, wedding, food,
white). We used the norms collected by Nelson et
al. (1998). We estimated the strength of association
between a cue and its associate, as the relative fre-
quency with which it was named. The norms con-
tain 9,968 unique words (70,739 pairs) out of which
9,862 were found in our corpus, excluding multi-
word expressions.

For both tasks, we used correlation analysis to ex-
amine the degree of linear relationship between hu-
man ratings and model similarity values. We report
correlation coefficients using Spearman’s rank cor-
relation coefficient.

Quantum Model Parameters The quantum
framework presented in Section 3 is quite flexible.
Depending on the choice of dependency rela-
tions Rel, dependency clusters RC j, and complex
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values α j = eiθ j , different classes of models can be
derived. To explore these parameters, we partitioned
the WordSim353 dataset and Nelson et al.’s (1998)
norms into a development and test set following
a 70–30 split. We tested 9 different intuitively
chosen relation partitions {RC1, ...,RCnPart}, cre-
ating models that considered only neighboring
heads, models that considered only neighboring
dependents, and models that considered both. For
the latter two we experimented with partitions of
one, two or three clusters. In addition to these more
coarse grained clusters, for models that included
both heads and dependents we explored a partition
with twelve clusters broadly corresponding to
objects, subjects, modifiers, auxiliaries, determiners
and so on. In all cases stopwords were not taken
into account in the construction of the semantic
space.

For each model variant we performed a grid
search over the possible phases θ j = kπ with range
k = 0

4 , 1
4 , ..., 7

4 for the complex-valued α j assigned
to the respective relation cluster RC j (see Section
3.2 for details). In general, we observed that the
choice of dependency relations and their clustering
as well as the phases assigned to each cluster greatly
influenced the semantic space. On both tasks, the
best performing model had the relation partition de-
scribed in Section 3.1. Section 5 reports our results
on the test set using this model.

Comparison Models We compared our quantum
space against three classical distributional models.
These include a simple semantic space, where a
word’s meaning is a vector of co-occurrences with
neighboring words (Mitchell and Lapata, 2010), a
syntax-aware space based on weighted distributional
triples that encode typed co-occurrence relations
among words (Baroni and Lenci, 2010) and word
embeddings computed with a neural language model
(Bengio, 2001; Collobert and Weston, 2008) For all
three models we used parameters that have been re-
ported in the literature as optimal.

Specifically, for the simple co-occurrence-based
space we follow the settings of Mitchell and Lapata
(2010): a context window of five words on either
side of the target word and 2,000 vector dimensions
(i.e., the 2000 most common context words in the
BNC). Vector components were set to the ratio of
the probability of the context word given the target
word to the probability of the context word overall.
For the neural language model, we adopted the best

Models WordSim353 Nelson Norms

SDS 0.433 0.151
DM 0.318 0.123
NLM 0.196 0.091
QM 0.535 0.185

Table 1: Performance of distributional models on Word-
Sim353 dataset and Nelson et al.’s (1998) norms (test
set). Correlation coefficients are all statistically signifi-
cant (p < 0.01).

performing parameters from our earlier comparison
of different vector sources for distributional seman-
tics (Blacoe and Lapata, 2012) where we also used
the BNC for training. There we obtained best results
with 50 dimensions, a context window of size 4,
and an embedding learning rate of 10−9. Our third
comparison model uses Baroni and Lenci’s (2010)
third-order tensor2 which they obtained from a very
large dependency-parsed corpus containing approxi-
mately 2.3 billion words. Their tensor assigns a mu-
tual information score to instances of word pairs w,v
and a linking word l. We obtained vectors −→w from
the tensor following the methodology proposed in
Blacoe and Lapata (2012) using 100 (l,v) contexts
as dimensions.

5 Results

Our results are summarized in Table 1. As can
be seen, the quantum model (QM) obtains perfor-
mance superior to other better-known models such
as Mitchell and Lapata’s (2010) simple semantic
space (SDS), Baroni and Lenci’s (2010) distribu-
tional memory tensor (DM), and Collobert and We-
ston’s (2008) neural language model (NLM). Our
results on the association norms are comparable to
the state of the art (Silberer and Lapata, 2012; Grif-
fiths et al., 2007). With regard to WordSim353,
Huang et al. (2012) report correlations in the range
of 0.713–0.769, however they use Wikipedia as a
training corpus and a more sophisticated version of
the NLM presented here, that takes into account
global context and performs word sense discrimi-
nation. In the future, we also plan to evaluate our
model on larger Wikipedia-scale corpora. We would
also like to model semantic composition as our ap-
proach can do this easily by taking advantage of the
notion of quantum measurement. Specifically, we

2Available at http://clic.cimec.unitn.it/dm/.
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Models bar order
SDS pub, snack, restau-

rant, grill, coctail
form, direct, proce-
dure, plan, request

DM counter, rack, strip,
pipe, code

court, demand, form,
law, list

NLM room, pole, drink,
rail, coctail

direct, command,
plan, court, demand

QM prison, liquor, beer,
club, graph

organization, food,
law, structure,
regulation

HS drink, beer, stool, al-
cohol, grill

food, form, law, heat,
court

Table 2: Associates for bar and order ranked according to
similarity. Underlined associates overlap with the human
responses (HS).

can work out the meaning of a dependency tree by
measuring the meaning of its heads in the context of
their dependents.

Table 2 shows the five most similar associates (or-
dered from high to low) for the cues bar and order
for the quantum model and the comparison models.
We also show the human responses (HS) according
to Nelson et al.’s (1998) norms. The associates gen-
erated by the quantum model correspond to several
different meanings correlated with the target. For
example, prison refers to the “behind bars” sense
of bar, liquor and beer refer to what is consumed
or served in bars, club refers to the entertainment
function of bars, whereas graph refers to how data
is displayed in a chart.

6 Related Work

Within cognitive science the formal apparatus of
quantum theory has been used to formulate models
of cognition that are superior to those based on tra-
ditional probability theory. For example, conjunc-
tion fallacies3 (Tversky and Kahneman, 1983) have
been explained by making reference to quantum the-
ory’s context dependence of the probability assess-
ment. Violations of the sure-thing principle4 (Tver-
sky and Shafir, 1992) have been modeled in terms of
a quantum interference effect. And the asymmetry
of similarity relations has been explained by pos-
tulating that different concepts correspond to sub-
spaces of different dimensionality (Pothos and Buse-
meyer, 2012). Several approaches have drawn on

3A conjunction fallacy occurs when it is assumed that spe-
cific conditions are more probable than a single general one.

4The principle is the expectation that human behavior ought
to conform to the law of total probability

quantum theory in order to model semantic phe-
nomena such as concept combination (Bruza and
Cole, 2005), the emergence of new concepts (Aerts
and Gabora, 2005), and the human mental lexicon
(Bruza et al., 2009). Chen (2002) captures syllo-
gisms in a quantum theoretic framework; the model
takes statements like All whales are mammals and
all mammals are animals as input and outputs con-
clusions like All whales are animals.

The first attempts to connect the mathematical
basis of semantic space models with quantum the-
ory are due to Aerts and Czachor (2004) and Bruza
and Cole (2005). They respectively demonstrate
that Latent Semantic Analysis (Landauer and Du-
mais, 1997) and the Hyperspace Analog to Lan-
guage model (Lund and Burgess, 1996) are essen-
tially Hilbert space formalisms, without, however,
providing concrete ways of building these models
beyond a few hand-picked examples. Interestingly,
Bruza and Cole (2005) show how lexical operators
may be contrived from corpus co-occurrence counts,
albeit admitting to the fact that their operators do not
provide sensical eigenkets, most likely because of
the simplified method of populating the matrix from
corpus statistics. Grefenstette et al. (2011) present a
model for capturing semantic composition in a quan-
tum theoretical context, although it appears to be
reducible to the classical probabilistic paradigm. It
does not make use of the unique aspects of quantum
theory (e.g., entanglement, interference, or quantum
collapse).

Our own work follows Aerts and Czachor (2004)
and Bruza and Cole (2005) in formulating a model
that exhibits important aspects of quantum theory.
Contrary to them, we present a fully-fledged seman-
tic space rather than a proof-of-concept. We obtain
quantum states (i.e., lexical representations) for each
word by taking its syntactic context into account.
Quantum states are expressed as density operators
rather than kets. While a ket can only capture one
pure state of a system, a density operator contains
an ensemble of pure states which we argue is advan-
tageous from a modeling perspective. Within this
framework, not only can we compute the meaning of
individual words but also phrases or sentences, with-
out postulating any additional operations. Compo-
sitional meaning reduces to quantum measurement
at each inner node of the (dependency) parse of the
structure in question.
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