
Proceedings of NAACL-HLT 2013, pages 239–247,
Atlanta, Georgia, 9–14 June 2013. c©2013 Association for Computational Linguistics

Enforcing Subcategorization Constraints in a Parser Using Sub-parses
Recombining

Seyed Abolghasem Mirroshandel†,? Alexis Nasr† Benoı̂t Sagot�
†Laboratoire d’Informatique Fondamentale de Marseille- CNRS - UMR 7279

Université Aix-Marseille, Marseille, France
�Alpage, INRIA & Université Paris-Diderot, Paris, France

?Computer Engineering Department, Faculty of Engineering,
University of Guilan, Rasht, Iran

(ghasem.mirroshandel@lif.univ-mrs.fr, alexis.nasr@lif.univ-mrs.fr,

benoit.sagot@inria.fr)

Abstract

Treebanks are not large enough to adequately
model subcategorization frames of predica-
tive lexemes, which is an important source of
lexico-syntactic constraints for parsing. As
a consequence, parsers trained on such tree-
banks usually make mistakes when selecting
the arguments of predicative lexemes. In this
paper, we propose an original way to correct
subcategorization errors by combining sub-
parses of a sentence S that appear in the list
of the n-best parses of S. The subcatego-
rization information comes from three differ-
ent resources, the first one is extracted from
a treebank, the second one is computed on a
large corpora and the third one is an existing
syntactic lexicon. Experiments on the French
Treebank showed a 15.24% reduction of er-
roneous subcategorization frames (SF) selec-
tions for verbs as well as a relative decrease of
the error rate of 4% Labeled Accuracy Score
on the state of the art parser on this treebank.

1 Introduction

Automatic syntactic parsing of natural languages
has witnessed many important changes in the last
fifteen years. Among these changes, two have mod-
ified the nature of the task itself. The first one is
the availability of treebanks such as the Penn Tree-
bank (Marcus et al., 1993) or the French Treebank
(Abeillé et al., 2003), which have been used in the
parsing community to train stochastic parsers, such
as (Collins, 1997; Petrov and Klein, 2008). Such
work remained rooted in the classical language the-
oretic tradition of parsing, generally based on vari-

ants of generative context free grammars. The sec-
ond change occurred with the use of discriminative
machine learning techniques, first to rerank the out-
put of a stochastic parser (Collins, 2000; Charniak
and Johnson, 2005) and then in the parser itself (Rat-
naparkhi, 1999; Nivre et al., 2007; McDonald et al.,
2005a). Such parsers clearly depart from classical
parsers in the sense that they do not rely anymore on
a generative grammar: given a sentence S, all pos-
sible parses for S1 are considered as possible parses
of S. A parse tree is seen as a set of lexico-syntactic
features which are associated to weights. The score
of a parse is computed as the sum of the weights of
its features.

This new generation of parsers allows to reach
high accuracy but possess their own limitations. We
will focus in this paper on one kind of weakness
of such parser which is their inability to properly
take into account subcategorization frames (SF) of
predicative lexemes2, an important source of lexico-
syntactic constraints. The proper treatment of SF is
actually confronted to two kinds of problems: (1)
the acquisition of correct SF for verbs and (2) the
integration of such constraints in the parser.

The first problem is a consequence of the use of
treebanks for training parsers. Such treebanks are
composed of a few thousands sentences and only a
small subpart of acceptable SF for a verb actually

1Another important aspect of the new parsing paradigm is
the use of dependency trees as a means to represent syntactic
structure. In dependency syntax, the number of possible syn-
tactic trees associated to a sentence is bounded, and only de-
pends on the length of the sentence, which is not the case with
syntagmatic derivation trees.

2We will concentrate in this paper on verbal SF.

239



occur in the treebank.
The second problem is a consequence of the pars-

ing models. For algorithmic complexity as well as
data sparseness reasons, the parser only considers
lexico-syntactic configurations of limited domain of
locality (in the parser used in the current work, this
domain of locality is limited to configurations made
of one or two dependencies). As described in more
details in section 2, SF often exceed in scope such
domains of locality and are therefore not easy to in-
tegrate in the parser. A popular method for intro-
ducing higher order constraints in a parser consist in
reranking the n best output of a parser as in (Collins,
2000; Charniak and Johnson, 2005). The reranker
search space is restricted by the output of the parser
and high order features can be used. One draw-
back of the reranking approach is that correct SF for
the predicates of a sentence can actually appear in
different parse trees. Selecting complete trees can
therefore lead to sub-optimal solutions. The method
proposed in this paper merges parts of different trees
that appear in an n best list in order to build a new
parse.

Taking into account SF in a parser has been a ma-
jor issue in the design of syntactic formalisms in the
eighties and nineties. Unification grammars, such
as Lexical Functional Grammars (Bresnan, 1982),
Generalized Phrase Structure Grammars (Gazdar et
al., 1985) and Head-driven Phrase Structure Gram-
mars (Pollard and Sag, 1994), made SF part of the
grammar. Tree Adjoining Grammars (Joshi et al.,
1975) proposed to extend the domain of locality of
Context Free Grammars partly in order to be able
to represent SF in a generative grammar. More
recently, (Collins, 1997) proposed a way to intro-
duce SF in a probabilistic context free grammar and
(Arun and Keller, 2005) used the same technique
for French. (Carroll et al., 1998), used subcate-
gorization probabilities for ranking trees generated
by unification-based phrasal grammar and (Zeman,
2002) showed that using frame frequency in a de-
pendency parser can lead to a significant improve-
ment of the performance of the parser.

The main novelties of the work presented here is
(1) the way a new parse is built by combining sub-
parses that appear in the n best parse list and (2)
the use of three very different resources that list the
possible SF for verbs.

The organization of the paper is the following: in
section 2, we will briefly describe the parsing model
that we will be using for this work and give accuracy
results on a French corpus. Section 3 will describe
three different resources that we have been using to
correct SF errors made by the parser and give cov-
erage results for these resources on a development
corpus. Section 4 will propose three different ways
to take into account, in the parser, the resources de-
scribed in section 3 and give accuracy results. Sec-
tion 5 concludes the paper.

2 The Parser

The parser used in this work is the second order
graph based parser (McDonald et al., 2005b) imple-
mentation of (Bohnet, 2010). The parser was trained
on the French Treebank (Abeillé et al., 2003) which
was transformed into dependency trees by (Candito
et al., 2009). The size of the treebank and its de-
composition into train, development and test sets are
represented in table 1.

nb of sentences nb of tokens
TRAIN 9 881 278 083

DEV 1 239 36 508

TEST 1 235 36 340

Table 1: Size and decomposition of the French Treebank

The parser gave state of the art results for parsing
of French, reported in table 2. Table 2 reports the
standard Labeled Accuracy Score (LAS) and Unla-
beled Accuracy Score (UAS) which is the ratio of
correct labeled (for LAS) or unlabeled (for UAS) de-
pendencies in a sentence. We also defined a more
specific measure: the SF Accuracy Score (SAS)
which is the ratio of verb occurrences that have been
paired with the correct SF by the parser. We have
introduced this quantity in order to measure more
accurately the impact of the methods described in
this paper on the selection of a SF for the verbs of a
sentence.

TEST DEV
SAS 80.84 79.88

LAS 88.88 88.53

UAS 90.71 90.37

Table 2: Subcategorization Frame Accuracy, Labeled and
Unlabeled Accuracy Score on TEST and DEV.

240



We have chosen a second order graph parser in
this work for two reasons. The first is that it is the
parsing model that obtained the best results on the
French Treebank. The second is that it allows us
to impose structural constraints in the solution of
the parser, as described in (Mirroshandel and Nasr,
2011), a feature that will reveal itself precious when
enforcing SF in the parser output.

3 The Resources

Three resources have been used in this work in order
to correct SF errors. The first one has been extracted
from a treebank, the second has been extracted from
an automatically parsed corpus that is several order
of magnitude bigger than the treebank. The third one
has been extracted from an existing lexico-syntactic
resource. The three resources are respectively de-
scribed in sections 3.2, 3.3 and 3.4. Before describ-
ing the resources, we describe in details, in section
3.1 our definition of SF. In section 3.5, we evalu-
ate the coverage of these resources on the DEV cor-
pus. Coverage is an important characteristic of a re-
source: in case of an SF error made by the parser, if
the correct SF that should be associated to a verb, in
a sentence, does not appear in the resource, it will be
impossible to correct the error.

3.1 Subcat Frames Description

In this work, a SF is defined as a couple (G,L)
where G is the part of speech tag of the element that
licenses the SF. This part of speech tag can either
be a verb in infinitive form (VINF), a past participle
(VPP), a finite tense verb (V) or a present participle
(VPR). L is a set of couples (f, c) where f is a syn-
tactic function tag chosen among a set F and c is
a part of speech tag chosen among the set C. Cou-
ple (f, c) indicates that function f can be realized as
part of speech tag c. Sets F and C are respectively
displayed in top and bottom tables of figure 1. An
anchored SF (ASF) is a couple (v, S) where v is a
verb lemma and S is a SF, as described above.

A resource is defined as a collection of ASF
(v, S), each associated to a count c, to represent the
fact that verb v has been seen with SF S c times. In
the case of the resource extracted form an existing
lexicon (section 3.4), the notion of count is not ap-
plicable and we will consider that it is always equal

SUJ subject
OBJ object
A OBJ indirect object introduced by the preposition à
DE OBJ indirect object introduced by the preposition de
P OBJ indirect object introduced by another preposition
ATS attribute of the subject
ATO attribute of the direct object

ADJ adjective
CS subordinating conjunction
N noun
V verb finite tense
VINF verb infinitive form
VPP verb past participle
VPR verb present participle

Figure 1: Syntactic functions of the arguments of the SF
(top table). Part of speech tags of the arguments of the SF
(bottom table)

to one.
Below is an example of three ASF for the french

verb donner (to give). The first one is a transitive SF
where both the subject and the object are realized as
nouns as in Jean donne un livre (Jean gives a book.).
The second one is ditransitive, it has both a direct
object and an indirect one introduced by the prepo-
sition à as in Jean donne un livre à Marie. (Jean
gives a book to Marie). The third one corresponds
to a passive form as in le livre est donné à Marie par
Jean (The book is given to Marie by Jean).

(donner,(V,(suj,N),(obj,N)))
(donner,(V,(suj,N),(obj,N),(a_obj,N)))
(donner,(VPP,(suj,N),(aux_pass,V),

(a_obj,N),(p_obj,N)))

One can note that when an argument corresponds
to an indirect dependent of the verb (introduced ei-
ther by a preposition or a subordinating conjunc-
tion), we do not represent in the SF, the category
of the element that introduces the argument, but the
category of the argument itself, a noun or a verb.

Two important choices have to be made when
defining SF. The first one concerns the dependents
of the predicative element that are in the SF (argu-
ment/adjunct distinction) and the second is the level
of abstraction at which SF are defined.

In our case, the first choice is constrained by the
treebank annotation guidelines. The FTB distin-
guishes seven syntactic functions which can be con-
sidered as arguments of a verb. They are listed in
the top table of figure 1. Most of them are straight-

241



forward and do not deserve an explanation. Some-
thing has to be said though on the syntactic function
P OBJ which is used to model arguments of the verb
introduced by a preposition that is neither à nor de,
such as the agent in passive form, which is intro-
duced by the preposition par.

We have added in the SF two elements that do not
correspond to arguments of the verb: the reflexive
pronoun, and the passive auxiliary. The reason for
adding these elements to the SF is that their pres-
ence influences the presence or absence of some ar-
guments of the verb, and therefore the SF.

The second important choice that must be made
when defining SF is the level of abstraction, or, in
other words, how much the SF abstracts away from
its realization in the sentence. In our case, we have
used two ways to abstract away from the surface re-
alization of the SF. The first one is factoring sev-
eral part of speech tags. We have factored pronouns,
common nouns and proper nouns into a single cat-
egory N. We have not gathered verbs in different
modes into one category since the mode of the verb
influences its syntactic behavior and hence its SF.
The second means of abstraction we have used is
the absence of linear order between the arguments.
Taking into account argument order increases the
number of SF and, hence, data sparseness, without
adding much information for selecting the correct
SF, this is why we have decided to to ignore it. In
our second example above, each of the three argu-
ments can be realized as one out of eight parts of
speech that correspond to the part of speech tag N
and the 24 possible orderings are represented as one
canonical ordering. This SF therefore corresponds
to 12 288 possible realizations.

3.2 Treebank Extracted Subcat Frames
This resource has been extracted from the TRAIN
corpus. At a first glance, it may seen strange to ex-
tract data from the corpus that have been used for
training our parser. The reason is that, as seen in
section 1, SF are not directly modeled by the parser,
which only takes into account subtrees made of, at
most, two dependencies.

The extraction procedure of SF from the treebank
is straightforward : the tree of every sentence is vis-
ited and, for every verb of the sentence, its daughters
are visited, and, depending whether they are consid-

ered as arguments of the verb (with respect to the
conventions or section 3.1), they are added to the SF.
The number of different verbs extracted, as well as
the number of different SF and the average number
of SF per verb are displayed in table 3. Column T
(for Train) is the one that we are interested in here.

T L A0 A5 A10

nb of verbs 2058 7824 23915 4871 3923

nb of diff SF 666 1469 12122 2064 1355

avg. nb of SF 4.83 52.09 14.26 16.16 13.45

Table 3: Resources statistics

The extracted resource can directly be compared
with the TREELEX resource (Kupsc and Abeillé,
2008), which has been extracted from the same tree-
bank. The result that we obtain is different, due to
the fact that (Kupsc and Abeillé, 2008) have a more
abstract definition of SF. As a consequence, they de-
fine a smaller number of SF: 58 instead of 666 in
our case. The smaller number of SF yields a smaller
average number of SF per verb: 1.72 instead of 4.83
in our case.

3.3 Automatically computed Subcat Frames

The extraction procedure described above has been
used to extract ASF from an automatically parsed
corpus. The corpus is actually a collection of three
corpora of slightly different genres. The first one
is a collection of news reports of the French press
agency Agence France Presse, the second is a col-
lection of newspaper articles from a local French
newspaper : l’Est Républicain. The third one is
a collection of articles from the French Wikipedia.
The size of the different corpora are detailed in ta-
ble 4.

The corpus was first POS tagged with the MELT
tagger (Denis and Sagot, 2010), lemmatized with the
MACAON tool suite (Nasr et al., 2011) and parsed
in order to get the best parse for every sentence.
Then the ASF have been extracted.

The number of verbs, number of SF and average
number of SF per verb are represented in table 3,
in column A0 (A stands for Automatic). As one
can see, the number of verbs and SF are unrealis-
tic. This is due to the fact that the data that we ex-
tract SF from is noisy: it consists of automatically
produced syntactic trees which contain errors (recall

242



CORPUS Sent. nb. Tokens nb.
AFP 2 041 146 59 914 238

EST REP 2 998 261 53 913 288

WIKI 1 592 035 33 821 460

TOTAL 5 198 642 147 648 986

Table 4: sizes of the corpora used to collect SF

that the LAS on the DEV corpus is 88, 02%). There
are two main sources of errors in the parsed data: the
pre-processing chain (tokenization, part of speech
tagging and lemmatization) which can consider as
a verb a word that is not, and, of course, parsing
errors, which tend to create crazy SF. In order to
fight against noise, we have used a simple thresh-
olding: we only collect ASF that occur more than a
threshold i. The result of the thresholding appears
in columns A5 and A10 , where the subscript is the
value of the threshold. As expected both the number
of verbs and SF decrease sharply when increasing
the value of the threshold.

Extracting SF for verbs from raw data has been
an active direction of research for a long time, dat-
ing back at least to the work of (Brent, 1991) and
(Manning, 1993). More recently (Messiant et al.,
2008) proposed such a system for French verbs. The
method we use for extracting SF is not novel with
respect to such work. Our aim was not to devise
new extraction techniques but merely to evaluate the
resource produced by such techniques for statistical
parsing.

3.4 Using an existing resource

The third resource that we have used is the Lefff
(Lexique des formes fléchies du français — Lexicon
of French inflected form), a large-coverage syntac-
tic lexicon for French (Sagot, 2010). The Lefff was
developed in a semi-automatic way: automatic tools
were used together with manual work. The latest
version of the Lefff contains 10,618 verbal entries
for 7,835 distinct verbal lemmas (the Lefff covers all
categories, but only verbal entries are used in this
work).

A sub-categorization frame consists in a list of
syntactic functions, using an inventory slightly more
fine-grained than in the French Treebank, and for
each of them a list of possible realizations (e.g.,
noun phrase, infinitive clause, or null-realization if

the syntactic function is optional).
For each verbal lemma, we extracted all sub-

categorization frames for each of the four verbal
part-of-speech tags (V, VINF, VPR, VPP), thus cre-
ating an inventory of SFs in the same sense and for-
mat as described in Section 3.1. Note that such SFs
do not contain alternatives concerning the way each
syntactic argument is realized or not: this extraction
process includes a de-factorization step. Its output,
hereafter L, contains 801,246 distinct (lemma, SF)
pairs.

3.5 Coverage
In order to be able to correct SF errors, the three
resources described above must possess two impor-
tant characteristics: high coverage and high accu-
racy. Coverage measures the presence, in the re-
source, of the correct SF of a verb, in a given sen-
tence. Accuracy measures the ability of a resource
to select the correct SF for a verb in a given context
when several ones are possible.

We will give in this section coverage result, com-
puted on the DEV corpus. Accuracy will be de-
scribed and computed in section 4. The reason why
the two measures are not described together is due
to the fact that coverage can be computed on a ref-
erence corpus while accuracy must be computed on
the output of a parser, since it is the parser that will
propose different SF for a verb in a given context.

Given a reference corpus C and a resource R,
two coverage measures have been computed, lexi-
cal coverage, which measures the ratio of verbs of C
that appear in R and syntactic coverage, which mea-
sures the ratio of ASF of C that appear in R. Two
variants of each measures are computed: on types
and on occurrences. The values of these measures
computed on the DEV corpus are summarized in ta-
ble 5.

T L A0 A5 A10

Lex. types 89.56 99.52 99.52 98.56 98.08
cov. occ 96.98 99.85 99.85 99.62 99.50

Synt. types 62.24 78.15 95.78 91.08 88.84
cov. occ 73.54 80.35 97.13 93.96 92.39

Table 5: Lexical and syntactic coverage of the three re-
sources on DEV

The figures of table 5 show that lexical cover-
age of the three resources is quite high, ranging

243



from 89.56 to 99.52 when computed on types and
from 96.98 to 99.85 when computed on occurrences.
The lowest coverage is obtained by the T resource,
which does not come as a surprise since it is com-
puted on a rather small number of sentences. It
is also interesting to note that lexical coverage of
A does not decrease much when augmenting the
threshold, while the size of the resource decreases
dramatically (as shown in table 3). This validates
the hypothesis that the resource is very noisy and
that a simple threshold on the occurrences of ASF is
a reasonable means to fight against noise.

Syntactic coverage is, as expected, lower than lex-
ical coverage. The best results are obtained by A0:
95.78 on types and 97.13 on occurrences. Thresh-
olding on the occurrences of anchored SF has a big-
ger impact on syntactic coverage than it had on lexi-
cal coverage. A threshold of 10 yields a coverage of
88.84 on types and 92.39 on occurrences.

4 Integrating Subcat Frames in the Parser

As already mentioned in section 1, SF usually ex-
ceed the domain of locality of the structures that are
directly modeled by the parser. It is therefore dif-
ficult to integrate directly SF in the model of the
parser. In order to circumvent the problem, we have
decided to work on the n-best output of the parser:
we consider that a verb v, in a given sentence S,
can be associated to any of the SF that v licenses in
one of the n-best trees. The main weakness of this
method is that an SF error can be corrected only if
the right SF appears at least in one of the n-best parse
trees.

In order to estimate an upper bound of the SAS
that such methods can reach (how many SF errors
can actually be corrected), we have computed the
oracle SAS on the 100 best trees of the DEV corpus
DEV (for how many verbs the correct SF appears
in at least one of the n-best parse trees). The oracle
score is equal to 95.16, which means that for 95.16%
of the verb occurrences of the DEV, the correct SF
appears somewhere in the 100-best trees. 95.16 is
therefore the best SAS that we can reach. Recall
that the baseline SAS is equal to 79.88% the room
for progress is therefore equal to 15.28% absolute.

Three experiments are described below. In the
first one, section 4.1, a simple technique, called Post

Processing is used. Section 4.2 describes a second
technique, called Double Parsing, which is a is a
refinement of Post Processing. Both sections 4.1
and 4.2 are based on single resources. Section 4.3
proposes a simple way to combine the different re-
sources.

4.1 Post Processing

The post processing method (PP) is the simplest one
that we have tested. It takes as input the different
ASF that occur in the n-best output of the parser as
well as a resource R. Given a sentence, let’s note
T1 . . . Tn the trees that appear in the n-best output
of the parser, in decreasing order of their score. For
every verb v of the sentence, we note S(v) the set
of all the SF associated to v that appear in the trees
T1 . . . Tn.

Given a verb v and a SF s, we define the following
functions:
C(v, s) is the number of occurrences of the ASF

(v, s) in the trees T1 . . . Tn.
F(v) is the SF associated to v in T1

CR(v, s) the number of occurrences of the ASF
(v, s) in the resource R.

We define a selection function as a function that
selects a SF for a given verb in a given sentence.
A selection function has to take into account the in-
formation given by the resource (whether an SF is
acceptable/frequent for a given verb) as well as the
information given by the parser (whether the parser
has a strong preference to associate a given SF to a
given verb).

In our experiments, we have tested two simple
selection functions. ϕR which selects the first SF
s ∈ S(v), such that CR(v, s) > 0 when traversing
the trees T1 . . . Tn in the decreasing order of score
(best tree first).

The second function, ψR(v) compares the most
frequent SF for v in the resourceRwith the SF of the
first parse. If the ratio of the number of occurrences
in the n-best of the former and the latter is above a
threshold α, the former is selected. More formally:

ψR(v) =


ŝ = arg maxs∈S(v) CR(v, s)

if C(v,ŝ)
C(v,F(v)) > α

F(v)
otherwise

244



The coefficientα has been optimized on DEV cor-
pus. Its value is equal to 2.5 for the Automatic re-
source, 2 for the Train resource and 1.5 for the Lefff.

The construction of the new solution proceeds as
follows: for every verb v of the sentence, a SF is se-
lected with the selection function. It is important to
note, at this point, that the SF selected for different
verbs of the sentence can pertain to different parse
trees. The new solution is built based on tree T1. For
every verb v, its arguments are potentially modified
in agreement with the SF selected by the selection
function. There is no guarantee at this point that the
solution is well formed. We will return to this prob-
lem in section 4.2.

We have evaluated the PP method with different
selection functions on the TEST corpus. The results
of applying function ψR were more successful. As
a result we just report the results of this function in
table 6. Different levels of thresholding for resource
A gave almost the same results, we therefore used
A10 which is the smallest one.

B T L A
SAS 80.84 83.11 82.14 82.17

LAS 88.88 89.14 89.03 89.03

UAS 90.71 90.91 90.81 90.82

Table 6: LAS and UAS on TEST using PP

The results of table 6 show two interesting facts.
First, the SAS is improved, it jumps from 80.84 to
83.11. PP therefore corrects some SF errors made
by the parser. It must be noted however that this im-
provement is much lower than the oracle score. The
second interesting fact is the very moderate increase
of both LAS and UAS. This is due to the fact that
the number of dependencies modified is small with
respect to the total number of dependencies. The
impact on LAS and UAS is therefore weak.

The best results are obtained with resource T . Al-
though the coverage of T is low, the resource is very
close to the train data, this fact probably explains the
good results obtained with this resource.

It is interesting, at this point, to compare our
method with a reranking approach. In order to do so,
we have compared the upper bound of the number of
SF errors that can be corrected when using rerank-
ing and our approach. The results of the comparison
computed on a list of 100 best trees is reported in

table 7 which shows the ratio of subcat frame errors
that could be corrected with a reranking approach
and the ratio of errors sub-parse recombining could
reach.

DEV TEST
reranking 53.9% 58.5%

sub-parse recombining 75.5% 76%

Table 7: Correction rate for subcat frames errors with dif-
ferent methods

Table 7 shows that combining sub-parses can, in
theory, correct a much larger number of wrong SF
assignments than reranking.

4.2 Double Parsing

The post processing method shows some improve-
ment over the baseline. But it has an important draw-
back: it can create inconsistent parses. Recall that
the parser we are using is based on a second order
model. In other words, the score of a dependency
depends on some neighboring dependencies. When
building a new solution, the post processing method
modifies some dependencies independently of their
context, which may give birth to very unlikely con-
figurations.

In order to compute a new optimal parse tree
that preserves the modified dependencies, we have
used a technique proposed in (Mirroshandel and
Nasr, 2011) that modifies the scoring function of the
parser in such a way that the dependencies that we
want to keep in the parser output get better scores
than all competing dependencies. The new solution
is therefore the optimal solution that preserves the
dependencies modified by the PP method.

The double parsing (DP) method is therefore a
three stage method. First, sentence S is parsed, pro-
ducing the n-best parses. Then, the post processing
method is used, modifying the first best parse. Let’s
note D the set of dependencies that were changed in
this process. In the last stage, a new parse is pro-
duced, that preserves D.

B T L A
SAS 80.84 83.11 82.14 82.17

LAS 88.88 89.30 89.25 89.31

UAS 90.71 91.07 91.05 91.08

Table 8: LAS and UAS on TEST using DP

245



The results of DP on TEST are reported in table
8. SAS did not change with respect to PP, because
DP keeps the SF selected by PP. As expected DP
does increase LAS and UAS. Recomputing an op-
timal solution therefore increases the quality of the
parses. Table 8 also shows that the three resources
get almost the same LAS and UAS although SAS is
better for resource T.

4.3 Combining Resources
Due to the different generation techniques of our
three resources, another direction of research is
combining them. We did different experiments con-
cerning all possible combination of resources: A and
L (AL), T and L (TL), T and A (TA), and all tree
(TAL) resources. The results of these combinations
for PP and DP methods are shown in tables 9 and
10, respectively.

The resource are combined in a back-off schema:
we search for a candidate ASF in a first resource. If
it is found, the search stops. Otherwise, the next re-
source(s) are probed. One question that arises is:
which sequence is the optimal one for combining
the resources. To answer this question, we did sev-
eral experiments on DEV set. Our experiments have
shown that it is better to search T resource, then
A, and, eventually, L. The results of this combining
method, using PP are reported in table 9. The best
results are obtained for the TL combination. The
SAS jumps from 83.11 to 83.76. As it was the case
with single resources, the LAS and UAS increase is
moderate.

B AL TL TA TAL
SAS 80.84 82.12 83.76 83.50 83.50

LAS 88.88 89.03 89.22 89.19 89.19

UAS 90.71 90.79 90.98 90.95 90.95

Table 9: LAS and UAS on TEST using PP with resource
combination

With DP (table 9), the order of resource combina-
tion is exactly the same as with PP. As was the case
with single resources, DP has a positive, but moder-
ate, impact on LAS and UAS.

The results of tables 9 and 10 do not show con-
siderable improvement over single resources. This
might be due to the large intersection between our
resources. In other words, they do not have comple-
mentary information, and their combination will not

B AL TL TA TAL
SAS 80.84 82.12 83.76 83.50 83.50

LAS 88.88 89.22 89.31 89.34 89.34

UAS 90.71 91.02 91.05 91.08 91.09

Table 10: LAS and UAS on TEST using DP with resource
combination

introduce much information. Another possible rea-
son for this result is the combination technique used.
More sophisticated techniques might yield better re-
sults.

5 Conclusions

Subcategorization frames for verbs constitute a rich
source of lexico-syntactic information which is hard
to integrate in graph based parsers. In this paper, we
have used three different resources for subcatego-
rization frames. These resources are from different
origins with various characteristics. We have pro-
posed two different methods to introduce the useful
information from these resources in a second order
model parser. We have conducted different exper-
iments on French Treebank that showed a 15.24%
reduction of erroneous SF selections for verbs. Al-
though encouraging, there is still plenty of room
for better results since the oracle score for 100 best
parses is equal to 95.16% SAS and we reached
83.76%. Future work will concentrate on more elab-
orate selection functions as well as more sophisti-
cated ways to combine the different resources.

Acknowledgments

This work has been funded by the French Agence
Nationale pour la Recherche, through the project
EDYLEX (ANR-08-CORD-009).

References
A. Abeillé, L. Clément, and F. Toussenel. 2003. Building

a treebank for french. In Anne Abeillé, editor, Tree-
banks. Kluwer, Dordrecht.

A. Arun and F. Keller. 2005. Lexicalization in crosslin-
guistic probabilistic parsing: The case of french. In
Proceedings of the 43rd Annual Meeting on Associ-
ation for Computational Linguistics, pages 306–313.
Association for Computational Linguistics.

B. Bohnet. 2010. Very high accuracy and fast depen-
dency parsing is not a contradiction. In Proceedings
of ACL, pages 89–97.

246



Michael Brent. 1991. Automatic acquisition of subcate-
gorization frames from untagged text. In Proceedings
of ACL.

Joan Bresnan, editor. 1982. The Mental Representation
of Grammatical Relations. MIT Press.

M. Candito, B. Crabbé, P. Denis, and F. Guérin. 2009.
Analyse syntaxique du français : des constituants aux
dépendances. In Proceedings of Traitement Automa-
tique des Langues Naturelles.

J. Carroll, G. Minnen, and T. Briscoe. 1998. Can sub-
categorisation probabilities help a statistical parser?
Arxiv preprint cmp-lg/9806013.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-Fine n-Best Parsing and MaxEnt Discriminative
Reranking. In Proceedings of ACL.

Michael Collins. 1997. Three Generative, Lexicalised
Models for Statistical Parsing. In Proceedings of the
35th Annual Meeting of the ACL.

Michael Collins. 2000. Discriminative Reranking for
Natural Language Parsing. In Proceedings of ICML.

P. Denis and B. Sagot. 2010. Exploitation d’une
ressource lexicale pour la construction d’un étiqueteur
morphosyntaxique état-de-l’art du français. In Pro-
ceedings of Traitement Automatique des Langues Na-
turelles.

Gerald Gazdar, Ewan Klein, Geoffrey K. Pullum, and
Ivan Sag. 1985. Generalized Phrase Structure Gram-
mar. Harvard University Press.

Aravind Joshi, Leon Levy, and M Takahashi. 1975. Tree
adjunct grammars. Journal of Computer and System
Sciences, 10:136–163.

Anna Kupsc and Anne Abeillé. 2008. Treelex: A subcat-
egorisation lexicon for french verbs. In Proceedings of
the First International Conference on Global Interop-
erability for Language Resources.

Christopher Manning. 1993. Automatic acquisition of
a large subcategorization dictionary from corpora. In
Proceedings of ACL.

M.P. Marcus, M.A. Marcinkiewicz, and B. Santorini.
1993. Building a large annotated corpus of en-
glish: The penn treebank. Computational linguistics,
19(2):313–330.

R. McDonald, K. Crammer, and F. Pereira. 2005a. On-
line large-margin training of dependency parsers. In
Proceedings of the 43rd Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 91–98.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajič. 2005b.
Non-projective dependency parsing using spanning
tree algorithms. In Proceedings of HLT-EMNLP,
pages 523–530.

C. Messiant, A. Korhonen, T. Poibeau, et al. 2008.
Lexschem: A large subcategorization lexicon for
french verbs. In Proceedings of the Language Re-
sources and Evaluation Conference.

S.A. Mirroshandel and A. Nasr. 2011. Active learning
for dependency parsing using partially annotated sen-
tences. In Proceedings of International Conference on
Parsing Technologies.

A. Nasr, F. Béchet, J-F. Rey, B. Favre, and Le Roux J.
2011. MACAON: An NLP tool suite for processing
word lattices. In Proceedings of ACL.

J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryigit,
S. Kbler, S. Marinov, and E. Marsi. 2007. Maltparser:
A language-independent system for data-driven de-
pendency parsing. Natural Language Engineering,
13(2):95–135.

Slav Petrov and Dan Klein. 2008. Discriminative Log-
Linear Grammars with Latent Variables. In J.C. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Advances
in Neural Information Processing Systems 20 (NIPS),
pages 1153–1160, Cambridge, MA. MIT Press.

Carl Pollard and Ivan Sag. 1994. Head-driven Phrase
Structure Grammmar. CSLI Series. University of
Chicago Press.

Adwait Ratnaparkhi. 1999. Learning to parse natural
language with maximum entropy models. Machine
learning, 34(1):151–175.

Benoı̂t Sagot. 2010. The Lefff, a freely available and
large-coverage morphological and syntactic lexicon
for french. In Proceedings of the Seventh conference
on International Language Resources and Evaluation
(LREC’10), pages 2744–2751, Valletta, Malta.

D. Zeman. 2002. Can subcategorization help a statistical
dependency parser? In Proceedings of the 19th in-
ternational conference on Computational linguistics-
Volume 1, pages 1–7. Association for Computational
Linguistics.

247


