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Abstract

Vector-based distributional models
of semantics have proven useful
and adequate in a variety of natural
language processing tasks. How-
ever, most of them lack at least
one key requirement in order to
serve as an adequate representa-
tion of natural language, namely
sensitivity to structural information
such as word order. We propose a
novel approach that offers a poten-
tial of integrating order-dependent
word contexts in a completely un-
supervised manner by assigning to
words characteristic distributional
matrices. The proposed model is
applied to the task of free associa-
tions. In the end, the first results as
well as directions for future work
are discussed.

1 Introduction

In natural language processing as well as in informa-
tion retrieval, Vector Space Model (VSM) (Salton et
al., 1975) and Word Space Model (WSM) (Schütze,
1993; Lund and Burgess, 1996) have become the
mainstream for text representation. VSMs embody
the distributional hypothesis of meaning, the main
assumption of which is that a word is known “by
the company it keeps” (Firth, 1957). VSMs proved
to perform well in a number of cognitive tasks such
as synonymy identification (Landauer and Dumais,
1997), automatic thesaurus construction (Grefen-
stette, 1994) and many others. However, it has been

long recognized that these models are too weak to
represent natural language to a satisfactory extent.
With VSMs, the assumption is made that word co-
occurrence is essentially independent of word order.
All the co-occurrence information is thus fed into
one vector per word.

Suppose our “background knowledge” corpus
consists of one sentence: Peter kicked the ball. It
follows that the distributional meanings of both PE-
TER and BALL would be in a similar way defined by
the co-occurring KICK which is insufficient, as BALL

can be only kicked by somebody but not kick itself;
in case of PETER, both ways of interpretation should
be possible. To overcome the aforementioned prob-
lems with vector-based models, we suggest a novel
distributional paradigm for representing text in that
we introduce a further dimension into a “standard”
two-dimensional word space model. That allows us
to count correlations for three words at a time. In
short, given a vocabulary V , context width w = m
and tokens t1, t2, t3, ..., ti ∈ V , for token ti a matrix
of size V × V is generated that has nonzero values
in cells where ti appears between ti−m and ti+m.

Note that this 3-dimensional representation al-
lows us to integrate word order information into the
model in a completely unsupervised manner as well
as to achieve a richer word representation as a matrix
instead of a vector.

The remainder of the paper is organized as fol-
lows. After a recap of basic mathematical no-
tions and operations used in the model in Section 2,
we introduce the proposed three-dimensional tensor-
based model of text representation in Section 3. First
evaluation experiments are reported in Section 4.
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After a brief overview of related work in Section 5,
we provide some concluding remarks and sugges-
tions for future work in Section 6.

2 Preliminaries

In this section, we provide a brief introduction to
tensors and the basics of mathematical operations
that are employed in the suggested model.

First, given d natural numbers n1, . . . , nd, a (real)
n1× . . .×nd tensor can be defined as a function
T : {1, . . . , n1}× . . .×{1, . . . , nd} → R, map-
ping d-tuples of natural numbers to real numbers.
Intuitively, a tensor can best be thought of as a d-
dimensional table (or array) carrying real numbers
as entries. Thereby n1, . . . , nd determine the exten-
sion of the array in the different directions. Obvi-
ously, matrices can be conceived as n1×n2-tensors
and vectors as n1-tensors.

In our setting, we will work with tensors where
d = 3 and for the sake of better understandability
we will introduce the necessary notions for this case
only.

Our work employs higher-order singular value
decomposition (HOSVD), which generalizes the
method of singular value decomposition (SVD)
from matrices to arbitrary tensors.

Given an n1×n2×n3 tensor T , its Tucker decom-
position (Tucker, 1966) for given natural numbers
m1, m2, m3 consists of an m1×m2×m3 tensor G
and three matrices A, B, and C of formats n1×m1,
n2×m2, and n3×m3, respectively, such that

T (i, j, k) =
m1∑
r=1

m2∑
s=1

m3∑
t=1

G(r, s, t)·A(i, r)·B(j, s)·C(k, t).

The idea here is to represent the large-size ten-
sor T by the smaller “core” tensor G. The matrices
A, B, and C can be seen as linear transformations
“compressing” input vectors from dimension ni into
dimension mi. Note that a precise representation of
T is not always possible. Rather one may attempt
to approximate T as well as possible, i.e. find the
tensor T ′ for which a Tucker decomposition exists
and which has the least distance to T . Thereby, the
notion of distance is captured by ‖T − T ′‖, where
T − T ′ is the tensor obtained by entry-wise subtrac-
tion and ‖ · ‖ is the Frobenius norm defined by

‖M‖ =

√√√√ n1∑
r=1

n2∑
s=1

n3∑
t=1

(M(r, s, t))2.

In fact, the described way of approximating a ten-
sor is called dimensionality reduction and is often
used for reducing noise in multi-dimensional data.

3 Proposed Model

Our motivation is to integrate structure into the ge-
ometrical representation of text meaning while ad-
hering to the ideas of distributional semantics. For
this, we introduce a third dimension that allows us
to separate the left and right contexts of the words.
As we process text, we accumulate the left and right
word co-occurrences to represent the meaning of the
current word. Formally, given a corpus K, a list L
of tokens, and a context width w, we define its ten-
sor representation TK by letting TK(i, j, k) be the
number of occurrences of L(j) s L(i) s′ L(k) in
sentences in K where s, s′ are (possibly empty) se-
quences of at most w − 1 tokens. For example, sup-
pose our corpus consists of three sentences: “Paul
kicked the ball slowly. Peter kicked the ball slowly.
Paul kicked Peter.” We let w = 1, presuming prior
stop words removal. We obtain a 5 × 5 × 5 tensor.
Table 1 displays two i-slices of the resulting tensor
T showing left vs. right context dependencies.

KICK PETER PAUL KICK BALL SLOWLY

PETER 0 0 0 1 0
PAUL 1 0 0 1 0
KICK 0 0 0 0 0
BALL 0 0 0 0 0
SLOWLY 0 0 0 0 0

BALL PETER PAUL KICK BALL SLOWLY

PETER 0 0 0 0 0
PAUL 0 0 0 0 0
KICK 0 0 0 0 2
BALL 0 0 0 0 0
SLOWLY 0 0 0 0 0

Table 1: Slices of T for the terms KICK (i = 3) and BALL
(i = 4).

Similarly to traditional vector-based distributional
models, dimensionality reduction needs to be per-
formed in three dimensions either, as the resulting
tensor is very sparse (see the examples of KICK and
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BALL). To this end, we employ Tucker decompo-
sition for 3 dimensions as introduced in Section 2.
For this, Matlab Tensor Toolbox1 (Bader and Kolda,
2006) is used.

A detailed overview of computational complexity
of Tucker decomposition algorithms in Tensor Tool-
box is provided in Turney (2007). The drawback of
those is that their complexity is cubic in the number
of factorization dimensions and unfeasible for large
datasets. However, new memory efficient tensor de-
composition algorithms have been proposed in the
meantime. Thus, Memory Efficient Tucker (MET)
is available in Matlab Tensor Toolbox since Version
2.3. Rendle and Schmidt-Thieme (2010) present a
new factorization method with linear complexity.

4 Evaluation Issues

4.1 Task

Vector-based distributional similarity methods have
proven to be a valuable tool for a number of tasks
on automatic discovery of semantic relatedness be-
tween words, like synonymy tests (Rapp, 2003) or
detection of analogical similarity (Turney, 2006).

A somewhat related task is the task of finding out
to what extent (statistical) similarity measures cor-
relate with free word associations2. Furthermore,
this task was suggested as a shared task for the eval-
uation of word space models at Lexical Semantics
Workshop at ESSLLI 2008. Free associations are
the words that come to the mind of a native speaker
when he or she is presented with a so-called stimu-
lus word. The percent of test subjects that produce
certain response to a given stimulus determines the
degree of a free association between a stimulus and
a response.

Despite the widespread usage of vector-based
models to retrieve semantically similar words, it is
still rather unclear what type of linguistic phenom-
ena they model (cf. Heylen et al. (2008), Wand-
macher et al. (2008)). The same is true for free as-
sociations. There are a number of relations accord-
ing to which a word may be associated with another

1Version 2.3
2One of the reasons to choose this evaluation setting was that

the dataset for free word associations task is freely available at
http://wordspace.collocations.de/doku.php/data:esslli2008:start
(in contrast to, e.g., the synonymy test set).

word. For example, Aitchison (2003) distinguishes
four types of associations: co-ordination, colloca-
tion, superordination and synonymy. This affords
an opportunity to use the task of free associations as
a “baseline” for distributional similarity.

For this task, workshop organizers have proposed
three subtasks, one of which - discrimination - we
adapt in this paper. Test sets have been provided
by the workshop organizers. The former are based
on the Edinburgh Associative Thesaurus3 (EAT),
a freely available database of English association
norms.

Discrimination task includes a test set of over-
all 300 word pairs that were classified according to
three classes of association strengths:

• FIRST strongly associated word pairs as indi-
cated by more than 50% of test subjects as first
responses;

• HAPAX word associations that were produced
by a single test subject;

• RANDOM random combinations of words from
EAT that were never produced as a stimulus -
response pair.

4.2 Procedure
To collect the three-way co-occurrence information,
we experiment with the UKWAC corpus (A. Fer-
raresi and Bernardini, 2008), as suggested by the
workshop organizers, in order to get comparable re-
sults. As UKWAC is a huge Web-derived corpus
consisting of about 2 billion tokens, it was impos-
sible at the current stage to process the whole cor-
pus. As the subsections of UKWAC contain ran-
domly chosen documents, one can train the model
on any of the subsections.

We limited out test set to the word pairs for which
the constituent words occur more than 50 times in
the test corpus. Thereby, we ended up with a test set
consisting of 222 word pairs.

We proceed in the following way. For each pair
of words:

1. Gather N sentences, i.e. contexts, for each of
the two words4, here N = 50;

3http://www.eat.rl.ac.uk/
4This corpus “preprocessing” step was mainly due to lim-
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2. Build a 3-dimensional tensor from the subcor-
pus obtained in (1), given a context width w=5,
i.e. 5 words to the left and 5 words to the right
of the target word), taking sentence boundaries
into consideration;

3. Reduce 5 times the dimensionality of the tensor
obtained in (2) by means of Tucker decomposi-
tion;

4. Extract two matrices of both constituents of the
word pair and compare those by means of co-
sine similarity5.

Here, we follow the tradition of vector-based
models where cosine is usually used to measure se-
mantic relatedness. One of the future direction in
matrix-based meaning representation is to investi-
gate further matrix comparison metrics.

4.3 Results and Discussion
Tables 2 and 3 show the resulting accuracies6 for
training and test sets. th denotes cosine threshold
values that were used for grouping the results. Here,
th is taken to be the function of the size s of the data
set. Thus, given a training set of size s = 60 and
3 classes, we define an “equally distributed” thresh-
old th1 = 60/3 = 20 (s. Table 2) and a “linearly
growing” threshold th2 = 1

4 , 1
3 , rest (s. Table 3).

It is not quite apparent, how the threshold for
differentiating between the groups should be deter-
mined under given conditions. Usually, such mea-
sures are defined on the basis of training data (e.g.
Wandmacher et al. (2008)). It was not applicable
in our case as, due to the current implementation of
the model as well as insufficient computational re-
sources for the time being, we could not build one
big model for all experiment iterations.

Also, the intuition we have gained with this kind
of thresholds is that as soon as you change the un-
derlying corpus or the model parameters, you may
need to define new thresholds (cf. Tables 2 and 3).

ited processing power we had at our disposal at the moment the
experiments were conducted. With this step, we considerably
reduced the size of the corpus and guaranteed a certain number
of contexts per relevant word.

5Cosine similarity is determined as a normalized inner prod-
uct

6Accuracy is defined in the following way: Accuracy =
right/(right + wrong)

Thresholds in geometric models of meaning can not
be just fixed, just as the measure of similarity cannot
be easily quantified by humans.

It would be straightforward to compare the perfor-
mance of the proposed model with its 2-dimensional
analogue. Wandmacher et al. (2008) obtain in aver-
age better results with their LSA-based model for
this task. Specifically, they observe very good re-
sults for RANDOM associations (78.2% accuracy)
but the lowest results for the FIRST, i.e. strongest,
associations (50%). In constrast, the outcome for
RANDOM in our model is the worst. However, the
bigger the threshold, the more accurate is getting
the model for the FIRST associations. For exam-
ple, with a threshold of th = 0.2 for the test set
- 4 out of 5 highest ranked pairs were highly asso-
ciated (FIRST) and the fifth pair was from the HA-
PAX group. For HAPAX word associations, no simi-
lar regularities could be observed.

The resulting accuracies may seem to be poor at
this stage. However, it is worth mentioning that
this is a highly difficult and corpus-dependent task
for automatic processing. The reported results have
been obtained based on very small corpora, contain-
ing ca. 100 sentences per iteration (cf. Wandmacher
et al. (2008) use a corpus of 108 million words to
train their LSA-Model). Consequently, it is not pos-
sible to compare both results directly, as they have
been produced under very different conditions.

5 Related Work

5.1 Matrix Approaches

There have been a number of efforts to integrate syn-
tax into vector-based models with alternating suc-
cess. Some used (dependency) parsing to feed the
models (Grefenstette, 1994; Lin, 1998; Padó and La-
pata, 2007); the others utilized only part of speech
information, e.g., Widdows (2003).

In many cases, these syntactically enhanced mod-
els improved the performance (Grefenstette, 1994;
Lin, 1998; Padó and Lapata, 2007). Sometimes,
however, rather controversial results were observed.
Thus, Widdows (2003) reported both positive and
negative effects for the task of developing tax-
onomies. On the one side, POS information in-
creased the performance for common nouns; on the
other side, it degraded the outcome for proper nouns
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TRAIN TEST
FIRST 12/20 (60%) (th = 0.022) 25/74 (33%) (th = 0.078))
HAPAX 7/20 (35%) (th = 0.008) 35/74 (47%) th = 0.042)
RANDOM 8/20 (40%) 23/74 (31%)
TOTAL (F/H/R) 27/60 (45%) 83/222 (37.4%)
FIRST/HORR7 44/60 (73.33%) 125/222 (56.3%)

Table 2: Accuracies for the “equally distributed” threshold for training and test sets

TRAIN TEST
FIRST 9/15 (60%) (th = 0.0309) 20/55 (36.4%) (th = 0.09)
HAPAX 8/20 (40%) (th = 0.0101) 39/74 (52.7%) (th = 0.047)
RANDOM 10/25 (40%) 24/93 (25.8%)
TOTAL (F/H/R) 27/60 (45%) 108/222 (48.6%)
FIRST/HORR8 43/60 (71.60%) 113/222 (50.9%)

Table 3: Accuracies for a “linearly growing” threshold for training and test sets

and verbs.
Sahlgren et al. (2008) incorporate word order in-

formation into context vectors in an unsupervised
manner by means of permutation.

Recently, Erk and Padó (2008) proposed a struc-
tured vector space model where a word is repre-
sented by several vectors reflecting the words lexical
meaning as well as its selectional preferences. The
motivation behind their work is very close to ours,
namely, that single vectors are too weak to represent
word meaning. However, we argue that a matrix-
based representation allows us to integrate contex-
tual information in a more general manner.

5.2 Tensor Approaches

Among the early attempts to apply higher-order ten-
sors instead of vectors to text data is the work of Liu
et al. (2005) who show that Tensor Space Model is
consistently better than VSM for text classification.
Cai et al. (2006) suggest a 3-dimensional represen-
tation for documents and evaluate the model on the
task of document clustering.

The above as well as a couple of other projects in
this area in information retrieval community leave
open the question of how to convey text into a three-
dimensional tensor. They still use vector-based rep-
resentation as the basis and then just mathematically
convert vectors into tensors, without linguistic justi-
fication of such transformations.

Further, there are few works that extend the term-
document matrix with metadata as a third dimension

(Chew et al., 2007; Sun et al., 2006).
Turney (2007) is one of the few to study the ap-

plication of tensors to word space models. However,
the emphasis in that paper is more on the evaluation
of different tensor decomposition models for such
spaces than on the formal model of text representa-
tion in three dimensions. Van de Cruys (2009) sug-
gests a three-way model of co-occurrence similar to
ours. In contrast to Van de Cruys (2009), we are
not using any explicit syntactic preprocessing. Fur-
thermore, our focus is more on the model itself as a
general model of meaning.

6 Summary and Future Work

In this paper, we propose a novel approach to text
representation inspired by the ideas of distributional
semantics. In particular, our model suggests a solu-
tion to the problem of integrating word order infor-
mation in vector spaces in an unsupervised manner.
First experiments on the task of free associations are
reported. However, we are not in the position yet to
commit ourselves to any representative statements.
A thorough evaluation of the model still needs to be
done. Next steps include, amongst others, evaluat-
ing the suggested model with a bigger data corpus as
well as using stemming and more sophisticated fill-
ing of word matrices, e.g., by introducing advanced
weighting schemes into the matrices instead of sim-
ple counts.

Furthermore, we started with evaluation on the
task which has been proposed for the evaluation of
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word space models at the level of word meaning. We
need, however, to evaluate the model for the tasks
where word order information matters more, e.g. on
selectional preferences or paraphrasing.

Last but not least, we plan to address the issue of
modeling compositional meaning with matrix-based
distributional model of meaning.
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