
Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 312–319,
New York, June 2006.c©2006 Association for Computational Linguistics

Probabilistic Context-Free Grammar Induction
Based on Structural Zeros

Mehryar Mohri
Courant Institute of Mathematical Sciences

and Google Research
251 Mercer Street

New York, NY 10012
mohri@cs.nyu.edu

Brian Roark
Center for Spoken Language Understanding
OGI at Oregon Health & Science University

20000 NW Walker Road
Beaverton, Oregon 97006
roark@cslu.ogi.edu

Abstract

We present a method for induction of con-
cise and accurate probabilistic context-
free grammars for efficient use in early
stages of a multi-stage parsing technique.
The method is based on the use of statis-
tical tests to determine if a non-terminal
combination is unobserved due to sparse
data or hard syntactic constraints. Ex-
perimental results show that, using this
method, high accuracies can be achieved
with a non-terminal set that is orders
of magnitude smaller than in typically
induced probabilistic context-free gram-
mars, leading to substantial speed-ups in
parsing. The approach is further used in
combination with an existing reranker to
provide competitive WSJ parsing results.

1 Introduction

There is a very severe speed vs. accuracy tradeoff
in stochastic context-free parsing, which can be ex-
plained by the grammar factor in the running-time
complexity of standard parsing algorithms such as
the CYK algorithm (Kasami, 1965; Younger, 1967).
That algorithm has complexityO(n3|P |), wheren is
the length in words of the sentence parsed, and|P | is
the number of grammar productions. Grammar non-
terminals can be split to encode richer dependen-
cies in a stochastic model and improve parsing ac-
curacy. For example, the parent of the left-hand side
(LHS) can be annotated onto the label of the LHS
category (Johnson, 1998), hence differentiating, for
instance, between expansions of a VP with parent S
and parent VP. Such annotations, however, tend to
substantially increase the number of grammar pro-
ductions as well as the ambiguity of the grammar,
thereby significantly slowing down the parsing algo-

rithm. In the case of bilexical grammars, where cat-
egories in binary grammars are annotated with their
lexical heads, the grammar factor contributes an ad-
ditionalO(n2|VD|3) complexity, leading to an over-
all O(n5|VD|3) parsing complexity, where|VD| is
the number of delexicalized non-terminals (Eisner,
1997). Even with special modifications to the ba-
sic CYK algorithm, such as those presented by Eis-
ner and Satta (1999), improvements to the stochastic
model are obtained at the expense of efficiency.

In addition to the significant cost in efficiency,
increasing the non-terminal set impacts parame-
ter estimation for the stochastic model. With
more productions, much fewer observations per
production are available and one is left with the
hope that a subsequent smoothing technique can
effectively deal with this problem, regardless of
the number of non-terminals created. Klein and
Manning (2003b) showed that, by making certain
linguistically-motivated node label annotations, but
avoiding certain other kinds of state splits (mainly
lexical annotations) models of relatively high accu-
racy can be built without resorting to smoothing.
The resulting grammars were small enough to al-
low for exhaustive CYK parsing; even so, parsing
speed was significantly impacted by the state splits:
the test-set parsing time reported was about 3s for
average length sentences, with a memory usage of
1GB.

This paper presents an automatic method for de-
ciding which state to split in order to create concise
and accurate unsmoothed probabilistic context-free
grammars (PCFGs) forefficientuse in early stages
of a multi-stage parsing technique. The method is
based on the use of statistical tests to determine if
a non-terminal combination is unobserved due to
the limited size of the sample (sampling zero) or
because it is grammatically impossible (structural
zero). This helps introduce a relatively small number
of new non-terminals with little additional parsing

312

NP

����
��@@ PPPP

DT JJ NN NNS

NP

��� HHH

DT NP:JJ+NN+NNS

�
��

H
HH

JJ NP:NN+NNS
�� HH

NN NNS

NP

��� HHH
DT NP:JJ+NN

�
��

H
HH

JJ NP:NN+NNS
�� HH

NN NNS

NP

�� HH
DT NP:JJ

�� HH
JJ NP:NN

�� HH
NN NNS

NP

�� HH
DT NP:

�� HH
JJ NP:

�� HH
NN NNS

(a) (b) (c) (d) (e)

Figure 1:Five representations of ann-ary production,n = 4. (a) Original production (b) Right-factored production (c) Right-
factored Markov order-2 (d) Right-factored Markov order-1 (e) Right-factored Markov order-0

overhead. Experimental results show that, using this
method, high accuracies can be achieved with orders
of magnitude fewer non-terminals than in typically
induced PCFGs, leading to substantial speed-ups in
parsing. The approach can further be used in combi-
nation with an existing reranker to provide competi-
tive WSJ parsing results.

The remainder of the paper is structured as fol-
lows. Section 2 gives a brief description of PCFG
induction from treebanks, including non-terminal
label-splitting, factorization, and relative frequency
estimation. Section 3 discusses the statistical criteria
that we explored to determine structural zeros and
thus select non-terminals for the factored PCFG. Fi-
nally, Section 4 reports the results of parsing experi-
ments using our exhaustivek-best CYK parser with
the concise PCFGs induced from the Penn WSJ tree-
bank (Marcus et al., 1993).

2 Grammar induction

A context-free grammarG = (V, T, S†, P), or CFG
in short, consists of a set of non-terminal symbolsV ,
a set of terminal symbolsT , a start symbolS† ∈ V ,
and a set of productionP of the form: A → α,
whereA ∈ V andα ∈ (V ∪ T)∗. A PCFG is a
CFG with a probability assigned to each production.
Thus, the probabilities of the productions expanding
a given non-terminal sum to one.

2.1 Smoothing and factorization

PCFGs induced from the Penn Treebank have many
productions with long sequences of non-terminals
on the RHS. Probability estimates of the RHS given
the LHS are often smoothed by making a Markov
assumption regarding the conditional independence
of a category on those more thank categories away

(Collins, 1997; Charniak, 2000):

P(X → Y1...Yn)= P(Y1|X)

nY
i=2

P(Yi|X, Y1 · · ·Yi−1)

≈ P(Y1|X)

nY
i=2

P(Yi|X, Yi−k · · ·Yi−1).

Making such a Markov assumption is closely re-
lated to grammar transformations required for cer-
tain efficient parsing algorithms. For example, the
CYK parsing algorithm takes as input a Chomsky
Normal Form PCFG, i.e., a grammar where all pro-
ductions are of the formX → Y Z or X → a,
whereX, Y , andZ are non-terminals anda a ter-
minal symbol.1. Binarized PCFGs are induced from
a treebank whose trees have been factored so that
n-ary productions withn>2 become sequences of
n−1 binary productions. Full right-factorization in-
volves concatenating the finaln−1 categories from
the RHS of ann-ary production to form a new com-
posite non-terminal. For example, the original pro-
duction NP→ DT JJ NN NNS shown in Figure 1(a)
is factored into three binary rules, as shown in Fig-
ure 1(b). Note that a PCFG induced from such right-
factored trees is weakly equivalent to a PCFG in-
duced from the original treebank, i.e., it describes
the same language.

From such a factorization, one can make a
Markov assumption for estimating the production
probabilities by simply recording only the labels of
the firstk children dominated by the composite fac-
tored label. Figure 1 (c), (d), and (e) show right-
factored trees of Markov orders 2, 1 and 0 respec-
tively.2 In addition to being used for smoothing

1Our implementation of the CYK algorithm has been ex-
tended to allow for unary productions with non-terminals on
the RHS in the PCFG.

2Note that these factorizations do not provide exactly the
stated Markov order for all dependencies in the productions,
because we are restricting factorization to only produce binary
productions. For example, in Figure 1(e), the probability of the

313

PCFG Time (s) Words/s |V | |P | LR LP F
Right-factored 4848 6.7 10105 23220 69.2 73.8 71.5
Right-factored, Markov order-2 1302 24.9 2492 11659 68.8 73.8 71.3
Right-factored, Markov order-1 445 72.7 564 6354 68.0 73.0 70.5
Right-factored, Markov order-0 206 157.1 99 3803 61.2 65.5 63.3
Parent-annotated, Right-factored, Markov order-2 7510 4.3 5876 22444 76.2 78.3 77.2

Table 1:Baseline results of exhaustive CYK parsing using different probabilistic context-free grammars. Grammars are trained
from sections 2-21 of the Penn WSJ Treebank and tested on all sentences of section 24 (no length limit), given weightedk-best
POS-tagger output. The second and third columns report the total parsing time in seconds and the number of words parsed per
second. The number of non-terminals,|V |, is indicated in the next column. The last three columns show the labeled recall (LR),
labeled precision (LP), and F-measure (F).

as mentioned above, these factorizations reduce the
size of the non-terminal set, which in turn improves
CYK efficiency. The efficiency benefit of making a
Markov assumption in factorization can be substan-
tial, given the reduction of both non-terminals and
productions, which improves the grammar constant.
With standard right-factorization, as in Figure 1(b),
the non-terminal set for the PCFG induced from sec-
tions 2-21 of the Penn WSJ Treebank grows from
its original size of 72 to 10105, with 23220 produc-
tions. With a Markov factorization of orders 2, 1 and
0 we get non-terminal sets of size 2492, 564, and 99,
and rule production sets of 11659, 6354, and 3803,
respectively.

These reductions in the size of the non-terminal
set from the original factored grammar result in an
order of magnitude reduction in complexity of the
CYK algorithm. One common strategy in statisti-
cal parsing is what can be termed an approximate
coarse-to-fine approach: a simple PCFG is used to
prune the search space to which richer and more
complex models are applied subsequently (Char-
niak, 2000; Charniak and Johnson, 2005). Produc-
ing a “coarse” chart as efficiently as possible is thus
crucial (Charniak et al., 1998; Blaheta and Charniak,
1999), making these factorizations particularly use-
ful.

2.2 CYK parser and baselines

To illustrate the importance of this reduction in non-
terminals for efficient parsing, we will present base-
line parsing results for a development set. For
these baseline trials, we trained a PCFG on sec-
tions 2-21 of the Penn WSJ Treebank (40k sen-
tences, 936k words), and evaluated on section 24
(1346 sentences, 32k words). The parser takes as
input the weightedk-best POS-tag sequences of a

final NNS depends on the preceding NN, despite the Markov
order-0 factorization. Because of our focus on efficient CYK,
we accept these higher order dependencies rather than produc-
ing unary productions. Only n-ary rulesn>2 are factored.

perceptron-trained tagger, using the tagger docu-
mented in Hollingshead et al. (2005). The number
of tagger candidatesk for all trials reported in this
paper was 0.2n, wheren is the length of the string.
From the weightedk-best list, we derive a condi-
tional probability of each tag at positioni by taking
the sum of the exponential of the weights of all can-
didates with that tag at positioni (softmax).

The parser is an exhaustive CYK parser that takes
advantage of the fact that, with the grammar fac-
torization method described, factored non-terminals
can only occur as the second child of a binary pro-
duction. Since the bulk of the non-terminals result
from factorization, this greatly reduces the number
of possible combinations given any two cells. When
parsing with a parent-annotated grammar, we use a
version of the parser that also takes advantage of the
partitioning of the non-terminal set, i.e., the fact that
any given non-terminal has already its parent indi-
cated in its label, precluding combination with any
non-terminal that does not have the same parent an-
notated.

Table 1 shows baseline results for standard right-
factorization and factorization with Markov orders
0-2. Training consists of applying a particular gram-
mar factorization to the treebank prior to inducing
a PCFG using maximum likelihood (relative fre-
quency) estimation. Testing consists of exhaustive
CYK parsing of all sentences in the development set
(no length limit) with the induced grammar, then de-
transforming the maximum likelihood parse back to
the original format for evaluation against the refer-
ence parse. Evaluation includes the standard PAR-
SEVAL measures labeled precision (LP) and labeled
recall (LR), plus the harmonic mean (F-measure) of
these two scores. We also present a result using
parent annotation (Johnson, 1998) with a 2nd-order
Markov assumption. Parent annotation occurs prior
to treebank factorization. This condition is roughly
equivalent to theh = 1, v = 2 in Klein and Manning

314

(2003b)3.
From these results, we can see the large efficiency

benefit of the Markov assumption, as the size of the
non-terminal and production sets shrink. However,
the efficiency gains come at a cost, with the Markov
order-0 factored grammar resulting in a loss of a full
8 percentage points of F-measure accuracy. Parent
annotation provides a significant accuracy improve-
ment over the other baselines, but at a substantial
efficiency cost.

Note that the efficiency impact is not a strict func-
tion of either the number of non-terminals or pro-
ductions. Rather, it has to do with the number of
competing non-terminals in cells of the chart. Some
grammars may be very large, but less ambiguous in
a way that reduces the number of cell entries, so that
only a very small fraction of the productions need to
be applied for any pair of cells. Parent annotation
does just the opposite – it increases the number of
cell entries for the same span, by creating entries for
the same constituent with different parents. Some
non-terminal annotations, e.g., splitting POS-tags by
annotating their lexical items, result in a large gram-
mar, but one where the number of productions that
will apply for any pair of cells is greatly reduced.

Ideally, one would obtain the efficiency benefit
of the small non-terminal set demonstrated with the
Markov order-0 results, while encoding key gram-
matical constraints whose absence results in an ac-
curacy loss. The method we present attempts to
achieve this by using a statistical test to determine
structural zerosand modifying the factorization to
remove the probability mass assigned to them.

3 Detecting Structural Zeros

The main idea behind our method for detecting
structural zeros is to search for events that are in-
dividually very frequent but that do not co-occur.
For example, consider the Markov order-0 bi-
nary rule production in Figure 2. The produc-
tion NP→NP NP: may be very frequent, as is the
NP:→CC NN production, but they never co-occur
together, because NP does not conjoin with NN
in the Penn Treebank. If the counts of two such
eventsa andb, e.g., NP→NP NP: and NP:→CC NN
are very large, but the count of their co-occurrence

3Their Markov order-2 factorization does not follow the lin-
ear order of the children, but rather includes the head-child plus
one other, whereas our factorization does not involve identifica-
tion of the head child.

NP

��� HHH

NP
�� PP
α

NP:
�� HH

CC NN

Figure 2:Markov order-0 local tree, with possible non-local
¡state-split information.

is zero, then the co-occurrence ofa and b can be
viewed as a candidate for the list of events that
are structurally inadmissible. The probability mass
for the co-occurrence ofa and b can be removed
by replacing the factored non-terminal NP: with
NP:CC:NN whenever there is a CC and an NN com-
bining to form a factored NP non-terminal.

The expansion of the factored non-terminals is not
the only event that we might consider. For exam-
ple, a frequent left-most child of the first child of the
production, or a common left-corner POS or lexi-
cal item, might never occur with certain productions.
For example, ‘SBAR→IN S’ and ‘IN→of’ are both
common productions, but they never co-occur. We
focus on left-most children and left-corners because
of the factorization that we have selected, but the
same idea could be applied to other possible state
splits.

Different statistical criteria can be used to com-
pare the counts of two events with that of their co-
occurrence. This section examines several possible
criteria that are presented, for ease of exposition,
with general sequences of events. For our specific
purpose, these sequences of events would be two
rule productions.

3.1 Notation

This section describes several statistical criteria to
determine if a sequence of two events should be
viewed as a structural zero. These tests can be gen-
eralized to longer and more complex sequences, and
to various types of events, e.g., word, word class, or
rule production sequences.

Given a corpusC, and a vocabularyΣ, we denote
by ca the number of occurrences ofa in C. Let n
be the total number of observations inC. We will
denote bȳa the set{b ∈ Σ : b 6= a}. Hencecā =
n− ca. Let P(a) = ca

n , and forb ∈ Σ, let P(a|b) =
cab
cb

. Note thatcāb = cb − cab.

315

3.2 Mutual information

The mutual information between two random vari-
ablesX andY is defined as

I(X;Y) =
∑
x,y

P(x, y) log
P(x, y)

P(x)P(y)
. (1)

For a particular event sequence of length twoab, this
suggests the following statistic:

I(ab) = log P(ab)− log P(a)− log P(b)
= log cab − log ca − log cb + log n

Unfortunately, forcab = 0, I(ab) is not finite. If we
assume, however, that all unobserved sequences are
given someε count, then whencab = 0,

I(ab) = K − log ca − log cb, (2)

whereK is a constant. Since we need these statistics
only for ranking purposes, we can ignore the con-
stant factor.

3.3 Log odds ratio

Another statistic that, like mutual information, is ill-
defined with zeros, is thelog odds ratio:

log(θ̂) = log cab + log cāb̄ − log cāb − log cab̄.

Here again, ifcab = 0, log(θ̂) is not finite. But, if we
assign to all unobserved pairs a small countε, when
cab = 0, cāb = cb, and the expression becomes

log(θ̂) = K + log cāb̄ − log cb − log ca. (3)

3.4 Pearson chi-squared

For anyi, j ∈ Σ, defineµ̂ij = cicj

n . The Pearson
chi-squared test of independence is then defined as
follows:

X 2 =
∑

i ∈ {a, ā}
j ∈

˘
b, b̄

¯
(cij−µ̂ij)

2

µ̂ij
=

∑
i ∈ {a, ā}
j ∈

˘
b, b̄

¯
(ncij−cicj)

2

ncicj
.

In the case of interest for us,cab = 0 and the statistic
simplifies to:

X 2 = cacb
n + c2acb

ncā
+ cac2b

ncb̄
+ c2ac2b

ncācb̄
= ncacb

cācb̄
. (4)

3.5 Log likelihood ratio

Pearson’s chi-squared statistic assumes a normal or
approximately normal distribution, but that assump-
tion typically does not hold for the occurrences of
rare events (Dunning, 1994). It is then preferable to
use the likelihood ratio statistic which allows us to
compare the null hypothesis, thatP(b) = P(b|a) =
P(b|ā) = cb

n , with the hypothesis thatP(b|a) = cab
ca

and P(b|ā) = cāb
cā

. In words, the null hypothesis
is that the context of eventa does not change the
probability of seeingb. These discrete conditional
probabilities follow a binomial distribution, hence
the likelihood ratio is

λ =
B[P(b), cab, ca] B[P(b), cāb, cā]

B[P(b|a), cab, ca] B[P(b|ā), cāb, cā]
, (5)

whereB[p, x, y] = px(1 − p)y−x(y
x

). In the spe-

cial case wherecab = 0, P(b|ā) = P(b), and this
expression can be simplified as follows:

λ =
(1− P(b))caP(b)cāb(1− P(b))cā−cāb

P(b|ā)cāb(1− P(b|ā))cā−cāb

= (1− P(b))ca . (6)

The log-likelihood ratio, denoted byG2, is known to
be asymptoticallyX 2-distributed. In this case,

G2 = −2ca log(1− P(b)), (7)

and with the binomial distribution, it has has one
degree of freedom, thus the distribution will have
asymptotically a mean of one and a standard devia-
tion of

√
2.

We experimented with all of these statistics.
While they measure different ratios, empirically they
seem to produce very similar rankings. For the
experiments reported in the next section, we used
the log-likelihood ratio because this statistic is well-
defined with zeros and is preferable to the Pearson
chi-squared when dealing with rare events.

4 Experimental results

We used the log-likelihood ratio statisticG2 to rank
unobserved eventsab, wherea ⊂ P andb ∈ V . Let
Vo be the original, unfactored non-terminal set, and
let α ∈ (Vo :)∗ be a sequence of zero or more non-
terminal/colon symbol pairs. Suppose we have a fre-
quent factored non-terminalX :αB for X, B ∈ Vo.
Then, if the set of productionsX → Y X :αA with

316

A ∈ Vo is also frequent, butX → Y X:αB is un-
observed, this is a candidate structural zero. Simi-
lar splits can be considered with non-factored non-
terminals.

There are two state split scenarios we consider in
this paper. Scenario 1 is for factored non-terminals,
which are always the second child of a binary pro-
duction. For use in Equation 7,

ca =
∑

A∈Vo

c(X → Y X:αA)

cb = c(X:αB) for B ∈ Vo

cab = c(X → Y X:αB)

P(b) =
c(X:αB)∑

A∈Vo
c(X:αA)

.

Scenario 2 is for non-factored non-terminals, which
we will split using the leftmost child, the left-corner
POS-tag, and the left-corner lexical item, which are
easily incorporated into our grammar factorization
approach. In this scenario, the non-terminal to be
split can be either the left or right child in the binary
production. Here we show the counts for the left
child case for use in Equation 7:

ca =
∑
A

c(X → Y [αA]Z)

cb = c(Y[αB])
cab = c(X → Y [αB]Z)

P(b) =
c(Y [αB])∑
A c(Y [αA])

In this case, the possible splits are more compli-
cated than just non-terminals as used in factoring.
Here, the first possible split is the left child cat-
egory, along with an indication of whether it is
a unary production. One can further split by in-
cluding the left-corner tag, and even further by
including the left-corner word. For example, a
unary S category might be split as follows: first to
S[1:VP] if the single child of the S is a VP; next
to S[1:VP:VBD] if the left-corner POS-tag is VBD;
finally to S[1:VP:VBD:went] if the VBD verb was
‘went’.

Note that, once non-terminals are split by anno-
tating such information, the base non-terminals, e.g.,
S, implicitly encode contexts other than the ones that
were split.

Table 2 shows the unobserved rules with the
largestG2 score, along with the ten non-terminals

Unobserved production G2

(added NT(s) in bold) score
PP→ IN[that] NP 7153.1
SBAR→ IN[that] S[1:VP] 5712.1
SBAR→ IN[of] S 5270.5
SBAR→ WHNP[1:WDT] S[1:VP:TO] 4299.9
VP→ AUX VP[MD] 3972.1
SBAR→ IN[in] S 3652.1
NP→ NP VP[VB] 3236.2
NP→ NN NP:CC:NP 2796.3
SBAR→ WHNP S[1:VP:VBG] 2684.9

Table 2: Top ten non-terminals to add, and the unobserved
productions leading to their addition to the non-terminal set.

that these productions suggest for inclusion in
our non-terminal set. The highest scoring un-
observed production is PP→ IN[that] NP. It re-
ceives such a high score because the base production
(PP→ IN NP) is very frequent, and so is ‘IN→that’,
but they jointly never occur, since ‘IN→that’ is a
complementizer. This split non-terminal also shows
up in the second-highest ranked zero, an SBAR with
‘that’ complementizer and an S child that consists
of a unary VP. The unary S→VP production is very
common, but never with a ‘that’ complementizer in
an SBAR.

Note that the fourth-ranked production uses two
split non-terminals. The fifth ranked rule presum-
ably does not add much information to aid parsing
disambiguation, since the AUX MD tag sequence is
unlikely4. The eighth ranked production is the first
with a factored category, ruling out coordination be-
tween NN and NP.

Before presenting experimental results, we will
mention some practical issues related to the ap-
proach described. First, we independently parame-
terized the number of factored categories to select
and the number of non-factored categories to se-
lect. This was done to allow for finer control of the
amount of splitting of non-terminals of each type.
To choose 100 of each, every non-terminal was as-
signed the score of the highest scoring unobserved
production within which it occurred. Then the 100
highest scoring non-terminals of each type were
added to the base non-terminal list, which originally
consisted of the atomic treebank non-terminals and
Markov order-0 factored non-terminals.

Once the desired non-terminals are selected, the
training corpus is factored, and non-terminals are
split if they were among the selected set. Note, how-

4In fact, we do not consider splits when both siblings are
POS-tags, because these are unlikely to carry any syntactic dis-
ambiguation.

317

0 250 500 750 1000 1250 1500
60

65

70

75

80

85

90

Number of non−factored splits

F
−

m
ea

su
re

 a
cc

ur
ac

y

Figure 3:F-measure accuracy on development set versus the
number of non-factored splits for the given run. Points represent
different numbers of factored splits.

ever, that some of the information in a selected non-
terminal may not be fully available, requiring some
number of additional splits. Any non-terminal that is
required by a selected non-terminal will be selected
itself. For example, suppose that NP:CC:NP was
chosen as a factored non-terminal. Then the sec-
ond child of any local tree with that non-terminal
on the LHS must either be an NP or a factored
non-terminal with at least the first child identified
as an NP, i.e., NP:NP. If that factored non-terminal
was not selected to be in the set, it must be added.
The same situation occurs with left-corner tags and
words, which may be arbitrarily far below the cate-
gory.

After factoring and selective splitting of non-
terminals, the resulting treebank corpus is used to
train a PCFG. Recall that we use thek-best output of
a POS-tagger to parse. For each POS-tag and lexical
item pair from the output of the tagger, we reduce
the word to lower case and check to see if the com-
bination is in the set of split POS-tags, in which case
we split the tag, e.g., IN[that].

Figure 3 shows the F-measure accuracy for our
trials on the development set versus the number of
non-factored splits parameterized for the trial. From
this plot, we can see that 500 non-factored splits
provides the best F-measure accuracy on the dev
set. Presumably, as more than 500 splits are made,
sparse data becomes more problematic. Figure 4
shows the development set F-measure accuracy ver-
sus the number of words-per-second it takes to parse
the development set, for non-factored splits of 0 and
500, at a range of factored split parameterizations.
With 0 non-factored splits, efficiency is substantially
impacted by increasing the factored splits, whereas
it can be seen that with 500 non-factored splits, that
impact is much less, so that the best performance

0 20 40 60 80 100 120 140 160 180

60

65

70

75

80

85

90

Words per second

F
−

m
ea

su
re

 a
cc

ur
ac

y

non−fact. splits=0
non−fact. splits=500
Markov order−0
Markov order−1
Markov order−2
PA, Markov order−2

Figure 4: F-measure accuracy versus words-per-second for
(1) no non-factored splits (i.e., only factored categories se-
lected); (2) 500 non-factored splits, which was the best perform-
ing; and (3) four baseline results.

is reached with both relatively few factored non-
terminal splits, and a relatively small efficiency im-
pact. The non-factored splits provide substantial ac-
curacy improvements at relatively small efficiency
cost.

Table 3 shows the 1-best and reranked 50-best re-
sults for the baseline Markov order-2 model, and
the best-performing model using factored and non-
factored non-terminal splits. We present the effi-
ciency of the model in terms of words-per-second
over the entire dev set, including the longer strings
(maximum length 116 words)5. We used thek-best
decoding algorithm of Huang and Chiang (2005)
with our CYK parser, using on-demandk-best back-
pointer calculation. We then trained a MaxEnt
reranker on sections 2-21, using the approach out-
lined in Charniak and Johnson (2005), via the pub-
licly available reranking code from that paper.6 We
used the default features that come with that pack-
age. The processing time in the table includes the
time to parse and rerank. As can be seen from the
trials, there is some overhead to these processes, but
the time is still dominated by the base parsing.

We present thek-best results to demonstrate the
benefits of using a better model, such as the one we
have presented, for producing candidates for down-
stream processing. Even with severe pruning to only
the top 50 candidate parses per string, which re-
sults in low oracle and reranked accuracy for the
Markov order-2 model, the best-performing model
based on structural zeros achieves a relatively high
oracle accuracy, and reaches 88.0 and 87.5 percent
F-measure accuracy on the dev (f24) and eval (f23)
sets respectively. Note that the well-known Char-

5The parsing time with our model for average length sen-
tences (23-25 words) is 0.16 seconds per sentence.

6http://www.cog.brown.edu/˜mj/code .

318

No. of Development (f24) Eval (f23)
Technique Cands Time(s) Words/s Oracle F LR LP F LR LP F
Baseline, Markov order-2 1 1302 24.9 71.3 68.8 73.8 71.3 68.9 73.9 71.4

50 1665 19.4 86.2 79.7 83.3 81.5 80.5 84.0 82.2

NT splits: factored=200 1 491 65.9 83.7 83.1 84.3 83.7 82.4 83.4 82.9
non-factored=500 50 628 51.5 93.8 87.4 88.7 88.0 87.1 88.0 87.5

Table 3:Parsing results on the development set (f24) and the evaluation set (f23) for the baseline Markov order-2 model and the
best-performing structural zero model, with 200 factored and 500 non-factored non-terminal splits. 1-best results, plus reranking
using a trained version of an existing reranker with 50 candidates.

niak parser (Charniak, 2000; Charniak and Johnson,
2005) uses a Markov order-3 baseline PCFG in the
initial pass, with a best-first algorithm that is run
past the first parse to populate the chart for use by
the richer model. While we have demonstrated ex-
haustive parsing efficiency, our model could be used
with any of the efficient search best-first approaches
documented in the literature, from those used in the
Charniak parser (Charniak et al., 1998; Blaheta and
Charniak, 1999) to A∗ parsing (Klein and Manning,
2003a). By using a richer grammar of the sort we
present, far fewer edges would be required in the
chart to include sufficient quality candidates for the
richer model, leading to further downstream savings
of processing time.

5 Conclusion

We described a method for creating concise PCFGs
by detecting structural zeros. The resulting un-
smoothed PCFGs have far higher accuracy than sim-
ple induced PCFGs and yet are very efficient to use.
While we focused on a small number of simple non-
terminal splits that fit the factorization we had se-
lected, the technique presented is applicable to a
wider range of possible non-terminal annotations,
including head or parent annotations. More gener-
ally, the ideas and method for determining structural
zeros (vs. sampling zeros) can be used in other con-
texts for a variety of other learning tasks.

Acknowledgments

This material is based upon work supported by
the National Science Foundation under Grant IIS-
0447214. Any opinions, findings, and conclusions
or recommendations expressed in this material are
those of the authors and do not necessarily reflect
the views of the NSF. The first author’s work was
partially funded by the New York State Office of
Science Technology and Academic Research (NYS-
TAR).

References
D. Blaheta and E. Charniak. 1999. Automatic compensation

for parser figure-of-merit flaws. InProceedings of ACL,
pages 513–518.

E. Charniak and M. Johnson. 2005. Coarse-to-fine n-best pars-
ing and MaxEnt discriminative reranking. InProceedings of
ACL, pages 173–188.

E. Charniak, S. Goldwater, and M. Johnson. 1998. Edge-based
best-first chart parsing. InProceedings of the 6th Workshop
on Very Large Corpora, pages 127–133.

E. Charniak. 2000. A maximum-entropy-inspired parser. In
Proceedings of NAACL, pages 132–139.

M.J. Collins. 1997. Three generative, lexicalised models for
statistical parsing. InProceedings of ACL, pages 16–23.

T. Dunning. 1994. Accurate Methods for the Statistics
of Surprise and Coincidence.Computational Linguistics,
19(1):61–74.

J. Eisner and G. Satta. 1999. Efficient parsing for bilexical
context-free grammars and head automaton grammars. In
Proceedings of ACL, pages 457–464.

J. Eisner. 1997. Bilexical grammars and a cubic-time proba-
bilistic parser. InProceedings of the International Workshop
on Parsing Technologies, pages 54–65.

K. Hollingshead, S. Fisher, and B. Roark. 2005. Comparing
and combining finite-state and context-free parsers. InPro-
ceedings of HLT-EMNLP, pages 787–794.

L. Huang and D. Chiang. 2005. Better k-best parsing. InPro-
ceedings of the 9th International Workshop on Parsing Tech-
nologies (IWPT), pages 53–64.

M. Johnson. 1998. PCFG models of linguistic tree representa-
tions. Computational Linguistics, 24(4):617–636.

T. Kasami. 1965. An efficient recognition and syntax analy-
sis algorithm for context-free languages. Technical Report,
AFCRL-65-758, Air Force Cambridge Research Lab., Bed-
ford, MA.

D. Klein and C. Manning. 2003a. A* parsing: Fast exact
Viterbi parse selection. InProceedings of HLT-NAACL.

D. Klein and C. Manning. 2003b. Accurate unlexicalized pars-
ing. In Proceedings of ACL.

M.P. Marcus, B. Santorini, and M.A. Marcinkiewicz. 1993.
Building a large annotated corpus of English: The Penn
Treebank.Computational Linguistics, 19(2):313–330.

D.H. Younger. 1967. Recognition and parsing of context-free
languages in time n3. Information and Control, 10(2):189–
208.

319

