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Abstract

We present a method for induction of con-
cise and accurate probabilistic context-
free grammars for efficient use in early
stages of a multi-stage parsing technique.
The method is based on the use of statis-
tical tests to determine if a non-terminal
combination is unobserved due to sparse
data or hard syntactic constraints. Ex-
perimental results show that, using this
method, high accuracies can be achieved
with a non-terminal set that is orders
of magnitude smaller than in typically
induced probabilistic context-free gram-
mars, leading to substantial speed-ups in
parsing. The approach is further used in
combination with an existing reranker to
provide competitive WSJ parsing results.
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rithm. In the case of bilexical grammars, where cat-
egories in binary grammars are annotated with their
lexical heads, the grammar factor contributes an ad-
ditional O(n?|Vp|?) complexity, leading to an over-

all O(n®|Vp|3) parsing complexity, wherél/p| is

the number of delexicalized non-terminals (Eisner,
1997). Even with special modifications to the ba-
sic CYK algorithm, such as those presented by Eis-
ner and Satta (1999), improvements to the stochastic
model are obtained at the expense of efficiency.

In addition to the significant cost in efficiency,
increasing the non-terminal set impacts parame-
ter estimation for the stochastic model. With
more productions, much fewer observations per
production are available and one is left with the
hope that a subsequent smoothing technique can
effectively deal with this problem, regardless of
the number of non-terminals created. Klein and
Manning (2003b) showed that, by making certain
linguistically-motivated node label annotations, but
avoiding certain other kinds of state splits (mainly
lexical annotations) models of relatively high accu-

There is a very severe speed vs. accuracy trade6ficy can be built without resorting to smoothing.

in stochastic context-free parsing, which can be exthe resulting grammars were small enough to al-
plained by the grammar factor in the running-timdoW for exhaustive CYK parsing; even so, parsing
complexity of standard parsing algorithms such a$Peed was significantly impacted by the state splits:
the CYK algorithm (Kasami, 1965; Younger, 1967)_the test-set parsing time repc_thed was about 3s for
That algorithm has complexi® (n®|P|), wherenis ~ 2Verage length sentences, with a memory usage of
the length in words of the sentence parsed, |&tjds 1GB.

the number of grammar productions. Grammar non- This paper presents an automatic method for de-
terminals can be split to encode richer dependemiding which state to split in order to create concise
cies in a stochastic model and improve parsing a@nd accurate unsmoothed probabilistic context-free
curacy. For example, the parent of the left-hand sidgrammars (PCFGs) faefficientuse in early stages
(LHS) can be annotated onto the label of the LH®f a multi-stage parsing technique. The method is
category (Johnson, 1998), hence differentiating, fdrased on the use of statistical tests to determine if
instance, between expansions of a VP with parent& non-terminal combination is unobserved due to
and parent VP. Such annotations, however, tend the limited size of the samplesgmpling zerp or
substantially increase the number of grammar prdesecause it is grammatically impossiblstr(ctural
ductions as well as the ambiguity of the grammagzerd. This helps introduce a relatively small number
thereby significantly slowing down the parsing algoof new non-terminals with little additional parsing
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Figure 1:Five representations of amary production;z = 4. (a) Original production (b) Right-factored production (c) Right-
factored Markov order-2 (d) Right-factored Markov order-1 (e) Right-factored Markov order-0

overhead. Experimental results show that, using th{€ollins, 1997; Charniak, 2000):
method, high accuracies can be achieved with orders

of magnitude fewer non-terminals than in typically P(X — Yi..Ys)= P(V|X) ﬁP(Y‘X Yi---Yii1)

induced PCFGs, leading to substantial speed-ups in s
parsing. The approach can further be used in combi- ~ P(¥1|X) ﬁP(Y‘X Vg Yi)
nation with an existing reranker to provide competi- S o

tive WSJ parsing results.

The remainder of the paper is structured as fol- aking such a Markov assur_np'uon |s_closely re-
lows. Section 2 gives a brief description of PCF ated to grammar transformations required for cer-

induction from treebanks, including non-terminaltaln efficient parsing algorithms. For example, the

label-splitting, factorization, and relative frequencycYK parsing algorithm takes as input a Chomsky

estimation. Section 3 discusses the statistical criter%?r[.nal Form F;Cir']: G]; "?ﬁ’(a gramymZar wr;;:re all pro-
that we explored to determine structural zeros an hC |or)1? a;ie 0 dZe or t_) . Ior d_>ta’
thus select non-terminals for the factored PCFG. F{Y1€réA, ', andz areé non-ierminals and a ter-

. 1 . . .
nally, Section 4 reports the results of parsing experr-mtnal Eyml?ol.r.] Bma;rlzed E CFGbS are f!ndtuceg fror?h i
ments using our exhaustivebest CYK parser with a treebank whose trees have been factored so tha

the concise PCFGs induced from the Penn WSJ tre&-2"Y _productlons W'tm>2 be'come sequences of
bank (Marcus et al., 1993). n—1 binary produc_tlons. Fl_JII rlght—factorl_zatlon in-
volves concatenating the final-1 categories from

the RHS of am-ary production to form a new com-
2  Grammar induction posite non-terminal. For example, the original pro-
duction NP— DT JJ NN NNS shown in Figure 1(a)
is factored into three binary rules, as shown in Fig-
ure 1(b). Note that a PCFG induced from such right-
factored trees is weakly equivalent to a PCFG in-
duced from the original treebank, i.e., it describes
the same language.

A context-free gramma® = (V, T, ST, P), or CFG
in short, consists of a set of non-terminal symlals
a set of terminal symbol$, a start symbobt € V,
and a set of productio® of the form: A — «,
wheredA € V anda € (VUT)*. APCFGis a

a given non-terminal sum to one. the firstk children dominated by the composite fac-

tored label. Figure 1 (c), (d), and (e) show right-
2.1 Smoothing and factorization factored trees of Markov orders 2, 1 and O respec-
tively.? In addition to being used for smoothing

PCFGs induced from the Penn Treebank have manyT————

ducti ith | " inal Our implementation of the CYK algorithm has been ex-
productions with long sequences of non-terminalgnged to allow for unary productions with non-terminals on

on the RHS. Probability estimates of the RHS givethe RHS in the PCFG.

the LHS are often smoothed by making a Markov 2Note that these factorizations do not provide exactly the
. . e . stated Markov order for all dependencies in the productions,

assumption regarding the conditional 'nqependen%cause we are restricting factorization to only produce binary

of a category on those more tharcategories away productions. For example, in Figure 1(e), the probability of the
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PCFG Time (s) | Words/s V| |P| LR LP F
Right-factored 4848 6.7 | 10105| 23220 69.2 | 73.8| 715
Right-factored, Markov order-2 1302 249 | 2492| 11659| 68.8 | 73.8 | 71.3
Right-factored, Markov order-1 445 72.7 564 | 6354 | 68.0| 73.0| 705
Right-factored, Markov order-0 206 157.1 99 3803 | 61.2 | 65.5| 63.3
Parent-annotated, Right-factored, Markov ordef-2 7510 | 43 5876 22444]762] 783 77.2

Table 1:Baseline results of exhaustive CYK parsing using different probabilistic context-free grammars. Grammars are trained
from sections 2-21 of the Penn WSJ Treebank and tested on all sentences of section 24 (no length limit), given ivbagtted
POS-tagger output. The second and third columns report the total parsing time in seconds and the nhumber of words parsed per
second. The number of non-termindlg), is indicated in the next column. The last three columns show the labeled recall (LR),
labeled precision (LP), and F-measure (F).

as mentioned above, these factorizations reduce therceptron-trained tagger, using the tagger docu-
size of the non-terminal set, which in turn improvesnented in Hollingshead et al. (2005). The number
CYK efficiency. The efficiency benefit of making aof tagger candidatek for all trials reported in this
Markov assumption in factorization can be substarpaper was 0.2, wheren is the length of the string.
tial, given the reduction of both non-terminals and-rom the weighted:-best list, we derive a condi-
productions, which improves the grammar constantional probability of each tag at positiarby taking
With standard right-factorization, as in Figure 1(b)the sum of the exponential of the weights of all can-
the non-terminal set for the PCFG induced from sedidates with that tag at positiansoftmax).

tions 2-21 of the Penn WSJ Treebank grows from
its original size of 72 to 10105, with 23220 produc-
tions. With a Markov factorization of orders 2, 1 an
0 we get non-terminal sets of size 2492, 564, and 9
and rule production sets of 11659, 6354, and 380
respectively.

The parser is an exhaustive CYK parser that takes
dvantage of the fact that, with the grammar fac-
orization method described, factored non-terminals
an only occur as the second child of a binary pro-
uction. Since the bulk of the non-terminals result
. . . . from factorization, this greatly reduces the number
These reductions in the size of the non-termin f possible combinations given any two cells. When

set from the original factored grammar result in arbarsing with a parent-annotated grammar, we use a

order of magnitude reduction in complexity of theversion of the parser that also takes advantage of the

CYK alg_orlthm. One common strategy In Stat_'St" artitioning of the non-terminal set, i.e., the fact that
cal parsing 15 what can.be t(_ermed an approxma&ny given non-terminal has already its parent indi-
coarse-to-fine approach: a simple PCFG is used {Q;q i, jts label, precluding combination with any
prune the search space t(.) which richer and MOKfon-terminal that does not have the same parent an-
complex models are applied subsequently (Chaﬁ'otated.

niak, 2000; Charniak and Johnson, 2005). Produc-

ing a “coarse” chart as efficiently as possible is thus Table 1 shows baseline results for standard right-
crucial (Charniak et al., 1998; Blaheta and Charniakactorization and factorization with Markov orders

1999), making these factorizations particularly used-2. Training consists of applying a particular gram-

ful. mar factorization to the treebank prior to inducing
a PCFG using maximum likelihood (relative fre-
2.2 CYK parser and baselines quency) estimation. Testing consists of exhaustive

To illustrate the importance of this reduction in nonCYK parsing of all sentences in the development set
terminals for efficient parsing, we will present base(N© length limit) with the induced grammar, then de-
line parsing results for a development set. Foifansforming the maximum likelihood parse back to
these baseline trials, we trained a PCFG on sefle original format for evaluation against the refer-
tions 2-21 of the Penn WSJ Treebank (40k serNCe parse. Evaluation includes the standard PAR-
tences, 936k words), and evaluated on section 22 VAL measures labeled precision (LP) and labeled
(1346 sentences, 32k words). The parser takes &all (LR), plus the harmonic mean (F-measure) of

input the weighteds-best POS-tag sequences of dhese two scores. We also present a result using
parent annotation (Johnson, 1998) with a 2nd-order
final NNS depends on the preceding NN, despite the Markoyjarkov assumption. Parent annotation occurs prior
order-0 factorization. Because of our focus on efficient CYK bank f i Thi dition i hi
we accept these higher order dependencies rather than prodtfa-tr_ee ank factorization. ) IS Co_n ition Is rogg y
ing unary productions. Only n-ary rules>2 are factored. equivalenttothé = 1, v = 2in Klein and Manning
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(2003b§. NP

From these results, we can see the large efficiency NP/\NP,
benefit of the Markov assumption, as the size of the — o~
non-terminal and production sets shrink. However, o CC NN

the efficiency gains come at a cost, with the Markov

order-0 factored grammar resulting in a loss of a fulFigure 2: Markov order-0 local tree, with possible non-local
8 percentage points of F-measure accuracy. Paresiate-splitinformation.

annotation provides a significant accuracy improve-

mf?n_t over th(: other baselines, but at a substantllfgl zero, then the co-occurrence ofand b can be

€ |C|enc% co?]. fici _ _ ictf viewed as a candidate for the list of events that
_ Note that the efficiency impact is not a strict funC- o i cturally inadmissible. The probability mass
tion of either the number of non-terminals or Protor the co-occurrence of and b can be removed
ductions. Rather, it has to do with the number OBy replacing the factored non-terminal NP: with

competing non-terminals in cells of the chart. SOMRip-cC:NN whenever there is a CC and an NN com-
grammars may be very large, but less ambiguous lﬂning to form a factored NP non-terminal.
a way that reduces the number of cell entries, so that

only a very small fraction of the productions need to The expansion of the factored non-terminals is not
be applied for any pair of cells. Parent annotatiof€ only event that we might consider. For exam-
does just the opposite — it increases the number Bte. afrgquent left-most child of the first child of the_:
cell entries for the same span, by creating entries feoduction, or a common left-corner POS or lexi-
the same constituent with different parents. someal item, might never occur with certain productions.
non-terminal annotations, e.g., splitting POS-tags byor example, ‘SBAR-IN S’ and ‘IN—of’ are both
annotating their lexical items, result in a large gramommon productions, but they never co-occur. We
mar, but one where the number of productions thdpcus on Ieft—_mo_st children and left-corners because
will apply for any pair of cells is greatly reduced. of the .factorlzatlon that we have selected,. but the
Ideally, one would obtain the efficiency benefiS@me idea could be applied to other possible state
of the small non-terminal set demonstrated with th&P!its-
Markov order-0 results, while encoding key gram- Different statistical criteria can be used to com-
matical constraints whose absence results in an geare the counts of two events with that of their co-
curacy loss. The method we present attempts wccurrence. This section examines several possible
achieve this by using a statistical test to determineriteria that are presented, for ease of exposition,
structural zerosand modifying the factorization to with general sequences of events. For our specific
remove the probability mass assigned to them.  purpose, these sequences of events would be two

. rule productions.
3 Detecting Structural Zeros

The main idea behind our method for detectin% 1 Notation
structural zeros is to search for events that are in-

gg’:dléignviy fégﬂg%rgr bfﬁeth&ta?focOérgz'r?gczﬁhis section describes several statistical criteria to
P, o determine if a sequence of two events should be
nary rule production in Figure 2. The produc-

: . . viewed as a structural zero. These tests can be gen-
tion NP—~NP NP: may be very frequent, as is theeralized to longer and more complex sequences, and

NP:—CC NN production, but they never co-occur. .
e various types of events, e.g., word, word class, or
together, because NP does not conjoin with N Lle production sequences
in the Penn Treebank. If the counts of two such™ < P d '
eventsz andb, e.g., NP->NP NP: and NP>CC NN Given a corpug’, and a vocabulary., we denote
are very large, but the count of their co-occurrencBY ca the number of occurrences ofin C. Letn
be the total number of observationsdn We will

$Their Markov order-2 factorization does not follow the lin- denote bya the set{b € ¥ : b # a}. Hencec; =
ear order of the children, but rather includes the head-child plus LetP  ta dforb € 3. let P(alb) —
one other, whereas our factorization does not involve identificd? — Ca- L€tP(a) = S, and forb € ¥, let P(alb) =
tion of the head child. %b Note thatcg, = ¢, — cgp.

315



3.2 Mutual information 3.5 Log likelihood ratio

The mutual information between two random varifearson’s chi-squared statistic assumes a normal or
ablesX andY is defined as approximately normal distribution, but that assump-
tion typically does not hold for the occurrences of
ZP 2, y)log & Y)_ P(z,y) (1) rareevents (Dunning, 1994). It is then preferable to
P(z)P(y) use the likelihood ratio statistic which allows us to
compare the null hypothesis, thatb) = P(bla) =
P(bla) = <&, with the hypothesis tha&?(b|a) = S«

Cq

For a particular event sequence of length twothis

suggests the following statistic: and P(b|a) = . In words, the null hypothesis
is that the context of event does not change the
I(ab) = logP(ab) —logP(a) — log P(b) probability of seeing. These discrete conditional

probabilities follow a binomial distribution, hence

= logca —logcq —logey, +logn the likelihood ratio is

Unfortunately, forc,, = 0, I(ab) is not finite. If we _ B[P(b), cap, ca] B[P(b), cap, cal 5)
assume, however, that all unobserved sequences are” — B[P(b|a), cup, ca] B[P (0]a), cap, ca]’
given some: count, then whem,;, = 0,

whereB|p, z,y] = p*(1 — p)¥~~ Y).In the spe-
I(ab) = K —logc, —logay, (2) Pyl = (L =) x ) P
cial case where,, = 0, P(bla) = P(b), and this
whereK is a constant. Since we need these statisti@pression can be simplified as follows:
only for ranking purposes, we can ignore the con- (1= P(b))eP(b)eet (1 — P(b))cs—<ar

stant factor. by
P(bla)ear (1 — P(bla))a—car
3.3 Log odds ratio = (1—-P(b)). (6)
Another statistic that, like mutual information, is ill- Te log-likelihood ratio, denoted b2, is known to
defined with zeros, is thieg odds ratio be asymptoticallyt2-distributed. In this case,
log(é) = log cqp + log c;5 — log cap — log ¢ 3. G? = —2¢,log(1 — P(b)), @)

Here again, if:,, = 0, log(é) is not finite. But, if we 3nd with the binomial distributi.on,_ it _has h_as one
assign to all unobserved pairs a small coymwhen egree of freedom, thus the distribution will havg
¢ap = 0, cap = ¢, and the expression becomes a}symptotlcally a mean of one and a standard devia-
tion of v/2

We experimented with all of these statistics.
While they measure different ratios, empirically they
seem to produce very similar rankings. For the
experiments reported in the next section, we used
For anyi,j € X, definej,;; = The Pearson the log-likelihood ratio because this statistic is well-
chi-squared test of mdependence is then defined dsfined with zeros and is preferable to the Pearson

log(f) = K + log ¢,z — log ey —logea.  (3)

3.4 Pearson chi-squared

clcj

follows: chi-squared when dealing with rare events.
9 (cij—fii))? (neij—cicy)? 4 Experimental results
A% = Z jﬂz‘j == Z :LCiCj = - . .
i€ {a, i€ {a,a We used the log-likelihood ratio statisti¢? to rank

unobserved event®, wherea ¢ P andb € V. Let
In the case of interest for us,;, = 0 and the statistic V, be the original, unfactored non-terminal set, and

simplifies to: leta € (V, :)* be a sequence of zero or more non-
termmal/colon symbol pairs. Suppose we have a fre-
Y2 _ o | 2 + cac} + 2 _ neacy 4) quent factored non-termin_a{:aB for X,B € Vo
nca ncg | ncacy cacp Then, if the set of production¥ — Y X:aA with
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A € V, is also frequent, buK — Y X:aB is un- Unobserved production G

.. . . . (added NT(s) in bold) score
obser\_/ed, this is a ca_ndldate _structural zero. Simi- —55— IN[hai] NP 1531
lar splits can be considered with non-factored non- ~SBAR— IN[that] S[L:VP] 57121
terminals. SBAR— IN[of] S 5270.5

There are two state split scenarios we consider in _SBAR — WHNP[LWDT] S[1:VP:TO] | 4299.9

this paper. Scenario 1 is for factored non-terminals, \S/EATQAiJi(N[iX]P['\gD] gggg:i
which are always the second child of a binary pro- NP NP VP[VE] 3236.2
duction. For use in Equation 7, NP — NN NP:CC:NP 2796.3
SBAR— WHNP S[1.VP:VBG] 2684.9
Co = Z (X - YX:aA) Table 2: Top ten non-terminals to add, and the unobserved
AcV, productions leading to their addition to the non-terminal set.
o = c(XwaB) forBeV, that these productions suggest for inclusion in
cap = (X —-YXaB) our non-terminal set. The highest scoring un-
c(X:aB) observed production is PP> IN[that] NP. It re-
P@) = S ey, d(Xad) ceives such a high score because the base production

(PP— IN NP) is very frequent, and so is ‘INthat’,
Scenario 2 is for non-factored non-terminals, whiclbut they jointly never occur, since ‘INthat’ is a
we will split using the leftmost child, the left-corner complementizer. This split non-terminal also shows
POS-tag, and the left-corner lexical item, which areip in the second-highest ranked zero, an SBAR with
easily incorporated into our grammar factorizatiorthat' complementizer and an S child that consists
approach. In this scenario, the non-terminal to bef a unary VP. The unary-SVP production is very
split can be either the left or right child in the binarycommon, but never with a ‘that’ complementizer in
production. Here we show the counts for the lefan SBAR.

child case for use in Equation 7: Note that the fourth-ranked production uses two
split non-terminals. The fifth ranked rule presum-
Ca = ZC(X — Y[aA]Z) ably does not add much information to aid parsing
A disambiguation, since the AUX MD tag sequence is
o = cY[aB]) unlikely*. The eighth ranked production is the first
cy = (X —Y[aB]Z) with a factored category, ruling out coordination be-
(Y[aB)) tween NN and NP.
P(b) S (Vo) Before presenting experimental results, we will
actle mention some practical issues related to the ap-

In this case, the possible splits are more compliroach described. First, we independently parame-
cated than just non-terminals as used in factoringerized the number of factored categories to select
Here, the first possible split is the left child cat-and the number of non-factored categories to se-
egory, along with an indication of whether it islect. This was done to allow for finer control of the
a unary production. One can further split by inamount of splitting of non-terminals of each type.
cluding the left-corner tag, and even further bylo choose 100 of each, every non-terminal was as-
including the left-corner word. For example, asigned the score of the highest scoring unobserved
unary S category might be split as follows: first taproduction within which it occurred. Then the 100
S[1:VP] if the single child of the S is a VP; next highest scoring non-terminals of each type were
to S[1:VP:VBD] if the left-corner POS-tag is VBD; added to the base non-terminal list, which originally
finally to S[1:VP:VBD:went] if the VBD verb was consisted of the atomic treebank non-terminals and
‘went’. Markov order-0 factored non-terminals.

Note that, once non-terminals are split by anno- Once the desired non-terminals are selected, the
tating such information, the base non-terminals, e.draining corpus is factored, and non-terminals are
S, implicitly encode contexts other than the ones thaplit if they were among the selected set. Note, how-

were split. —
b “In fact, we do not consider splits when both siblings are

Table 2 shows the urFObserved rules W'th thgos-tags, because these are unlikely to carry any syntactic dis-
largestG? score, along with the ten non-terminalsambiguation.
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Figure 3:F-measure accuracy on development set versus tiiggure 4: F-measure accuracy versus words-per-second for

number of non-factored splits for the given run. Points represefi#) no non-factored splits (i.e., only factored categories se-
different numbers of factored splits. lected); (2) 500 non-factored splits, which was the best perform-

ing; and (3) four baseline results.

ever, that some of the information in a selected nong reached with both relatively few factored non-
terminal may not be fully available, requiring someerminal splits, and a relatively small efficiency im-
number of additional splits. Any non-terminal thatispact. The non-factored splits provide substantial ac-
required by a selected non-terminal will be selectegluracy improvements at relatively small efficiency
itself. For example, suppose that NP:CC:NP wagqst.
chosen as a factored non-terminal. Then the sec-Taple 3 shows the 1-best and reranked 50-best re-
ond child of any local tree with that non-terminalgits for the baseline Markov order-2 model, and
on the LHS must either be an NP or a factoreghe pest-performing model using factored and non-
non-terminal with at least the first child identifiedtzctored non-terminal splits. We present the effi-
as an NP, i.e., NP:NP. If that facto_red non-terminaéiency of the model in terms of words-per-second
was not selected to be in the set, it must be addegyer the entire dev set, including the longer strings
The same situation occurs with left-corner tags anﬁnaximum length 116 word%) We used thé:-best
words, which may be arbitrarily far below the categecoding algorithm of Huang and Chiang (2005)
gory. with our CYK parser, using on-demakebest back-
After factoring and selective splitting of non-pointer calculation. We then trained a MaxEnt
terminals, the resulting treebank corpus is used t@ranker on sections 2-21, using the approach out-
train a PCFG. Recall that we use thddest output of lined in Charniak and Johnson (2005), via the pub-
a POS-tagger to parse. For each POS-tag and lexidialy available reranking code from that pagetwe
item pair from the output of the tagger, we reduceised the default features that come with that pack-
the word to lower case and check to see if the conage. The processing time in the table includes the
bination is in the set of split POS-tags, in which caséme to parse and rerank. As can be seen from the
we split the tag, e.g., IN[that]. trials, there is some overhead to these processes, but
Figure 3 shows the F-measure accuracy for ouhe time is still dominated by the base parsing.
trials on the development set versus the number of We present thé-best results to demonstrate the
non-factored splits parameterized for the trial. Fronbenefits of using a better model, such as the one we
this plot, we can see that 500 non-factored splitsave presented, for producing candidates for down-
provides the best F-measure accuracy on the detream processing. Even with severe pruning to only
set. Presumably, as more than 500 splits are madbge top 50 candidate parses per string, which re-
sparse data becomes more problematic. Figuresdlts in low oracle and reranked accuracy for the
shows the development set F-measure accuracy vétarkov order-2 model, the best-performing model
sus the number of words-per-second it takes to parbased on structural zeros achieves a relatively high
the development set, for non-factored splits of 0 andracle accuracy, and reaches 88.0 and 87.5 percent
500, at a range of factored split parameterization§.-measure accuracy on the dev (f24) and eval (f23)
With 0 non-factored splits, efficiency is substantiallysets respectively. Note that the well-known Char-
!mpaCtEd by |ncrea3|_ng the factored splits, Where%g time with our model for average length sen-
it can be seen that with 500 non-factored splits, thagnces (23-25 words) is 0.16 seconds per sentence.
impact is much less, so that the best performance ®http://www.cog.brown.edu/ mj/code
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No. of Development (f24) Eval (f23)
Technique Cands| Time(s) | Words/s | Oracle F| LR LP F LR LP F
Baseline, Markov order-2 1 1302 24.9 71.3 68.8| 73.8| 71.3|[ 68.9| 739 | 71.4
50 1665 19.4 86.2 79.7]1 83.3[ 815 80.5] 84.0| 82.2
NT splits: factored=200 1 491 65.9 83.7 83.1| 84.3| 83.7 || 82.4| 83.4| 82.9
non-factored=500 50 628 515 93.8 87.4188.7] 88.0] 87.1] 88.0] 87.5

Table 3:Parsing results on the development set (f24) and the evaluation set (f23) for the baseline Markov order-2 model and the
best-performing structural zero model, with 200 factored and 500 non-factored non-terminal splits. 1-best results, plus reranking
using a trained version of an existing reranker with 50 candidates.
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