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Abstract 

Speech recognition errors are inevitable in a 
speech dialog system. This paper presents an 
error handling method based on correction 
grammars which recognize the correction 
utterances which follow a recognition error. 
Correction grammars are dynamically created 
from existing grammars and a set of 
correction templates. We also describe a 
prototype dialog system which incorporates 
this error handling method, and provide 
empirical evidence that this method can 
improve dialog success rate and reduce the 
number of dialog turns required for error 
recovery. 

1 Introduction 

In a dialog system, speech recognition errors are 
inevitable and often make smooth communication 
between a user and a system difficult. Figure 1 shows an 
example of a dialog between a user and a system which 
illustrates a system error. The system misrecognized 
“Tokyo” in the user’s utterance (U1) as “Kyoto” (S3). If 
the system correctly recognized the user’s utterance, the 
user could answer “yes” at U3 and the weather is 
reported (S6). However, in this case, the user must 
correct the error at U3 and the turns from S4 to U5 are 
required to recover from the error. The dialog system 
must recognize the user’s response to the system error 
(correction utterance). Otherwise, more turns (or a 

complete restart) will be required to correct the error. 
Therefore, an error handling method which corrects a 
system error and returns to the normal dialog flow 
smoothly is an important requirement for practical 
dialog systems.  

Recent work related to error handling in speech 
dialog systems has mainly focused on error detection. 
Walker et al. (2000), Bosch et al. (2001) and 
Kazemzadeh et al. (2003) extracted several parameters 
(e.g., acoustic, lexical and semantic) from a dialog 
corpus, and analyzed the differences between correction 
utterances and the other utterances in a dialog. They 
also tried to detect system errors by using these 
parameters as input to machine learning methods. 
However, the issue of error recovery is not addressed. 

Danieli (1996) and LuperFoy & Duff (1996) 
proposed error detection methods based on plan 
matching. An error is detected when the intention or the 
parameter expressed in the user’s utterance is not 
consistent with the system’s assumptions and/or 
limitations. In these studies, the correction utterances 
are assumed to be recognized correctly. 

Kitaoka et al. (2003) proposed a method to detect 
system errors based on the similarity of speech patterns 
and hypotheses overlapping in the recognition result. 
They also proposed a method to improve the recognition 
accuracy for correction utterances by selecting a speech 
recognition grammar according to the results of the 
error detection. 

The previous studies assumed that the rules for 
speech recognition or natural language processing of 
correction utterances were prepared in advance (Danieli , 
1996; LuperFoy & Duff, 1996). These rules are 
indispensable because the correction utterance often 
includes the information required to correct the error. 
The correction utterance depends on the dialog context, 
especially on the user’s utterances prior to the system 
error. Therefore it is difficult for the system designer to 
prepare these rules in advance when the dialog flow 
becomes complex. To solve this problem, a method that 
can automatically create the rules to interpret correction 
utterances is desirable. 

In this paper, we will propose a method to 
dynamically create the rules to recognize correction 
utterances and repair recognition errors based on the 
dialog context. A prototype dialog system which 
incorporates the proposed method has been developed, 

S1:  Please tell me the area. 
U1: Tokyo. 
S2: Please tell me the date. 
U2: Tomorrow. 
S3: Would you like to know the weather for Kyoto 

tomorrow? 
U3: No, Tokyo. 
S4: Did you say Tokyo? 
U4: Yes. 
S5:  Would you like to know the weather for Tokyo 

tomorrow? 
U5: Yes. 
S6: The weather for Tokyo tomorrow is fine. 

Correction utterance 

System error 

 
Figure 1. Example of a dialog with a system error 



and we present experimental results which show the 
effectiveness of the approach. 

2 CAMMIA Dialog System 

Our current approach focuses on dialog systems which 
incorporate speech recognition modules utilizing regular 
grammars. The CAMMIA system is an example of such 
a dialog system (Nyberg et al., 2002). 

The CAMMIA system is a client-server dialog 
management system based on VoiceXML. Each dialog 
scenario in this system is described in the format of 
DialogXML. The system has the initiative in the dialog, 
and dialogs are oriented around slot-filling for particular 
queries or requests. The server sends a VoiceXML data 
file to the client VoiceXML interpreter for a particular 
dialog turn, compiled from the DialogXML scenario 
according to the current dialog context. The VoiceXML 
data includes system prompts, names of grammar files 
and valid transitions to subsequent dialog states. The 
client interacts with the user according to the 
VoiceXML data.  

Figure 2 shows an example of a grammar rule used 
in the CAMMIA system. The regular grammar rule can 
be represented as a transition network. The following 
sentences are recognized by the rule in Figure 2: 

• I would like to know the weather for Tokyo. 
• I would like to know the weather for Tokyo tomorrow. 

3 Error Handling Based on Correction 
Grammars 

To recognize the user’s utterances in a dialog system, a 
grammar for potential user utterances must be prepared 
in advance for each dialog context. For error handling, it 
is also necessary to anticipate correction utterances and 
prepare a correction grammar. We propose a method to 
automatically create the correction grammar based on 
the current dialog context; error detection and repair is 
implemented using the correction grammar. 

To create the correction grammar, the system must 
know the user’s utterances prior to the error, because 
correction utterances typically depend on them. If the 
user’s utterances are consistent with what the system is 
expecting, the correction grammar can be generated 
based on the grammar previously in use by the speech 
recognizer. Therefore, the sequence of grammars used 
in the dialog so far is stored in the grammar history as 
the dialog context, and the correction grammar is 
created using the grammars in this history. 

Most of the forms of correction utterances can be 
expected in advance because correction utterances 
include many repetitions of words or phrases from 
previous turns (Kazemzadeh et al., 2003). We assume 
that the rules to generate the correction grammar can be 
prepared as templates; the correction grammar is created 
by inserting information extracted from the grammar 

history into a template. 
Figure 3 shows an example of a process flow in a 

dialog system which performs error handling based on a 
correction grammar. The “system prompt n” is the 
process to output the n-th prompt to the user. The 
correction grammar is created based on the grammar 
used in the “user response n-1”, which is the process to 
recognize the (n-1)-th user utterance, and it is used in 
the “user response n” together with the “grammar n” 
which is used to recognize the n-th normal user’s 
utterance. The system detects the error when the user’s 
utterance is recognized using the correction grammar, 
and then transits into the “correction of errors” to 
modify the error. The grammar history in Figure 3 
stores only the grammar used in the last recognition 
process. The number of grammars stored in the history 
can be changed depending on the dialog management 
strategy and error handling requirements. 

4 Generation of Correction Grammar 

The correction grammar is created as follows. 

(1) Copying the grammar rules in the history 
The user often repeats the same utterance when the 
system misunderstood what s/he spoke. To detect 
when the user repeats exactly the same utterance, the 
grammar rules in the grammar history are copied into 
the correction grammar. 

(2) Inserting the rules in the history into the template 
When the user tries to correct the system error, some 

 1 2 4 “I would like to know the weather for” “Tokyo” “tomorrow” 3 “Tokyo” 
 

Figure 2. Example of the grammar rule used in the 
CAMMIA system  System prompt n-1 Grammar n-1Generation of correction grammar Correction grammar n-1 Grammar n . . . 

. . . Template Recognized by correction grammar ? Yes No 
User response n-1System prompt n User response n Correction of errors System prompt n+1 

 
Figure 3. Process flow: Error handling based on a 

correction grammar 



phrases are often added to the original utterance 
(Kitaoka, 2003). The template mentioned above is 
used to support this type of correction utterance. An 
example of the correction grammar rule generated by 
this method is shown in Figure 4. The “null” in Figure 
4 implies a transition with no condition, and the “X” 
shows where the original rule is embedded. In this 
example, the created grammar rule in Figure 4(c) 
corresponds to the following sentences: 

• No, I’d like to know the weather for Tokyo. 
• I said I’d like to know the weather for Tokyo. 

(3) Inserting slot-values into the template 
The user often repeats only words or phrases which 
the system is focusing on (Kazemzadeh et al., 2003). 
In a slot-filling dialog, these correspond to the slot 
values. Therefore, correction grammar rules are also 
created by extracting the slot values from the grammar 
in the history and inserting them into the template. If 
there are several slot values that can be corrected at 
the same time, all of their possible combinations and 
permutations are also generated. An example is shown 
in Figure 5. In Figure 5(b), the slot-values are 

“Tokyo” and “tomorrow”. The grammar rule in Figure 
5(c) includes each slot value plus their combination(s), 
and represents the following sentences: 

• I said Tokyo. 
• I said tomorrow. 
• I said Tokyo tomorrow. 

5 Prototype System with Error Handling 

We have implemented the proposed error handling 
method for a set of Japanese dialog scenarios in the 
CAMMIA system. We added to this system: a) a 
process to create a correction grammar file when the 
system sends a grammar file to the client, b) a process to 
repair errors based on the recognition result, and c) 
transitions to the repair action when the user’s utterance 
is recognized by the correction grammar. 

There are two types of errors: task transition errors 
and slot value errors. If the error is a task transition error, 
the modification process cancels the current task and 
transits to the new task as specified by the correction 
utterance. When the error is a slot value error, the slot 
value is replaced by the value given in the correction 
utterance. However, if the new value is identical to the 
old one, we assume a recognition error and the second 
candidate in the recognition result is used. This 
technique requires a speech recognizer that can output 
N-best results; we used Julius for SAPI (Kyoto Univ., 
2002) for this experiment. 

6 Experiments 

We carried out an experiment to verify whether the 
proposed method works properly in a dialog system. In 
this experiment, dialog systems with and without the 
error handling method were compared. In this 
experiment, a weather information dialog was selected 
as the task for the subjects and about 1200 dialog 
instances were analyzed (both with and without error 
handling). The dialog flow was the same as shown in 
Figure 1. The grammar included 500 words for place 
names, and 69 words for the date. The subjects were 
instructed in advance on the utterance patterns allowed 
by the system, and used only those patterns during the 
experiment. A summary of the collected data is shown 
in Table 1. When error handling is disabled, the system 
returns to the place name query when the user denies the 
system’s confirmation, e.g. it returns from U3 to S1 in 
Figure 1. A comparison of the number of turns in these 
two systems is shown in Table 2. “1 error” in Table 2 
means that the dialog included one error and “2 errors” 
means that the same error was repeated. 

The success rate for the task and the average number 
of turns in the dialog (including errors) are tabulated.  
Dialogs including more than 3 errors were regarded as 
incomplete tasks in the calculation of the success rate. 
The results are shown in Table 3. 

 1 X 2 “no” null “I said”  
(a) Template  1 3 “I would like to know the weather for” 2 “Tokyo” 

 
(b) Grammar rule in the history  3 4 “I would like to know the  weather for” “Tokyo” 1 2 5 “no” null “I said”  

(c) Created correction grammar rule 

Figure 4. Correction grammar created by inserting 
the original rule into a template   1 X 2 null “I said” 

 
(a) Template  1 3 “I would like to know the weather for” 2 “Tokyo” “tomorrow”  

(b) Grammar rule in the history  3 4 “Tokyo” 1 2 5 null “I said” “tomorrow” “Tokyo” “tomorrow”  
(c) Created correction grammar rule 

Figure 5. Correction grammar rules created by 
inserting slot values into a template 



7 Discussion 

The task completion rate was improved from 86.4% to 
93.4% when the proposed error handling method was 
used. The average number of turns was reduced by 3 
turns as shown in Table 3. This result shows that the 
proposed error handling method was working properly 
and effectively. 

One reason that the success rate was improved is 
that the proposed method prevents the repetition of 
errors. When the error handling method is not 
implemented, errors can be easily repeated. The error 
handling method can avoid repeated errors by selecting 
the second candidate in the recognition result even when 
the correction utterance is also misrecognized. There 
were 7 dialogs in which the correction utterance was 
correctly recognized by selecting the second candidate. 

However, there were 13 dialogs in which the error 
was not repaired by one correction utterance. There are 
two explanations. One is that there are insertion errors 
in speech recognition which causes words not spoken to 
appear in the recognition result. For example, the 
system prompt S4 for U3 in Figure 1 becomes as 
follows: 

S4: Did you say Tokyo yesterday? 
In this case, the user has to speak more correction 
utterances. The second explanation is that the 
recognition result did not always include the correct 
result within the first two candidates. It is not clear that 
extending the repair mechanism to always consider 
additional recognition candidates (3rd, 4th, etc.) is a 
viable technique, given the drop off in recognition 
accuracy; more study is required. 

8 Conclusions 

In this paper, we proposed an error handling method 
based on dynamic generation of correction grammars to 
recognize the user corrections which follow system 
errors. The correction grammars detect system errors 
and also repair the dialog flow, improving task 

completion rates and reducing the average number of 
dialog turns. We developed a prototype dialog system 
using the proposed method, and demonstrated 
empirically that the success rate improved by 7.0%, and 
the number of turns was reduced by 3. 

The creation of rules for correction utterances based 
on the dialog history could be applicable to dialog 
systems which use speech recognition or natural 
language processing and other kinds of rules beyond 
regular grammars; we plan to study this in future work. 
We are also planning to develop an algorithm to 
improve the precision of corrections that are based on 
the set of recognition candidates for the correction 
utterance and an error recovery strategy. We also plan to 
apply the proposed method to other types of dialogs, 
such as user-initiative dialogs and mixed-initiative 
dialogs. 
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Table 1. Summary of the collected data 
 w/o error handling w/ error handling 

# of users 2 male, 1 female 2 male, 1 female 
# of dialog 603 596 

# of error dialog 66 61 
 

Table 2. Number of turns in the dialog 
 No error 1 error 2 errors 
w/o error handling 13 19 
w/ error handling 

7 
11 13 

 

Table 3. Success rate and average number of turns 
 Success rate Ave. # turns 
w/o error handling 86.4% 14.6 
w/ error handling 93.4% 11.6 
 


