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Abstract 

The development of FrameNet, a large 
database of semantically annotated sentences, 
has primed research into statistical methods 
for semantic tagging.  We advance previous 
work by adopting a Maximum Entropy 
approach and by using Viterbi search to find 
the highest probability tag sequence for a 
given sentence.  Further we examine the use 
of syntactic pattern based re-ranking to further 
increase performance.  We analyze our 
strategy using both extracted and human 
generated syntactic features.  Experiments 
indicate 85.7% accuracy using human 
annotations on a held out test set. 

1 Introduction 

The ability to develop automatic methods for semantic 
classification has been hampered by the lack of large 
semantically annotated corpora.  Recent work in the 
development of FrameNet, a large database of 
semantically annotated sentences, has laid the 
foundation for the use of statistical approaches to 
automatic semantic classification.   

The FrameNet project seeks to annotate a large 
subset of the British National Corpus with semantic 
information.  Annotations are based on Frame 
Semantics (Fillmore, 1976), in which frames are defined 
as schematic representations of situations involving 
various Frame Elements such as participants, props, and 
other conceptual roles.   

In each FrameNet sentence, a single target 
predicate is identified and all of its relevant Frame 
Elements are tagged with their element-type (e.g., 
Agent, Judge), their syntactic Phrase Type (e.g., NP, 
PP), and their Grammatical Function (e.g., External 
Argument, Object Argument).  Figure 1 shows an 
example of an annotated sentence and its appropriate 
semantic frame. 

 

To our knowledge, Gildea and Jurafsky (2000) is 
the only work that uses FrameNet to build a statistical 
semantic classifier.  They split the problem into two 
distinct sub-tasks: Frame Element identification and 
Frame Element classification.  In the identification 
phase, they use syntactic information extracted from a 
parse tree to learn the boundaries of Frame Elements in 
sentences.  The work presented here, focuses only on 
the second phase: classification. 

Gildea and Jurafsky (2000) describe a system that 
uses completely syntactic features to classify the Frame 
Elements in a sentence.  They extract features from a 
parse tree and model the conditional probability of a 
semantic role given those features.  They report an 
accuracy of 76.9% on a held out test set. 
 
 
 
 
 

 
She  clapped  her hands  in inspiration. 

Frame:        Body-Movement 
Frame Elements:   

Agent     Body Part Cause 

     -NP             -NP   -PP 
     -Ext.            -Obj.   -Comp. 

 

Figure 1.  Frame for lemma “clap” shown with three core Frame 
Elements and a sentence annotated with element type, phrase 
type, and grammatical function. 

 
We extend Gildea and Jurafsky (2000)’s initial 

effort in three ways.  First, we adopt a Maximum 
Entropy (ME) framework to better learn the feature 
weights associated with the classification model.  
Second, we recast the classification task as a tagging 
problem in which an n-gram model of Frame Elements 
is applied to find the most probable tag sequence (as 
opposed to the most probable individual tags).  Finally, 
we implement a re-ranking system that takes advantage 
of the sentence-level syntactic patterns of each 
sequence.  We analyze our results using syntactic 
features extracted from a parse tree generated by Collins 
parser (Collins, 1997) and compare those to models 
built using features extracted from FrameNet’s human 
annotations.   



2 Method 

2.1 

2.2 

                                                          

Training (32,251 sentences), development (3,491 
sentences), and held out test sets (3,398 sentences) were 
generated from the June 2002 FrameNet release 
following the divisions used in Gildea and Jurafsky 
(2000) 1 .  Because human-annotated syntactic 
information could only be obtained for a subset of their 
data, the training, development, and test sets used here 
are approximately 10% smaller than those used in 
Gildea and Jurafsky (2000).2  There are on average 2.2 
Frame Elements per sentence, falling into one of 126 
unique classes.   

Maximum Entropy 
ME models implement the intuition that the best model 
will be the one that is consistent with all the evidence, 
but otherwise, is as uniform as possible.  (Berger et al., 
1996).  Following recent successes using it for many 
NLP tasks (Och and Ney, 2002; Koeling, 2000), we use 
ME to implement a Frame Element classifier. 

We use the YASMET ME package (Och, 
2002) to train an approximation of the model below: 

 

P(r| pt, voice, position, target, gf, h) 
 

Here r indicates the element type, pt the phrase type, gf 
the grammatical function, h the head word, and target 
the target predicate.  Due to data sparsity issues, we do 
not calculate this model directly, but rather, model 
various feature combinations as described in Gildea and 
Jurafsky (2000).   

The classifier was trained, using only features that 
had a frequency in training of one or more, and until 
performance on the development set ceased to improve.  
Feature weights were smoothed using a Bayesian 
method, such that weight limits are Gaussian distributed 
with mean 0 and standard deviation 1.  

Tagging 
Frame Elements do not occur in isolation, but rather, 
depend very much on what other Elements occur in a 
sentence.  For example, if a Frame Element is tagged as 
an Agent it is highly unlikely that the next Element will 
also be an Agent.  We exploit this dependency by 
treating the Frame Element classification task as a 
tagging problem. 

The YASMET MEtagger was used to apply an n-
gram tag model to the classification task (Bender et al., 
2003).  The feature set for the training data was 

 

2.3 

3 Results 

                                                          
1 Divisions given by Dan Gildea via personal communication. 
2  Gildea and Jurafsky (2000) use 36995 training, 4000 
development, and 3865 test sentences.  They do not report 
results using hand annotated syntactic information. 

augmented to include information about the tags of the 
previous one and two Frame Elements in the sentence: 

 

P(r| pt, voice, position, target, gf, h, r -1,r -1+r -2) 
 

Viterbi search was then used to find the most probable 
tag sequence through all possible sequences. 

Pattern Features 
A great deal of information useful for classification can 
be found in the syntactic patterns associated with each 
sequence of Frame Elements.  A typical syntactic 
pattern is exhibited by the sentence “Alexandra bent her 
head.”  Here “Alexandra” is an external argument Noun 
Phrase, “bent” is the target, and “her head” is an object 
argument Noun Phrase.  In the training data, a syntactic 
pattern of NP-ext, target, NP-obj, given the predicate 
bend, was associated 100% of the time with the Frame 
Element pattern: “Agent target BodyPart“, thus, 
providing powerful evidence as to the classification of 
those Frame Elements.   

We exploit these sentence-level patterns by 
implementing a re-ranking system that chooses among 
the n-best tagger outputs.  The re-ranker was trained on 
a development corpus, which was first tagged using the 
MEtagger described above.  For each sentence in the 
development corpus, the 10 best tag sequences are 
output by the classifier and described by three 
probabilities: 3  1) the sequence’s probability given by 
the ME classifier (ME); 2) the conditional probability of 
that sequence given the syntactic pattern and the target 
predicate (pat+target); 3) a back off conditional 
probability of the tag sequence given just the syntactic 
pattern (pat).  A ME model is then used to combine the 
log of these probabilities to give a model of the form: 

 

P(tag-seq| ME, pat+target, pat) 

 

Figure 2 shows the performance of the base ME model, 
the base model within a tagging framework, and the 
base model within a tagging framework plus the re-
ranker.  Results are shown for data sets trained and 
tested using human annotated syntactic features and 
trained and tested using automatically extracted 
syntactic features.  In both cases the training and test 
sets are identical.   

For both the extracted and human conditions, 
adopting a tagging framework improves results by over 
1%.  However, while the syntactic pattern based re-
ranker increases performance using human annotations 
by nearly 2%, the effect when using automatically 
extracted information is only 0.5%.  This is reasonable 

 
3  Using n-best lists of 50 and 100 showed no significant 
difference in performance. 



considering that the re-ranker’s effectiveness is 
correlated with the level of noise in the syntactic 
patterns upon which it is based. 

The difference in performance between the models 
under both human and extracted conditions was 
relatively consistent: averaging 8.7% with a standard 
deviation of 0.7. 

As a further analysis, we have examined the 
performance of our base ME model on the same test set 
as that used in Gildea and Jurafsky (2000).  Using only 
extracted information, we achieve an accuracy of 
74.9%, two percent lower than their reported results.  
This result is not unreasonable, however, because, due 
to limited time, very little effort was spent tuning the 
parameters of the model.  

 

 
 

 
 
 

 
 
 
 
 

Figure 2.  Performance of models on held out test data.  ME refers 
to results of the base Maximum Entropy model, Tagger to a 
combined ME and Viterbi search model, Re-Rank to the Tagger 
augmented with a re-ranker.  Extracted refers to models trained 
using features extracted from parse trees, Human to models using 
features from FrameNet’s human annotations. 

4 Conclusion 

It is clear that using a tagging framework and syntactic 
patterns improves performance of the semantic classifier 
when features are extracted from either automatically 
generated parse trees or human annotations.  The most 
striking result of these experiments, however, is the 
dramatic decrease in performance associated with using 
features extracted from a parse tree.   

This decrease in performance can be traced to at 
least two aspects of the automatic extraction process: 
noisy parser output and limited grammatical 
information.   

To compensate for noisy parser output, our current 
work is focusing on two strategies.  First, we are 
looking at using shallower but more reliable methods 
for syntactic feature generation, such as part of speech 
tagging and text chunking, to either replace or augment 
the syntactic parser.  Second, we are using ontological 
information, such as word classes and synonyms, in the 
hopes that semantic information may supplement the 
noisy syntactic information. 

The models trained on features extracted from parse 
trees do not have access to rich grammatical 
information.  Following Gildea and Jurafsky (2000), 
automatic extraction of grammatical information here is 
limited to the governing category of a Noun Phrase.  
The FrameNet annotations, however, are much richer 
and include information about complements, modifiers, 
etc.  We are looking at ways to include such information 
either by using alternative parsers (Hermjakob, 1997) or 
as a post processing task (Blaheta and Charniak, 2000).  

In future work, we will extend the strategies 
outlined here to incorporate Frame Element 
identification into our model.  By treating semantic 
classification as a single tagging problem, we hope to 
create a unified, practical, and high performance system 
for Frame Element tagging. 
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