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Abstract

We present methods for investigating pro-
cesses of evolution in a language fam-
ily by modeling relationships among the
observed languages. The models aim
to find regularities—regular correspon-
dences in lexical data. We present an al-
gorithm which codes the data using pho-
netic features of sounds, and learns long-
range contextual rules that condition re-
current sound correspondences between
languages. This gives us a measure of
model quality: better models find more
regularity in the data. We also present a
procedure for imputing unseen data, which
provides another method of model com-
parison. Our experiments demonstrate im-
provements in performance compared to
prior work.

1 Introduction

We present work on modeling evolution within
language families, by discovering regularity in
data from observed languages.

The study of evolution of language families
covers several problems, including: a. discovering
cognates—“genetically related” words, i.e., words
that derive from a common ancestor word in an
ancestral proto-language; b. determining genetic
relationships among languages in the given lan-
guage family based on observed data; c. discover-
ing patterns of sound correspondence across lan-
guages; and d. reconstruction of forms in proto-
languages. In this paper, we treat a. (sets of cog-
nates) as given, and focus on problems b. and c.1

Given a corpus of cognate sets,2 we first aim to
1Extending the methods to problem d. is future work.
2The members of a cognate set are posited (by linguists)

to derive from a common, shared origin: a word-form in the
(typically unobserved) ancestral proto-language.

find as much regularity as possible in the data at
the sound (or symbol) level.3 An important goal is
that our methods be data-driven—we aim to use all
data available, and to learn the patterns of regular
correspondence directly from the data. We allow
only the data to determine which rules underlie
it—correspondences that are inherently encoded
in the corpus itself—rather than relying on exter-
nally supplied (and possibly biased) rules or “pri-
ors.” We try to refrain from a priori assumptions
or “universal” principles—e.g., no preference to
align consonants with consonants, to align a sym-
bol with itself, etc.

We claim that alignment may not be the best
way to address the problem of regularity. Finding
alignments is indeed finding a kind of regularity,
but not all regularity is expressed as alignment.

The paper is organized as follows. In section 2
we review the data used in our experiments and re-
cent approaches to modeling language evolution.
We formalize the problem and present our mod-
els in section 3. The models treat sounds as vec-
tors of phonetic features, and utilize the context of
the sounds to discover patterns of regular corre-
spondence. Once we have obtained the regularity,
the question arises how we can evaluate it effec-
tively. In section 4, we present a procedure for
imputation—prediction of unseen data—to evalu-
ate the strength of the learned rules of correspon-
dence, by how well they predict words in one lan-
guage given corresponding words in another lan-
guage. We further evaluate the models by using
them for building phylogenies—family trees, and
comparing them to gold standards, in section 4.2.
We conclude with a discussion in section 5.

We have experimented with several language
families: Uralic, Turkic and Indo-European; the
paper focuses on results from the Uralic family.

3NB: we use sounds and symbols interchangeably, as we
assume that input data is rendered in a phonetic transcription.
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We use large-scale digital etymological re-
sources/dictionaries. For Uralic, the StarLing
database, (Starostin, 2005), contains 2586 Uralic
cognate sets, based on (Rédei, 1991). The et-
ymological dictionary Suomen Sanojen Alkuperä
(SSA), “The Origin of Finnish Words,” (Itkonen
and Kulonen, 2000), has over 5000 cognate sets.

2 Related work and motivation

One traditional arrangement of the Uralic lan-
guages is shown in Figure 1; several alternative
arrangements appear in the literature.

The last 15 years have seen a surge in computa-
tional modeling of language relationships, change
and evolution. We provide a detailed discussion of
related prior work in (Nouri et al., 2016).

In earlier work, e.g., (Wettig et al., 2011), we
presented two perspectives on the problem of find-
ing regularity. It can be seen as a problem of align-
ing the data. From an information-theoretic per-
spective, finding regularity is a problem of com-
pression: the more regularity we find in data,
the more we can compress it. In (Wettig et al.,
2011), we presented baseline models, which fo-
cus on alignment of symbols, in a 1-1 fashion.
We showed that aligning more than one symbol
at a time—e.g., 2-2—gives better performance.
Alignment is a natural way to think of comparing
languages. E.g., in Figure 2, obtained by the 1-
1 model, we can observe4 that most of the time
Finnish k corresponds to Estonian k (we write
Fin. k ∼ Est. k). However, models that focus
on alignments have certain shortcomings. For ex-
ample, substantial probability mass is assigned to
Fin. k ∼ Est. g, yet the model cannot explain why.
Fin. k ∼ Est. g in certain environments—in non-
first syllables, between vowels or after a voiced
consonant—but the model cannot capture this reg-
ularity, because it has no notion of context. In fact,
the regularity is much deeper: not only Fin. k, but
all Finnish voiceless stops become voiced in Esto-
nian in this environment: p ∼ b, t ∼ d. This type
of regularity cannot be captured by the baseline
model because it treats symbols as atoms, and does
not know about their shared phonetic features.

We claim that alignment may always not be the
best way to think about the problem of finding reg-
ularity. Figure 2 shows a prominent “diagonal,”

4The size of the circle is proportional to the probability
of aligning the corresponding symbols on the X and Y axes.
The dot coordinates “.” correspond to deletions/insertions.
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Figure 2: 1-1 alignment for Finnish and Estonian

many sounds correspond—they “align with them-
selves.” However, as languages diverge further,
this correspondence becomes blurry; e.g., when
we try to align Finnish and Hungarian, the prob-
ability distribution of aligned symbols has much
higher entropy, Figure 3. The reason is that the
regularity lies on a much deeper level: predict-
ing which sound occurs in a given position in a
word requires knowledge of a wider context, in
both Finnish and Hungarian. Hence we will prefer
to think in terms of coding, rather than alignment.

Methods in (Kondrak, 2002), learn one-to-
one sound correspondences between words in
pairs of languages. Kondrak (2003), Wettig et
al. (2011) find more complex—many-to-many—
correspondences. These methods focus on align-
ment, and model context of the sound changes in
a limited way, while it is known that most evolu-
tionary changes are conditioned on the context of
the evolving sound. Bouchard-Côté et al. (2007)
use MCMC-based methods to model context, and
operate on more than a pair of languages.5

Our models, similarly to other work, operate at
the phonetic level only, leaving semantic judge-
ments to the creators of the database. Some prior
work attempts to approach semantics by com-
putational means as well, e.g., (Kondrak, 2004;
Kessler, 2001). We begin with a set of etymo-
logical data for a language family as given, and
treat each cognate set as a fundamental unit of in-

5The running time did not scale well when the number of
languages was above three.
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  Uralic  

  Samoyedic  

  South Samoyedic  

  Sayan  
  Samoyedic  

  Kamas  
  Karagas  
  Koibal  
  Motor  
  Soyot  
  Taigi  

  Selkup  

  North Samoyedic  

  Nganasan    Enets    Nenets  

  Finno-Ugric  

  Ugric  

  Hungarian    Ob-Ugric  

  Khanty    Mansi  

  Finnic  

  Permic  

  Komi    Udmurt  

  Mari    West Finnic  

  Mordvin    North Finnic  

  Sami    Baltic Finnic  

  Finnish  
  Estonian  Figure 1: Uralic language family (adapted from Encyclopedia Britannica)
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Figure 3: 1-1 alignment for Finnish and Hungarian

put. We use the principle of recurrent sound cor-
respondence, as in much of the literature.

Alignment can be evaluated by measuring rela-
tionships among entire languages within the fam-
ily. Construction of phylogenies is studied, e.g.,
in (Nakhleh et al., 2005; Ringe et al., 2002;
Barbançon et al., 2009).

Our work is related to the generative “Berkeley”
models, (Bouchard-Côté et al., 2007), (Hall and
Klein, 2011), in the following respects.

Context: in (Wettig et al., 2011) we capture
some context by coding pairs of symbols, as
in (Kondrak, 2003). Berkeley models handle con-
text by conditioning the symbol being generated
upon the immediately preceding and following
symbols. Our method uses broader context by

building decision trees, so that non-relevant con-
text information does not grow model complexity.

Phonetic features: in (Wettig et al., 2011) we
treated sounds/symbols as atomic—not analyzed
in terms of their phonetic makeup. Berkeley mod-
els use “natural classes” to define the context of
a sound change, but not to generate the symbols
themselves; (Bouchard-Côté et al., 2009) encode
as a prior which sounds are “similar” to each
other. We code symbols in terms of phonetic
features. Our models are based on information-
theoretic Minimum Description Length principle
(MDL), e.g., (Grünwald, 2007)—unlike Berkeley.
MDL brings some theoretical benefits, since mod-
els chosen in this way are guided by data with no
free parameters or hand-picked “priors.” The data
analyst chooses the model class and structure, and
the coding scheme, i.e., a decodable way to en-
code model and data. This determines the learning
strategy—we optimize the cost function, which is
the code length determined by these choices.

Objective function: we use NML—the normal-
ized maximum likelihood, not reported previously
in this setting. It is preferable for theoretical and
practical reasons, e.g., to prequential coding used
in (Wettig et al., 2011), as explained in section 3.1.

Models that utilize more than the immediate ad-
jacent environment of a sound to build a complete
alignment of a language family have not been re-
ported previously, to the best of our knowledge.

3 Coding pairs of words

We begin with baseline algorithms for pairwise
coding: in (Wettig et al., 2011; Wettig et al., 2012)
we code pairs of words, from two related lan-
guages in our corpus of cognates. For each word
pair, the task of alignment is finding which sym-
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bols correspond best; the task of coding is achiev-
ing more compression. The simplest form of sym-
bol alignment is a pair (σ : τ) ∈ Σ × T , a single
symbol σ from the source alphabet Σ with a sym-
bol τ from the target alphabet T .

To model insertions and deletions, we augment
both alphabets with a special “empty” symbol—
denoted by a dot—and write the augmented
alphabets as Σ. and T .. We can then align word
pairs, such as hiiri—löNk@r (meaning “mouse”
in Finnish and Khanty) in many different ways;
putting Finnish (source level, above) and Khanty
(target level, below), for example:

h i . . i r i
| | | | | | |
l ö N k @ r .

. h . . i i r i
| | | | | | | |
l ö N k @ r . .

...

A final note about alignments: we find no satis-
factory way to evaluate alignments. Which of the
above alignments is “better”? It may be satisfying
to prefer the left one, observing that Fin. h corre-
sponds well to Khn. l (since they both go back to
Proto-Uralic š); Fin. r ∼ Khn. r, etc. However,
if a model achieves better compression by prefer-
ring the alignment on the right, then it is difficult
to argue that that alignment is “not correct.”

3.1 Context model with phonetic features
Our coding method is based on MDL. The most
refined form of MDL, NML—Normalized Maxi-
mum Likelihood, (Rissanen, 1996)—cannot be ef-
ficiently computed for our model. Therefore, we
resort to a classic two-part coding scheme. The
first part of the two-part code is responsible for
splitting the data into subsets corresponding to cer-
tain contexts. However, given the contexts, we can
use NML to encode these subsets.6

We begin with a raw set of observed data—
word pairs in two languages. We search for a way
to code the data, by capturing regular correspon-
dences. The goodness of the code is defined for-
mally below. MDL says that the more regularity
we can find in the data, the fewer bits we will need
to encode (or compress) it. More regularity means
lower entropy in the distribution that describes the
data, and lower entropy lets us construct a more
economical code.

Features: Rather than coding symbols (sounds)
as atomic, we code them in terms of their pho-

6Theoretical benefits of NML over other coding
schemes include freedom from priors, invariance to re-
parametrization, and other optimality properties, which are
outside the scope of this paper, (Rissanen, 1996).

  

Context model
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Figure 4: Fin. jalka (source) ∼ Est. jalg (target)

netic features. For example, figure 4 shows how a
model might code Finnish jalka and Estonian jalg
(meaning “leg”). We code the symbols in a fixed
order: top to bottom, left to right. Each symbol
is coded as a vector of its phonetic features, e.g.,
k = [ξ χ φ ψ].

For each symbol, first we code a special Type
feature, with values: K (consonant), V (vowel),
dot (insertion / deletion), or # (word boundary).7

Consonants and vowels have different sets of fea-
tures; each feature has 2–8 values, listed in Fig-
ure 5A. Features are coded in a fixed order.

Contexts: While coding each feature of the
symbol, the model is allowed to query a fixed and
finite a set of candidate contexts. The idea is that
the model can query its “history”—information
that has already been coded previously. When
coding k, e.g., the model may query features of
blue a (β, γ, etc.), as well as features of red a, etc.
When coding g the model may query those, and in
addition also the features of k (χ, φ, etc.)

Formally, a context is a triplet (L,P, F ): L is
the level—source (σ) or target (τ ); P is one of
the positions that the model may query—relative
to the position currently being coded; for example,
we may query positions shown in Figure 5B. F is
one of the possible features found at that position.
Thus, we have in total about 2 levels× 8 positions
× 5 features ≈ 80 candidate contexts that can be
queried, as explained in detail below.

3.2 Two-part code

We code the complete (i.e., aligned) data using
a two-part code, following MDL. We first code
which model instance we select from our model
class, and then code the data given the model. Our
model class is defined as follows: a set of decision
trees (forest)—one tree per feature per level (sepa-
rately for source and for target). A model instance

7Type feature and word end (#) not shown in figure.
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Consonant articulation
M Manner plosive, fricative, glide, ...
P Place labial, dental, ..., velar, uvular
X Voiced – , +
S Secondary – , affricate, aspirate, ...

Vowel articulation
V Vertical high—mid—low
H Horizontal front—center—back
R Rounding – , +
L Length 1—5

Contexts
I itself, possibly dot

–P previous position, possibly dot
–S previous non-dot symbol
–K previous consonant
–V previous vowel
+S previous or self non-dot symbol
+K previous or self consonant
+V previous or self vowel

... (other contexts possible)

Figure 5: (A: left) Phonetic features and (B: right) phonetic contexts / environments.

will define a particular structure for each tree.
Cost of coding the structure: Thus, the forest

consists of 18 decision trees—one for each feature
on the source and the target level: the type feature,
4 vowel and 4 consonant features, times 2 levels.
Each node in a tree will either be a leaf, or will
be split—by querying one of the candidate con-
texts defined above. The cost of a tree is one bit
for every node ni—to encode whether ni is inter-
nal (was split) or a leaf—plus the number of inter-
nal nodes× ≈ log 80—to encode which particular
context was chosen to split each ni. We explain
how the model chooses the best candidate context
on which to split a node in section 3.3.

Each feature and level define a tree, e.g., the
“voiced” (X) feature of the source symbols—
corresponds to the σ-X tree. A node N in this
tree holds a distribution over the values of fea-
ture X of only those symbol instances in the com-
plete data that have reached node N , by follow-
ing the context queries from the root downward.
The tree structure tells us precisely which path
to follow—completely determined by the context.
When coding a symbol α based on another sym-
bol found in the context C of α—for example,
C = (τ,−K,M): at level τ , position –K, and one
of the features M—the next edge down the tree
is determined by that feature’s value; and so on,
down to a leaf.8

Cost of the data given the model: is computed
by taking into account only the distributions at the
leaves. The code will assign a cost (code-length)
to every possible alignment of the data. The total
code-length is the objective function that the learn-
ing algorithm will optimize.

Coding scheme: we use Normalized Maximum
Likelihood (NML), and prequential coding as in
(Wettig et al., 2011). We code the distribution at

8Model code to construct trees from data, and examples of
decision trees learned by the model are made publicly avail-
able on the Project Web site: etymon.cs.helsinki.fi/.

each leaf node separately; the sum of the costs
of all leaves gives the total cost of the complete
data—the value of the objective function.

Suppose n instances reach a leaf node N , of the
tree for feature F on level λ, and F has k val-
ues: e.g., n consonants satisfyingN ’s context con-
straints in the σ-X tree, with k = 2 values:{−,+}.
Suppose also that the values are distributed so that
ni instances have value i, with i ∈ {1, . . . , k}.
Then this requires an NML code-length of:

LNML(λ;F ;N) = − logPNML(λ;F ;N)

= − log
∏

i

(
ni
n

)ni

C(n, k)
(1)

Here
∏

i

(
ni
n

)ni is the maximum likelihood of the
multinomial data at node N , and the term

C(n, k) =
∑

n′
1+...+n′

k=n

∏
i

(
n′

i

n

)n′
i

(2)

is a normalizing constant to make PNML a proba-
bility distribution. In MDL literature, (Grünwald,
2007), the term − logC(n, k) is called the para-
metric complexity or the (minimax) regret of the
model—in this case, the multinomial model.

The NML distribution is the unique solution to
the mini-max problem posed in (Shtarkov, 1987),

min
P̂

max
xn

log
P (xn|Θ̂(xn))

P̂ (xn)
(3)

where Θ̂(xn) = arg maxΘ P(xn) are the maxi-
mum likelihood parameters for the data xn. Thus,
PNML minimizes the worst-case regret, i.e., the
number of excess bits in the code as compared to
the best model in the model class, with hind-sight.
Details on the computation of this code length are
given in (Kontkanen and Myllymäki, 2007).

Learning the model from the observed data now
means aligning word pairs and building decision
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trees so as to minimize the two-part code length:
the sum of the model’s code length—encoding the
structure of the trees,—and the code length of the
data given the model—encoding the aligned word
pairs using these trees.

Summary of the algorithm: We start with an
initial random alignment for each pair of words in
the corpus. We then alternate between two steps:
A. re-build the decision trees for all features on
source and target levels, and B. re-align all word
pairs in the corpus, using dynamic programming.
Both of these operations monotonically decrease
the two-part cost function and thus compress the
data. We continue until we reach convergence.

Simulated annealing with a slow cooling sched-
ule is used to avoid getting trapped in local optima.

3.3 Building decision trees

Given a complete alignment of the data, we need
to build a decision tree, for each feature on both
levels, yielding the lowest two-part cost.The term
“decision tree” is meant in a probabilistic sense:
at each node we store a distribution over the re-
spective feature values, for all instances that reach
this node. The distribution at a given leaf is then
used to code an instance when it reaches the leaf.
We code the features in a fixed, pre-set order, and
source level (σ-level) before target (τ -level).

We now describe in detail the process of build-
ing the tree—using as example a tree for the σ-
level feature X. (We will need do the same for
all other features, on both levels, as well.) First,
we collect all instances of consonants on σ-level,
gather the the counts for feature X, and build an
initial count vector; suppose it is:

value of X→ + –
1001 1002

This vector is stored at the root of the tree; the
cost of this node is computed using NML, eq. 1.
Note that this vector / distribution has rather high
entropy.

Next, we try to split this node, by finding such
a context that if we query the values of the feature
in that context, it will help us reduce the entropy
in this count vector. We check in turn all possi-
ble candidate contexts (L,P, F ), and choose the
best one. Each candidate refers to some symbol
found on σ-level or τ -level, at some relative posi-
tion P , and to one of that symbol’s features F . We
will condition the split on the possible values of F .
For each candidate, we try to split on its feature’s

values, and collect the resulting alignment counts.
Suppose one such candidate is (σ, –V, H), i.e.,

(σ-level, previous vowel, Horizontal feature), and
suppose that the H-feature has two values: front /
back. Suppose also that the vector at the root node
(recall, this tree is for the X-feature) would then
split into two vectors, for example:

value of X→ + –
X | H=front 1000 1
X | H=back 1 1001

This would likely be a very good split, since it
reduces the entropy of the distribution in each row
to near zero. The criterion that guides the choice
of the best candidate context to use for splitting a
node is the sum of the code lengths of the resulting
split vectors, and the code length is proportional to
the entropy.

We go through all candidates exhaustively,9 and
greedily choose the one that yields the greatest re-
duction in entropy, and drop in cost. We proceed
recursively down the tree, trying to split nodes,
and stop when the total tree cost stops decreasing.

This completes the tree for feature X on level σ.
We build all remaining trees—for all features and
all levels similarly—based on the current align-
ment of the complete data.

3.4 Variations of context-based models

The context models enable us to discover more
regularities in the data by querying the context of
sounds. However building decision trees repeat-
edly in the process of searching for the optimal
alignments is very time consuming. We have ex-
plored several variations of context-based models
in an attempt to make the search converge more
quickly, without sacrificing quality.

3.4.1 Zero-depth context model
In this variant of the model, during the simulated
annealing phase (i.e., when there is some random-
ness in the search algorithm), the trees are not ex-
panded to their full depth. Instead, for source-level
trees, only the root node is calculated and the tar-
get level trees are allowed to query only the itself
position on the source level. Once the simulated
annealing reaches the greedy phase, the trees are

9We augment the set of possible feature values at every
node with two additional special branches: 6= means that the
symbol at the queried position is of the wrong type and hence
does not have the queried feature; # means the query ran past
the beginning of the word.
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grown in the same way as they would have been
normally, without any restrictions.

This model results in reasonable alignments and
relatively low costs and lower running time.

3.4.2 Infinite-depth context model
This is another restrictive variation of the context
model, which is more permissive than the zero-
depth model. In this variation during the simulated
annealing phase of the algorithm, the candidates
that can be queried to expand the root nodes of the
trees are limited to already encoded features of the
itself position.

4 Evaluation

We discuss two views on evaluation—strict evalu-
ations vs. intuitive evaluations.

4.1 Comparing context models to each other
From a strictly information-theoretic point of
view, a sufficient condition to claim that modelM1

is better thanM2, is thatM1 assigns a higher prob-
ability (equivalently—lower cost) to the observed
data. Figure 7A shows the absolute costs, in bits,
for all language pairs—for the baseline 1-1 model
and six context models. The six context models
are: the “normal” model, zero-depth and infinite-
depth—and for each, the objective function uses
either NML or prequential coding.

Here is how we interpret the points in these scat-
ter plots. Each box in the triangular plot com-
pares one model, Mx—whose scores are plotted
on the X-axis—against another model, My (on the
Y-axis). For example, the leftmost column com-
pares the baseline 1-1 model as Mx against each
of the six context models in turn; etc. In every plot
box, each of the 10 × 9 points is a comparison of
the two models Mx and My on one language pair
(L1, L2). Therefore, for each point (L1, L2), the
X-coordinate gives the score of modelMx, and the
Y-coordinate gives the score of the other model,
My. If the point (L1, L2) is below the diagonal,
Mx has higher cost on (L1, L2) than My. The fur-
ther away the point is from the “break-even” diag-
onal line x = y, the greater the advantage of one
model over the other.

The left column of figure 7A shows that all con-
text models always produce much lower cost com-
pared to the basic context-free 1-1 model defined
in (Wettig et al., 2011).

The remaining five columns compare the con-
text models among themselves. Here we see that
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Figure 6: Comparison of compression power

no model variant is a clear winner. Since the vari-
ants do not show a clear preference for the “best”
context model among this set, we will use all of
them, to vote as an ensemble.

In figure 6, we compare the context model
against standard data compressors, Gzip and Bzip,
as well as the baseline models in (Wettig et
al., 2011), tested on 3200 Finnish–Estonian data
from SSA. Gzip/Bzip compress data by finding
regularities—which are frequent sub-strings.

These comparisons confirm that the context
model finds more regularity in the data than the
off-the-shelf data compressors—which have no
knowledge that the words in the data are geneti-
cally related—as well as the 1-1 and 2-2 models.

4.2 Imputation

Strictly, the improvement in the compression cost
is adequate proof that the presented model outper-
forms the baselines. For a more intuitive eval-
uation of improvement in model quality, we can
compare models by using them to impute unseen
data. This is done as follows.

For a given model M , and a language pair
(L1, L2)—e.g., (Finnish, Estonian)—we hold out
one word pair, and train the model on all remain-
ing word pairs. Then we show the model the held
out Finnish word and let it impute—i.e., guess—
the corresponding Estonian word. Imputation can
be done for all models with a dynamic program-
ming algorithm, similar to the Viterbi-like search
used during model training. Formally, given the
held-out Finnish string, the imputation procedure
selects—from all possible Estonian strings—the
most probable Estonian string, given the model.
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Figure 7: (A: left) Comparison of costs of context models and the baseline 1-1;
(B: upper right) Finno-Ugric tree induced by imputation and normalized edit distances, via NeighborJoin

We then compute an edit distance (e.g., the Lev-
enshtein edit distance) between the imputed Esto-
nian string and the correct withheld word.

We repeat this procedure for all word pairs
in the (L1, L2) data set, sum the edit distances,
and normalize by the total size of the correct
L2 data—giving the Normalized Edit Distance:
NED(L2|L1,M) from L1 to L2, under M .

NED indicates how much regularity the model
has learned about the language pair (L1, L2). Fi-
nally, we used NED to compare models across all
language pairs. The context models always have
lower cost than the baseline, and lower NED in
≈88% of the language pairs. This is encourag-
ing indication that optimizing the code length is a
good approach: the models do not optimize NED
directly, and yet the cost correlates with NED—a
simple and intuitive measure of model quality.

A similar kind of imputation was used in
(Bouchard-Côté et al., 2007) for cross-validation.

4.3 Voting for phylogenies

Each context model assigns its own MDL cost to
every language pair. These raw MDL costs are not
directly comparable, since different language pairs
have different amounts of data—different number
of shared cognate words. We can make these costs
comparable by normalizing them, using NCD—

Normalized Compression Distance, (Cilibrasi and
Vitanyi, 2005), as in (Wettig et al., 2011). Then,
each model produces its own pairwise distance
matrix for all language pairs—where the distance
is NCD. A pairwise distance matrix can be used to
construct a phylogeny for the language family.

NED, introduced above, provides yet another
distance measure between any pair of languages,
similarly to NCD. Thus, the NED scores can also
be used to make inferences about how far the lan-
guages are from each other, and used as in put
to algorithms for creating phylogenetic trees. For
example, applying the NeighborJoin algorithm,
(Saitou and Nei, 1987), to the pairwise NED ma-
trix produced by the normal context model, yields
the phylogeny in Figure 7B.

To compute how far a given phylogeny is from a
gold-standard tree, we can use a distance measure
for unrooted, leaf-labeled (URLL) trees. One such
URLL distance measure is given in (Robinson and
Foulds, 1981). The URLL distance between this
tree and the gold standard in Figure 1 is 0.12.10

However, the MDL costs do not allow us to pre-
fer any one of the context models over the others.

10This URLL distance of 0.12 is also quite small. We
computed the expected URLL distance from a random tree
with this leaf set over a sample of 1000 randomly generated
trees—which is over 0.8. The number of leaf-labeled trees
with n nodes is (2n− 3)!! (see, e.g., (Ford, 2010)).
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Model Brit. Ant. Volga
normal-nml-avg.NCD 0.14 0 0.14
normal-nml-avg.NED 0.14 0 0.14
normal-nml-min.NCD 0.14 0 0.14
normal-nml-min.NED 0.28 0.14 0.28
normal-prequential-avg.NCD 0.14 0 0.14
normal-prequential-avg.NED 0.14 0.28 0.42
normal-prequential-min.NCD 0.14 0 0.14
normal-prequential-min.NED 0.14 0.28 0.42
∞-nml-avg.NCD 0.28 0.14 0.28
∞-nml-avg.NED 0.42 0.28 0.42
∞-nml-min.NCD 0.28 0.14 0.28
∞-nml-min.NED 0.28 0.14 0.28
∞-prequential-avg.NCD 0.14 0 0.14
∞-prequential-avg.NED 0.28 0.14 0.28
∞-prequential-min.NCD 0.14 0.28 0.42
∞-prequential-min.NED 0.28 0.14 0.28
zero-nml-avg.NCD 0.42 0.42 0.57
zero-nml-avg.NED 0 0.14 0.28
zero-nml-min.NCD 0.14 0 0.14
zero-nml-min.NED 0.28 0.28 0.42
zero-prequential-avg.NCD 0.14 0 0.14
zero-prequential-avg.NED 0.28 0.14 0.28
zero-prequential-min.NCD 0.14 0 0.14
zero-prequential-min.NED 0.28 0.28 0.42
Total vote 5.14 3.28 6.71

Table 1: Context models voting for Britannica,
Anttila and Volga gold standards

Therefore, we use all models as an ensemble.
Gold-standard trees: Different linguists advo-

cate different, conflicting theories about the struc-
ture of the Uralic family tree, and Finno-Ugric in
particular. Figure 1 shows one such phylogeny, we
call “Britannica.” Another phylogeny, isomorphic
to the tree in Figure 7B, we call “Anttila.” A third
tree in the literature pairs Mari and Mordvin to-
gether into a “Volgaic” branch of Finno-Ugric.

In Table 1, we compare trees generated by the
context models to these three gold-standard trees,
using the URLL distance defined above.

The context models induce phylogenetic trees
as follows. Each model can use prequential coding
or NML. Each model yields one NCD matrix and
one NED matrix. Finally, for any pair of languages
L1 and L2, the model in general produces differ-
ent distances for (L1, L2) vs. (L2, L1), depending
on which language is the source and which is the
target (since some languages preserve more infor-
mation than others). Therefore, each of the three
context models produces 8 trees, 24 in total. The
distance from each tree to the three gold-standard
phylogenies is in Table 1.

The measures show which gold-standard tree is

favored by all models taken together. The mod-
els strongly prefer “Anttila”—which happens to
be the phylogeny favored by a majority of Uralic
scholars at present, (Anttila, 1989).

5 Discussion and future work

We have presented an approach to modeling evo-
lutionary processes within a language family by
coding data from all languages pair-wise. To our
knowledge, these models represent the first at-
tempt to capture longer-range context in evolu-
tionary modeling, where prior work allowed small
neighboring context to condition the correspon-
dences. We present a feature-based context-aware
MDL coding scheme, and compare it against our
earlier models, in terms of compression cost and
imputation power. Language distances induced by
compression cost and by imputation for all pairs
of languages, enable us to build complete phyloge-
nies. The model takes a set of lexical data as input,
and makes no further assumptions. In this regard,
it is as objective as possible given the data.11

Finally, we note that our experiments with the
context models confirm that the notion of align-
ment is secondary in modeling evolution. In the
old approach, we aligned symbols jointly, and
hoped to find symbol pairs that align to each other
frequently. In the new approach, we code sym-
bols separately one by one on the source and target
level, and A. we code the symbols one feature at a
time, and B. while coding each feature, we allow
the model to use information from any feature of
any symbol that has been coded previously.

These models do better, with no alignment.
The objectivity of models given the data

opens new possibilities for comparing entire data
sets. For example, we can begin to compare
the Finnish/Estonian data in StarLing vs. other
datasets—and the comparison will be impartial,
relying solely on the given data. The models also
enable us to quantify the uncertainty of individual
entries in the corpus of etymological data. For ex-
ample, for a given entry x in language L1, we can
compute the probability that x would be imputed
by any of the models, trained on all the remaining
data from L1 plus any other set of languages in the
family. This can be applied in particular to entries
marked as dubious by the database creators.

11The data set itself, of course, may be highly subjective.
Refining the data set is in itself an important challenge, as
presented in problem a. in the Introduction, to be addressed
in future work.

144



Acknowledgments

This research was supported in part by the
Uralink Project and the FinUgRevita Project of the
Academy of Finland, and by the National Cen-
tre of Excellence “ALGODAN: Algorithmic Data
Analysis” of the Academy of Finland. We thank
Teemu Roos for his assistance. We are grateful to
the anonymous reviewers for their comments and
suggestions.

References
Raimo Anttila. 1989. Historical and comparative linguis-

tics. John Benjamins.
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