
Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning (CoNLL), pages 40–50,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Neighborhood Mixture Model for Knowledge Base Completion

Dat Quoc Nguyen1, Kairit Sirts1, Lizhen Qu2 and Mark Johnson1

1 Department of Computing, Macquarie University, Sydney, Australia
dat.nguyen@students.mq.edu.au, {kairit.sirts, mark.johnson}@mq.edu.au

2 Data61 & Australian National University
lizhen.qu@data61.csiro.au

Abstract

Knowledge bases are useful resources for
many natural language processing tasks,
however, they are far from complete. In
this paper, we define a novel entity rep-
resentation as a mixture of its neighbor-
hood in the knowledge base and apply
this technique on TransE—a well-known
embedding model for knowledge base
completion. Experimental results show
that the neighborhood information signif-
icantly helps to improve the results of the
TransE, leading to better performance than
obtained by other state-of-the-art embed-
ding models on three benchmark datasets
for triple classification, entity prediction
and relation prediction tasks.

Keywords: Knowledge base completion,
embedding model, mixture model, link
prediction, triple classification, entity pre-
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1 Introduction

Knowledge bases (KBs), such as WordNet (Miller,
1995), YAGO (Suchanek et al., 2007), Freebase
(Bollacker et al., 2008) and DBpedia (Lehmann
et al., 2015), represent relationships between enti-
ties as triples (head entity, relation, tail entity).
Even very large knowledge bases are still far from
complete (Socher et al., 2013; West et al., 2014).
Knowledge base completion or link prediction sys-
tems (Nickel et al., 2015) predict which triples not
in a knowledge base are likely to be true (Taskar
et al., 2004; Bordes et al., 2011).

Embedding models for KB completion associate
entities and/or relations with dense feature vectors
or matrices. Such models obtain state-of-the-art
performance (Bordes et al., 2012; Bordes et al.,
2013; Socher et al., 2013; Wang et al., 2014; Guu

et al., 2015; Nguyen et al., 2016) and generalize to
large KBs (Krompa et al., 2015).

Most embedding models for KB completion
learn only from triples and by doing so, ignore lots
of information implicitly provided by the structure
of the knowledge graph. Recently, several authors
have addressed this issue by incorporating rela-
tion path information into model learning (Garcı́a-
Durán et al., 2015; Lin et al., 2015a; Guu et al.,
2015; Toutanova et al., 2016) and have shown that
the relation paths between entities in KBs provide
useful information and improve knowledge base
completion. For instance, a three-relation path

(head,born in hospital/r1, e1)
⇒(e1, hospital located in city/r2, e2)
⇒(e2, city in country/r3, tail)

is likely to indicate that the fact
(head, nationality, tail) could be true, so
the relation path here p = {r1, r2, r3} is useful for
predicting the relationship “nationality” between
the head and tail entities.

Besides the relation paths, there could be other
useful information implicitly presented in the
knowledge base that could be exploited for better
KB completion. For instance, the whole neigh-
borhood of entities could provide lots of useful in-
formation for predicting the relationship between
two entities. Consider for example a KB fragment
given in Figure 1. If we know that Ben Affleck has
won an Oscar award and Ben Affleck lives in Los
Angeles, then this can help us to predict that Ben
Affleck is an actor or a film maker, rather than a
lecturer or a doctor. If we additionally know that
Ben Affleck’s gender is male then there is a higher
chance for him to be a film maker. This intuition
can be formalized by representing an entity vector
as a relation-specific mixture of its neighborhood
as follows:
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Figure 1: An example fragment of a KB.

Ben Affleck = ωr,1(Violet Anne, child of)

+ ωr,2(male, gender−1)

+ ωr,3(Los Angeles, lives in−1)

+ ωr,4(Oscar award,won−1),

where ωr,i are the mixing weights that indicate
how important each neighboring relation is for
predicting the relation r. For example, for pre-
dicting the occupation relationship, the knowl-
edge about the child of relationship might not be
that informative and thus the corresponding mix-
ing coefficient can be close to zero, whereas it
could be relevant for predicting some other re-
lationship, such as parent or spouse, in which
case the relation-specific mixing coefficient for the
child of relationship could be high.

The primary contribution of this paper is intro-
ducing and formalizing the neighborhood mixture
model. We demonstrate its usefulness by apply-
ing it to the well-known TransE model (Bordes et
al., 2013). However, it could be applied to other
embedding models as well, such as Bilinear mod-
els (Bordes et al., 2012; Yang et al., 2015) and
STransE (Nguyen et al., 2016). While relation
path models exploit extra information using longer
paths existing in the KB, the neighborhood mix-
ture model effectively incorporates information
about many paths simultaneously. Our extensive

experiments on three benchmark datasets show
that it achieves superior performance over com-
petitive baselines in three KB completion tasks:
triple classification, entity prediction and relation
prediction.

2 Neighborhood mixture modeling

In this section, we start by explaining how to
formally construct the neighbor-based entity rep-
resentations in section 2.1, and then describe
the Neighborhood Mixture Model applied to the
TransE model (Bordes et al., 2013) in section 2.2.
Section 2.3 explains how we train our model.

2.1 Neighbor-based entity representation

Let E denote the set of entities and R the set of
relation types. Denote by R−1 the set of inverse
relations r−1. Denote by G the knowledge graph
consisting of a set of correct tiples (h, r, t), such
that h, t ∈ E and r ∈ R. Let K denote the sym-
metric closure of G, i.e. if a triple (h, r, t) ∈ G,
then both (h, r, t) and (t, r−1, h) ∈ K.

Define:

Ne,r = {e′|(e′, r, e) ∈ K}
as a set of neighboring entities connected to entity
e with relation r. Then

Ne = {(e′, r)|r ∈ R ∪R−1, e′ ∈ Ne,r}

is the set of all entity and relation pairs that are
neighbors for entity e.

Each entity e is associated with a k-dimensional
vector ve ∈ Rk and relation-dependent vectors
ue,r ∈ Rk, r ∈ R ∪R−1. Now we can define the
neighborhood-based entity representation ϑe,r for
an entity e ∈ E for predicting the relation r ∈ R
as follows:

ϑe,r = aeve +
∑

(e′,r′)∈Ne

br,r′ue′,r′ , (1)

ae and br,r′ are the mixture weights that are con-
strained to sum to 1 for each neighborhood:

ae ∝ δ + expαe (2)

br,r′ ∝ expβr,r′ (3)

where δ > 0 is a hyper-parameter that controls
the contribution of the entity vector ve to the
neighbor-based mixture, αe and βr,r′ are the learn-
able exponential mixture parameters.
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In real-world factual KBs, e.g. Freebase (Bol-
lacker et al., 2008), some entities, such as “male”,
can have thousands or millions neighboring enti-
ties sharing the same relation “gender.” For such
entities, computing the neighbor-based vectors can
be computationally very expensive. To overcome
this problem, we introduce in our implementa-
tion a filtering threshold τ and consider in the
neighbor-based entity representation construction
only those relation-specific neighboring entity sets
for which |Ne,r| ≤ τ .

2.2 TransE-NMM: applying neighborhood
mixtures to TransE

Embedding models define for each triple
(h, r, t) ∈ G, a score function f(h, r, t) that
measures its implausibility. The goal is to choose
f such that the score f(h, r, t) of a plausible triple
(h, r, t) is smaller than the score f(h′, r′, t′) of an
implausible triple (h′, r′, t′).

TransE (Bordes et al., 2013) is a simple em-
bedding model for knowledge base completion,
which, despite of its simplicity, obtains very com-
petitive results (Garcı́a-Durán et al., 2016; Nickel
et al., 2016). In TransE, both entities e and rela-
tions r are represented with k-dimensional vectors
ve ∈ Rk and vr ∈ Rk, respectively. These vectors
are chosen such that for each triple (h, r, t) ∈ G:

vh + vr ≈ vt (4)

The score function of the TransE model is the
norm of this translation:

f(h, r, t)TransE = ‖vh + vr − vt‖`1/2
(5)

We define the score function of our new model
TransE-NMM in terms of the neighbor-based en-
tity vectors as follows:

f(h, r, t) = ‖ϑh,r + vr − ϑt,r−1‖`1/2
, (6)

using either the `1 or the `2-norm, and ϑh,r and
ϑt,r−1 are defined following the Equation 1. The
relation-specific entity vectors ue,r used to con-
struct the neighbor-based entity vectors ϑe,r are
defined based on the TransE translation operator:

ue,r = ve + vr (7)

in which vr−1 = −vr. For each correct triple
(h, r, t), the sets of neighboring entities Nh,r and
Nt,r−1 exclude the entities t and h, respectively.

If we set the filtering threshold τ = 0 then
ϑh,r = vh and ϑt,r−1 = vt for all triples. In this
case, TransE-NMM reduces to the plain TransE
model. In all our experiments presented in section
4, the baseline TransE results are obtained with the
TransE-NMM with τ = 0.

2.3 Parameter optimization

The TransE-NMM model parameters include the
vectors ve,vr for entities and relation types, the
entity-specific weights α = {αe|e ∈ E} and
relation-specific weights β = {βr,r′ |r, r′ ∈ R ∪
R−1}. To learn these parameters, we minimize the
L2-regularized margin-based objective function:

L =
∑

(h,r,t)∈G
(h′,r,t′)∈G′

(h,r,t)

[γ + f(h, r, t)− f(h′, r, t′)]+

+
λ

2

(
‖α‖22 + ‖β‖22

)
, (8)

where [x]+ = max(0, x), γ is the margin hyper-
parameter, λ is the L2 regularization parameter
and

G′(h,r,t) = {(h′, r, t) | h′ ∈ E , (h′, r, t) /∈ G}
∪ {(h, r, t′) | t′ ∈ E , (h, r, t′) /∈ G}

is the set of incorrect triples generated by corrupt-
ing the correct triple (h, r, t) ∈ G. We applied
the “Bernoulli” trick to choose whether to gener-
ate the head or tail entity when sampling an incor-
rect triple (Wang et al., 2014; Lin et al., 2015b; He
et al., 2015; Ji et al., 2015; Ji et al., 2016).

We use Stochastic Gradient Descent (SGD)
with RMSProp adaptive learning rate to minimize
L, and impose the following hard constraints dur-
ing training: ‖ve‖2 6 1 and ‖vr‖2 6 1. We em-
ploy alternating optimization to minimize L. We
first initialize the entity and relation-specific mix-
ing parameters α and β to zero and only learn the
randomly initialized entity and relation vectors ve

and vr. Then we fix the learned vectors and only
optimize the mixing parameters. In the final step,
we fix again the mixing parameters and fine-tune
the vectors. In all experiments presented in sec-
tion 4, we train for 200 epochs during each three
optimization step.

3 Related work

Table 1 summarizes related embedding models for
link prediction and KB completion. The models
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Model Score function f(h, r, t) Opt.

STransE ‖Wr,1vh + vr −Wr,2vt‖`1/2
; Wr,1, Wr,2 ∈ Rk×k; vr ∈ Rk SGD

SE ‖Wr,1vh −Wr,2vt‖`1/2
; Wr,1, Wr,2 ∈ Rk×k SGD

Unstructured ‖vh − vt‖`1/2
SGD

TransE ‖vh + vr − vt‖`1/2
; vr ∈ Rk SGD

TransH
‖(I− rpr

>
p )vh + vr − (I− rpr

>
p )vt‖`1/2 SGD

rp, vr ∈ Rk ; I: Identity matrix size k × k

TransD
‖(I + rph

>
p )vh + vr − (I + rpt

>
p )vt‖`1/2 AdaDelta

rp, vr ∈ Rn ; hp, tp ∈ Rk ; I: Identity matrix size n× k
TransR ‖Wrvh + vr −Wrvt‖`1/2

; Wr ∈ Rn×k ; vr ∈ Rn SGD

TranSparse ‖Wh
r (θh

r )vh + vr −Wt
r(θt

r)vt‖`1/2
; Wh

r , Wt
r ∈ Rn×k; θh

r , θt
r ∈ R ; vr ∈ Rn SGD

SME
(W1,1vh + W1,2vr + b1)>(W2,1vt + W2,2vr + b2)

SGD
b1, b2 ∈ Rn; W1,1, W1,2,W2,1, W2,2 ∈ Rn×k

DISTMULT v>h Wrvt ; Wr is a diagonal matrix ∈ Rk×k AdaGrad

NTN
v>r tanh(v>h Mrvt + Wr,1vh + Wr,2vt + br)

L-BFGS
vr, br ∈ Rn; Mr ∈ Rk×k×n; Wr,1, Wr,2 ∈ Rn×k

Bilinear-COMP v>h Wr1Wr2 ...Wrmvt ; Wr1 ,Wr2 , ...,Wrm ∈ Rk×k AdaGrad

TransE-COMP ‖vh + vr1 + vr2 + ...+ vrm − vt‖`1/2
; vr1 ,vr2 , ...,vrm ∈ Rk AdaGrad

Table 1: The score functions f(h, r, t) and the optimization methods (Opt.) of several prominent embed-
ding models for KB completion. In all of these models, the entities h and t are represented by vectors vh

and vt ∈ Rk respectively.

differ in their score function f(h, r, t) and the al-
gorithm used to optimize their margin-based ob-
jective function, e.g., SGD, AdaGrad (Duchi et al.,
2011), AdaDelta (Zeiler, 2012) or L-BFGS (Liu
and Nocedal, 1989).

The Unstructured model (Bordes et al., 2012)
assumes that the head and tail entity vectors are
similar. As the Unstructured model does not take
the relationship into account, it cannot distinguish
different relation types. The Structured Embed-
ding (SE) model (Bordes et al., 2011) extends the
Unstructured model by assuming that the head and
tail entities are similar only in a relation-dependent
subspace, where each relation is represented by
two different matrices. Futhermore, the SME
model (Bordes et al., 2012) uses four different ma-
trices to project entity and relation vectors into a
subspace. The TransH model (Wang et al., 2014)
associates each relation with a relation-specific
hyperplane and uses a projection vector to project
entity vectors onto that hyperplane. TransD (Ji et
al., 2015) and TransR/CTransR (Lin et al., 2015b)
extend the TransH model by using two projection
vectors and a matrix to project entity vectors into
a relation-specific space, respectively. STransE

(Nguyen et al., 2016) and TranSparse (Ji et al.,
2016) are extensions of the TransR model, where
head and tail entities are associated with their own
projection matrices.

The DISTMULT model (Yang et al., 2015) is
based on the Bilinear model (Nickel et al., 2011;
Bordes et al., 2012; Jenatton et al., 2012) where
each relation is represented by a diagonal rather
than a full matrix. The neural tensor network
(NTN) model (Socher et al., 2013) uses a bilinear
tensor operator to represent each relation. Simi-
lar quadratic forms are used to model entities and
relations in KG2E (He et al., 2015) and TATEC
(Garcı́a-Durán et al., 2016).

Recently, Neelakantan et al. (2015), Gardner
and Mitchell (2015), Luo et al. (2015), Lin et al.
(2015a), Garcı́a-Durán et al. (2015), Guu et al.
(2015) and Toutanova et al. (2016) showed that re-
lation paths between entities in KBs provide richer
information and improve the relationship predic-
tion. In fact, our new TransE-NMM model can
be also viewed as a three-relation path model as it
takes into account the neighborhood entity and re-
lation information of both head and tail entities in
each triple.
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Luo et al. (2015) constructed relation paths be-
tween entities and viewing entities and relations
in the path as pseudo-words applied Word2Vec al-
gorithms (Mikolov et al., 2013) to produce pre-
trained vectors for these pseudo-words. Luo et al.
(2015) showed that using these pre-trained vectors
for initialization helps to improve the performance
of the TransE, SME and SE models. RTransE
(Garcı́a-Durán et al., 2015), PTransE (Lin et al.,
2015a) and TransE-COMP (Guu et al., 2015) are
extensions of the TransE model. These mod-
els similarly represent a relation path by a vec-
tor which is the sum of the vectors of all rela-
tions in the path, whereas in the Bilinear-COMP

model (Guu et al., 2015), each relation is a ma-
trix and so it represents the relation path by ma-
trix multiplication. Our neighborhood mixture
model can be adapted to both relation path mod-
els Bilinear-COMP and TransE-COMP, by replac-
ing head and tail entity vectors by the neighbor-
based vector representations, thus combining ad-
vantages of both path and neighborhood informa-
tion. Nickel et al. (2015) reviews other approaches
for learning from KBs and multi-relational data.

4 Experiments

To investigate the usefulness of the neighbor mix-
tures, we compare the performance of the TransE-
NMM against the results of the baseline TransE
and other state-of-the-art embedding models on
the triple classification, entity prediction and re-
lation prediction tasks.

4.1 Datasets

Dataset: WN11 FB13 NELL186
#R 11 13 186
#E 38,696 75,043 14,463
#Train 112,581 316,232 31,134
#Valid 2,609 5,908 5,000
#Test 10,544 23,733 5,000

Table 2: Statistics of the experimental datasets
used in this study (and previous works). #E is
the number of entities, #R is the number of rela-
tion types, and #Train, #Valid and #Test are the
numbers of correct triples in the training, valida-
tion and test sets, respectively. Each validation and
test set also contains the same number of incorrect
triples as the number of correct triples.

We conduct experiments using three publicly

available datasets WN11, FB13 and NELL186.
For all of them, the validation and test sets con-
taining both correct and incorrect triples have al-
ready been constructed. Statistical information
about these datasets is given in Table 2.

The two benchmark datasets1, WN11 and
FB13, were produced by Socher et al. (2013)
for triple classification. WN11 is derived from
the large lexical KB WordNet (Miller, 1995) in-
volving 11 relation types. FB13 is derived from
the large real-world fact KB FreeBase (Bollacker
et al., 2008) covering 13 relation types. The
NELL186 dataset2 was introduced by Guo et al.
(2015) for both triple classification and entity pre-
diction tasks, containing 186 most frequent rela-
tions in the KB of the CMU Never Ending Lan-
guage Learning project (Carlson et al., 2010).

4.2 Evaluation tasks
We evaluate our model on three commonly used
benchmark tasks: triple classification, entity pre-
diction and relation prediction. This subsection
describes those tasks in detail.

Triple classification: The triple classification
task was first introduced by Socher et al. (2013),
and since then it has been used to evaluate vari-
ous embedding models. The aim of the task is to
predict whether a triple (h, r, t) is correct or not.

For classification, we set a relation-specific
threshold θr for each relation type r. If the im-
plausibility score of an unseen test triple (h, r, t)
is smaller than θr then the triple will be classified
as correct, otherwise incorrect. Following Socher
et al. (2013), the relation-specific thresholds are
determined by maximizing the micro-averaged ac-
curacy, which is a per-triple average, on the vali-
dation set. We also report the macro-averaged ac-
curacy, which is a per-relation average.

Entity prediction: The entity prediction task
(Bordes et al., 2013) predicts the head or the tail
entity given the relation type and the other en-
tity, i.e. predicting h given (?, r, t) or predicting
t given (h, r, ?) where ? denotes the missing el-
ement. The results are evaluated using a ranking
induced by the function f(h, r, t) on test triples.
Note that the incorrect triples in the validation and
test sets are not used for evaluating the entity pre-
diction task nor the relation prediction task.

1http://cs.stanford.edu/people/danqi/data/nips13-dataset.tar.bz2
2http://aclweb.org/anthology/attachments/P/P15/

P15-1009.Datasets.zip
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Each correct test triple (h, r, t) is corrupted by
replacing either its head or tail entity by each of
the possible entities in turn, and then we rank these
candidates in ascending order of their implausi-
bility score. This is called as the “Raw” setting
protocol. For the “Filtered” setting protocol de-
scribed in Bordes et al. (2013), we also filter out
before ranking any corrupted triples that appear in
the KB. Ranking a corrupted triple appearing in
the KB (i.e. a correct triple) higher than the origi-
nal test triple is also correct, but is penalized by the
“Raw” score, thus the “Filtered” setting provides
a clearer view on the ranking performance.

In addition to the mean rank and the Hits@10
(i.e., the proportion of test triples for which the
target entity was ranked in the top 10 predictions),
which were originally used in the entity predic-
tion task (Bordes et al., 2013), we also report the
mean reciprocal rank (MRR), which is commonly
used in information retrieval. In both “Raw” and
“Filtered” settings, mean rank is always greater
or equal to 1 and lower mean rank indicates bet-
ter entity prediction performance. The MRR and
Hits@10 scores always range from 0.0 to 1.0, and
higher score reflects better prediction result.

Relation prediction: The relation prediction
task (Lin et al., 2015a) predicts the relation type
given the head and tail entities, i.e. predicting r
given (h, ?, t) where ? denotes the missing ele-
ment. We corrupt each correct test triple (h, r, t)
by replacing its relation r by each possible rela-
tion type in turn, and then rank these candidates in
ascending order of their implausibility score. Just
as in the entity prediction task, we use two setting
protocols, “Raw” and “Filtered”, and evaluate on
mean rank, MRR and Hits@10.

4.3 Hyper-parameter tuning

For all evaluation tasks, results for TransE are ob-
tained with TransE-NMM with the filtering thresh-
old τ = 0, while we set τ = 10 for TransE-NMM.

For triple classification, we first performed
a grid search to choose the optimal hyper-
parameters for TransE by monitoring the micro-
averaged triple classification accuracy after each
training epoch on the validation set. For all
datasets, we chose either the `1 or `2 norm in the
score function f and the initial RMSProp learning
rate η ∈ {0.001, 0.01}. Following the previous
work (Wang et al., 2014; Lin et al., 2015b; Ji et al.,
2015; He et al., 2015; Ji et al., 2016), we selected

the margin hyper-parameter γ ∈ {1, 2, 4} and the
number of vector dimensions k ∈ {20, 50, 100}
on WN11 and FB13. On NELL186, we set γ = 1
and k = 50 (Guo et al., 2015; Luo et al., 2015).
The highest accuracy on the validation set was ob-
tained when using η = 0.01 for all three datasets,
and when using `2 norm for NELL186, γ = 4,
k = 20 and `1 norm for WN11, and γ = 1,
k = 100 and `2 norm for FB13.

We set the hyper-parameters η, γ, k, and the
`1 or the `2-norm in our TransE-NMM model to
the same optimal hyper-parameters searched for
TransE. We then used a grid search to select the
hyper-parameter δ ∈ {0, 1, 5, 10} and L2 regu-
larizer λ ∈ {0.005, 0.01, 0.05} for TransE-NMM.
By monitoring the micro-averaged accuracy after
each training epoch, we obtained the highest ac-
curacy on validation set when using δ = 1 and
λ = 0.05 for both WN11 and FB13, and δ = 0
and λ = 0.01 for NELL186.

For both entity prediction and relation predic-
tion tasks, we set the hyper-parameters η, γ,
k, and the `1 or the `2-norm for both TransE
and TransE-NMM to be the same as the opti-
mal parameters found for the triple classifica-
tion task. We then monitored on TransE the fil-
tered MRR on validation set after each training
epoch. We chose the model with highest valida-
tion MRR, which was then used to evaluate the
test set. For TransE-NMM, we searched the hyper-
parameter δ ∈ {0, 1, 5, 10} and L2 regularizer
λ ∈ {0.005, 0.01, 0.05}. By monitoring the fil-
tered MRR after each training epoch, we selected
the best model with the highest filtered MRR on
the validation set. Specifically, for the entity pre-
diction task, we selected δ = 10 and λ = 0.005 for
WN11, δ = 5 and λ = 0.01 for FB13, and δ = 5
and λ = 0.005 for NELL186. For the relation pre-
diction task, we selected δ = 10 and λ = 0.005
for WN11, δ = 10 and λ = 0.05 for FB13, and
δ = 1 and λ = 0.05 for NELL186.

5 Results

5.1 Quantitative results

Table 3 presents the results of TransE and TransE-
NMM on triple classification, entity prediction
and relation prediction tasks on all experimental
datasets. The results show that TransE-NMM gen-
erally performs better than TransE in all three eval-
uation tasks.

Specifically, TransE-NMM obtains higher triple
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Data Method
Triple class. Entity prediction Relation prediction

Mic. Mac. MR MRR H@10 MR MRR H@10

WN11
R

TransE 85.21 82.53 4324 0.102 19.21 2.37 0.679 99.93
TransE-NMM 86.82 84.37 3687 0.094 17.98 2.14 0.687 99.92

F
TransE 4304 0.122 21.86 2.37 0.679 99.93
TransE-NMM 3668 0.109 20.12 2.14 0.687 99.92

FB13
R

TransE 87.57 86.66 9037 0.204 35.39 1.01 0.996 99.99
TransE-NMM 88.58 87.99 8289 0.258 35.53 1.01 0.996 100.0

F
TransE 5600 0.213 36.28 1.01 0.996 99.99
TransE-NMM 5018 0.267 36.36 1.01 0.996 100.0

NELL186
R

TransE 92.13 88.96 309 0.192 36.55 8.43 0.580 77.18
TransE-NMM 94.57 90.95 238 0.221 37.55 6.15 0.677 82.16

F
TransE 279 0.268 47.13 8.32 0.602 77.26
TransE-NMM 214 0.292 47.82 6.08 0.690 82.20

Table 3: Experimental results of TransE (i.e. TransE-NMM with τ = 0) and TransE-NMM with τ = 10.
Micro-averaged (labeled as Mic.) and Macro-averaged (labeled as Mac.) accuracy results are for the
triple classification task. MR, MRR and H@10 abbreviate the mean rank, the mean reciprocal rank and
Hits@10 (in %), respectively. “R” and “F” denote the “Raw” and “Filtered” settings used in the entity
prediction and relation prediction tasks, respectively.

Method W11 F13
TransR (Lin et al., 2015b) 85.9 82.5
CTransR (Lin et al., 2015b) 85.7 -
TransD (Ji et al., 2015) 86.4 89.1
TranSparse-S (Ji et al., 2016) 86.4 88.2
TranSparse-US (Ji et al., 2016) 86.8 87.5
NTN (Socher et al., 2013) 70.6 87.2
TransH (Wang et al., 2014) 78.8 83.3
SLogAn (Liang and Forbus, 2015) 75.3 85.3
KG2E (He et al., 2015) 85.4 85.3
Bilinear-COMP (Guu et al., 2015) 77.6 86.1
TransE-COMP (Guu et al., 2015) 80.3 87.6
TransE 85.2 87.6
TransE-NMM 86.8 88.6

Table 4: Micro-averaged accuracy results (in %)
for triple classification on WN11 (labeled as W11)
and FB13 (labeled as F13) test sets. Scores in bold
and underline are the best and second best scores,
respectively.

classification results than TransE in all three ex-
perimental datasets, for example, with 2.44% ab-
solute improvement in the micro-averaged accu-
racy on the NELL186 dataset (i.e. 31% reduc-
tion in error). In terms of entity prediction,
TransE-NMM obtains better mean rank, MRR and

Method
Triple class. Entity pred.

Mic. Mac. MR H@10
TransE-LLE 90.08 84.50 535 20.02
SME-LLE 93.64 89.39 253 37.14
SE-LLE 93.95 88.54 447 31.55
TransE-SkipG 85.33 80.06 385 30.52
SME-SkipG 92.86 89.65 293 39.70
SE-SkipG 93.07 87.98 412 31.12
TransE 92.13 88.96 309 36.55
TransE-NMM 94.57 90.95 238 37.55

Table 5: Results on on the NELL186 test set. Re-
sults for the entity prediction task are in the “Raw”
setting. “-SkipG” abbreviates “-Skip-gram”.

Hits@10 scores than TransE on both FB13 and
NELL186 datasets. Specifically, on NELL186
TransE-NMM gains a significant improvement of
279 − 214 = 65 in the filtered mean rank (which
is about 23% relative improvement), while on
the FB13 dataset, TransE-NMM improves with
0.267−0.213 = 0.054 in the filtered MRR (which
is about 25% relative improvement). On the
WN11 dataset, TransE-NMM only achieves bet-
ter mean rank for entity prediction. The relation
prediction results of TransE-NMM and TransE are
relatively similar on both WN11 and FB13 be-
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cause the number of relation types is small in these
two datasets. On NELL186, however, TransE-
NMM does significantly better than TransE.

In Table 4, we compare the micro-averaged
triple classification accuracy of our TransE-NMM
model with the previously reported results on the
WN11 and FB13 datasets. The first five rows re-
port the performance of models that use TransE
to initialize the entity and relation vectors. The
last eight rows present the accuracy of models with
randomly initialized parameters.

Table 4 shows that our TransE-NMM model ob-
tains the highest accuracy on WN11 and achieves
the second highest result on FB13. Note that
there are higher results reported for NTN (Socher
et al., 2013), Bilinear-COMP (Guu et al., 2015)
and TransE-COMP when entity vectors are initial-
ized by averaging the pre-trained word vectors
(Mikolov et al., 2013; Pennington et al., 2014). It
is not surprising as many entity names in Word-
Net and FreeBase are lexically meaningful. It is
possible for all other embedding models to utilize
the pre-trained word vectors as well. However, as
pointed out by Wang et al. (2014) and Guu et al.
(2015), averaging the pre-trained word vectors for
initializing entity vectors is an open problem and
it is not always useful since entity names in many
domain-specific KBs are not lexically meaningful.

Table 5 compares the accuracy for triple classifi-
cation, the raw mean rank and raw Hits@10 scores
for entity prediction on the NELL186 dataset. The
first three rows present the best results reported
in Guo et al. (2015), while the next three rows
present the best results reported in Luo et al.
(2015). TransE-NMM obtains the highest triple
classification accuracy, the best raw mean rank and
the second highest raw Hits@10 on the entity pre-
diction task in this comparison.

5.2 Qualitative results

Table 6 presents some examples to illustrate the
useful information modeled by the neighbors. We
took the relation-specific mixture weights from the
learned TransE-NMM model optimized on the en-
tity prediction task, and then extracted three neigh-
bor relations with the largest mixture weights
given a relation.

Table 6 shows that those relations are semanti-
cally coherent. For example, if we know the place
of birth and/or the place of death of a person and/or
the location where the person is living, it is likely

Relation Top 3-neighbor relations

has instance
type of
subordinate instance of

(WN11) domain topic

synset domain topic
domain region
member holonym

(WN11) member meronym

nationality
place of birth
place of death

(FB13) location
spouse

children, spouse, parents
(FB13)

CEOof
WorksFor
TopMemberOfOrganization

(NELL186) PersonLeadsOrganization

AnimalDevelopDisease
AnimalSuchAsInsect
AnimalThatFeedOnInsect

(NELL186) AnimalDevelopDisease

Table 6: Qualitative examples.

that we can predict the person’s nationality. On
the other hand, if we know that a person works
for an organization and that this person is also the
top member of that organization, then it is possible
that this person is the CEO of that organization.

5.3 Discussion

Despite of the lower triple classification scores of
TransE reported in Wang et al. (2014), Table 4
shows that TransE in fact obtains a very compet-
itive accuracy. Particularly, compared to the rela-
tion path model TransE-COMP (Guu et al., 2015),
when model parameters were randomly initial-
ized, TransE obtains 85.2− 80.3 = 4.9% absolute
accuracy improvement on the WN11 dataset while
achieving similar score on the FB13 dataset. Our
high results of the TransE model are probably due
to a careful grid search and using the “Bernoulli”
trick. Note that Lin et al. (2015b), Ji et al. (2015)
and Ji et al. (2016) did not report the TransE
results used for initializing TransR, TransD and
TranSparse, respectively. They directly copied the
TransE results previously reported in Wang et al.
(2014). So it is difficult to determine exactly how
much TransR, TransD and TranSparse gain over
TransE. These models might obtain better results
than previously reported when the TransE used for
initalization performs as well as reported in this
paper. Furthermore, Garcı́a-Durán et al. (2015),
Lin et al. (2015a), Garcı́a-Durán et al. (2016) and
Nickel et al. (2016) also showed that for entity
prediction TransE obtains very competitive results
which are much higher than the TransE results
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Figure 2: Relative improvement of TransE-NMM
against TransE for entity prediction task in WN11
when the filtering threshold τ = {10, 100, 500}
(with other hyper-parameters being the same as
selected in Section 4.3). Prefixes “R-” and “F-”
denote the “Raw” and “Filtered” settings, respec-
tively. Suffixes “-MR”, “-MRR” and “-H@10” ab-
breviate the mean rank, the mean reciprocal rank
and Hits@10, respectively.

originally published in Bordes et al. (2013).3

As presented in Table 3, for entity predic-
tion using WN11, TransE-NMM with the filter-
ing threshold τ = 10 only obtains better mean
rank than TransE (about 15% relative improve-
ment) but lower Hits@10 and mean reciprocal
rank. The reason might be that in semantic lexi-
cal KBs such as WordNet where relationships be-
tween words or word groups are manually con-
structed, whole neighborhood information might
be useful. So when using a small filtering thresh-
old, the model ignores a lot of potential informa-
tion that could help predicting relationships. Fig-
ure 2 presents relative improvements in entity pre-
diction of TransE-NMM over TransE on WN11
when varying the filtering threshold τ . Figure
2 shows that TransE-NMM gains better scores
with higher τ value. Specifically, when τ =
500 TransE-NMM does significantly better than
TransE in all entity prediction metrics.

6 Conclusion and future work

We introduced a neighborhood mixture model
for knowledge base completion by constructing

3They did not report the results on WN11 and FB13
datasets, which are used in this paper, though.

neighbor-based vector representations for entities.
We demonstrated its effect by extending TransE
(Bordes et al., 2013) with our neighborhood mix-
ture model. On three different datasets, experi-
mental results show that our model significantly
improves TransE and obtains better results than
the other state-of-the-art embedding models on
triple classification, entity prediction and relation
prediction tasks. In future work, we plan to ap-
ply the neighborhood mixture model to other em-
bedding models, especially to relation path mod-
els such as TransE-COMP, to combine the useful
information from both relation paths and entity
neighborhoods.
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