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This paper presents context-group discrimination, a disambiguation algorithm based on cluster- 
ing. Senses are interpreted as groups (or clusters) of similar contexts of the ambiguous word. 
Words, contexts, and senses are represented in Word Space, a high-dimensional, real-valued 
space in which closeness corresponds to semantic similarity. Similarity in Word Space is based 
on second-order co-occurrence: two tokens (or contexts) of the ambiguous word are assigned to 
the same sense cluster if the words they co-occur with in turn occur with similar words in a 
training corpus. The algorithm is automatic and unsupervised in both training and application: 
senses are induced from a corpus without labeled training instances or other external knowledge 
sources. The paper demonstrates good performance of context-group discrimination for a sample 
of natural and artificial ambiguous words. 

1. Introduction 

Word sense disambiguation is the task of assigning sense labels to occurrences of an 
ambiguous word.  This problem can be divided into two subproblems: sense discrimi- 
nation and sense labeling. Sense discrimination divides the occurrences of a word  into 
a number  of classes by  determining for any two occurrences whether  they belong to 
the same sense or not. Sense labeling assigns a sense to each class, and, in combination 
with sense discrimination, to each occurrence of the ambiguous  word.  This view of 
disambiguation as a two-stage process may  not  be completely general (for example, 
it m ay  not be appropriate  for the iterative process by  which a lexicographer arrives 
at the sense divisions of a dictionary entry), but  it seems applicable to most  work on 
disambiguation in computat ional  linguistics. 

In this paper, we will address the problem of sense discrimination as defined 
above. That is, we will not be concerned with the sense-labeling component  of word  
sense disambiguation. Word sense discrimination is easier than full disambiguation 
since we need only determine which occurrences have the same meaning and not  what  
the meaning actually is. Focusing solely on word  sense discrimination also liberates us 
of a serious constraint common  to other work on word  sense disambiguation. If sense 
labeling is par t  of the task, an outside source of knowledge is necessary to define the 
senses. Regardless of whether  it takes the form of dictionaries (Lesk 1986; Guthrie  et al. 
1991; Dagan, Itai, and Schwall 1991; Karov and Edelman 1996), thesauri (Yarowsky 
1992; Walker and Amsler 1986), bilingual corpora (Brown et al. 1991; Church and 
Gale 1991), or hand-labeled training sets (Hearst 1991; Leacock, Towell, and Voorhees 
1993; Niwa and Nitta 1994; Bruce and Wiebe 1994), providing information for sense 
definitions can be a considerable burden.  

What  makes our  approach unique is that, since we narrow the problem to sense 
discrimination, we can dispense of an outside source of knowledge for defining senses. 
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We therefore call our  approach automatic word  sense discrimination, since we do not  
require manual ly  constructed sources of knowledge.  

In many  applications, word  sense disambiguation must  both  discriminate and la- 
bel occurrences; for example,  in order  to find the correct translation of an ambiguous  
word  in machine translation or the right pronunciat ion in a text-to-speech system. 
The application of interest to us is information access, i.e., making sense of and find- 
ing information in large text databases. For many  problems in information access, 
it is sufficient to solve the discrimination problem only. In one study, we measured  
document -query  similarity based on word  senses rather than words  and achieved a 
considerable improvement  in ranking relevant documents  ahead of nonrelevant  doc- 
uments  (Schi.itze and Pedersen 1995). Since the measurement  of similarity is a system- 
internal process, no reference to externally defined senses need be made. Another  
potential ly beneficial application of word  sense discrimination in information access 
is the design of interfaces that take account of ambiguity. If a user enters a query  that 
contains an ambiguous  word,  a system capable of discrimination can give examples of 
the different senses of the word  in the text database. The user can then decide which 
sense was in tended and only documents  with the in tended sense would  be retrieved. 
Again, a reference to external sense definitions is not  required for this task. 

The algori thm we propose in this paper  is context-group discr iminat ion.  1 Context- 
group discrimination groups the occurrences of an ambiguous  word  into clusters, 
where clusters consist of contextually similar occurrences. Words, contexts, and clus- 
ters are represented in a high-dimensional,  real-valued vector space. Context  vectors 
capture the information present  in second-order  co-occurrence. Instead of forming 
a context representat ion from the words  that the ambiguous  word  directly occurs 
with in a particular context (first-order co-occurrence), we form the context represen- 
tation from the words  that these words  in turn co-occur with in the training corpus. 
Second-order co-occurrence information is less sparse and more robust  than first-order 
information. 

In context-group discrimination, the context of each occurrence of the ambiguous  
word  in the training corpus is represented as a context vector formed from second- 
order co-occurrence information. The context vectors are then clustered into coherent  
groups such that occurrences judged similar according to second-order  co-occurrence 
are assigned to the same cluster. Clusters are represented by  their centroids, the av- 
erage of their elements. An occurrence in a test text is disambiguated by  comput ing  
the second-order  representat ion of the relevant context, and assigning it to the cluster 
whose centroid is closest to that representation. Since the choice of representat ion influ- 
ences the formation of clusters, we will exper iment  with several representations in this 
paper, some involving a dimensionali ty reduct ion using singular value decomposi t ion 
(SVD). 

Context-group discrimination can be generalized to do a discrimination task that 
goes beyond  the notion of sense that underl ies m an y  other contributions to the dis- 
ambiguat ion literature. If the ambiguous  word ' s  occurrences are clustered into a large 
number  n of clusters (e.g., n = 10), then the clusters can capture fine contextual distinc- 
tions. Consider  the example of space. For a small number  of clusters, only the senses 
"outer  space" and "limited extent in one, two, or three dimensions" are separated. If 
the word ' s  occurrences are clustered into more clusters, then finer distinctions such 
as the one be tween "office space" and "exhibit ion space" are also discovered. Note 
that differences between sense entries in dictionaries are often similarly fine-grained. 

1 The basic idea of the  a lgor i thm was  first descr ibed in Schi~tze (1992b). 
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Figure 1 
The basic design of context-group discrimination. Contexts of the ambiguous word in the 
training set are mapped to context vectors in Word Space (upper dashed arrow) by summing 
the vectors of the words in the context. The context vectors are grouped into clusters (dotted 
lines) and represented by sense vectors, their centroids (squares). A context of the ambiguous 
word ("test context") is disambiguated by mapping it to a context vector in Word Space 
(lower dashed arrow ending in circle). The context is assigned to the sense with the closest 
sense vector (solid arrow). 

Even if the contextual distinctions captured by  generalized context-group discrimina- 
tion do not line up perfectly with finer distinctions made  in dictionaries, they still help 
characterize the contextual meaning in which the ambiguous word  is used in a partic- 
ular instance. Such a characterization is useful for the information-access applications 
described above, among others. 

The basic idea of context-group discrimination is to induce senses from contextual 
similarity. There is some evidence that contextual similarity also plays a crucial role in 
hum an  semantic categorization. Miller and Charles (1991) found evidence in several 
experiments that humans  determine the semantic similarity of words  from the similar- 
ity of the contexts they are used in. We hypothesize  that, by  extension, senses are also 
based on contextual similarity: a sense is a group of contextually similar occurrences 
of a word.  

The following sections describe the disambiguation algorithm, our  evaluation, and 
the results of the algori thm for a test set d rawn from the New York Times News Wire, 
and discuss the relevance of our  approach in the context of other work  on word  sense 
disambiguation. 

2. Context-Group Discriminat ion 

Context-group discrimination groups a set of contextually similar occurrences of an 
ambiguous word  into a cluster, which is then interpreted as a sense. The particular im- 
plementat ion of this idea described here makes use of a high-dimensional,  real-valued 
vector space. Context-group discrimination is a corpus-based method: all representa- 
tions are der ived from a large text corpus. 

The basic design of context-group discrimination is shown in Figure 1. Each oc- 
currence of the ambiguous word  in the training set is m ap p ed  to a point  in Word 
Space (shown for one example occurrence: see dashed line from training text to Word 
Space). The mapping  is based on word  vectors that are looked up in Word Space 
(to be described below). Once all training-text contexts have been m ap p ed  to Word 
Space, the resulting point  cloud is clustered into groups of points such that points are 
close to each other in each group and that groups are as distant from each other as 
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possible. The resulting clusters are delimited by  dotted lines in the figure. Each cluster 
is assumed to correspond to a sense of the ambiguous  word  (an assumption to be 
evaluated later). The representative of each group is its centroid, depicted as a square. 

After training, a new occurrence of the ambiguous word  (labeled "test context" 
in the figure) is disambiguated by  mapping  its context to Word Space (see lower 
dashed line; the context 's point  is depicted as a circle). The context is then assigned 
to the context group whose centroid is closest (solid arrow). Finally, the context is 
categorized as being a use of the sense corresponding to this context group. 

There are three types of entities that we need  to represent: words,  contexts, and 
senses. They are represented as word  vectors, context vectors, and sense vectors, re- 
spectively. Word vectors are der ived from neighbors in the corpus, context vectors are 
der ived from word  vectors, and sense vectors are der ived by  way  of clustering from 
the distribution of context vectors. 

The representational  med ium of a vector space was chosen because of its wide 
acceptance in information retrieval (IR) (see, e.g., Salton and McGill [1983]). The vector- 
space model  is arguably the most  common  f ramework  in IR. Systems based on it have 
ranked among the best in many  evaluations of IR performance (Harman 1993). The 
success of the vector-space model  motivates us to use it for the representat ion of words.  
We represent words  in a space in which each dimension corresponds to a word,  just 
as documents  and queries are commonly  represented in this space in IR. 

Another  approach to comput ing  word  similarity is the representat ion of words  in 
a document  space in which each dimension corresponds to a document  (Lesk 1969; 
Salton 1971; Qiu and Frei 1993). There are fewer occurrence-in-document  than word-  
co-occurrence events, so these word  representations tend to be more  sparse and, ar- 
guably, less informative than word-based representations. Word vectors have also been 
based on hand-encoded  features (Gallant 1991) and dictionaries (Sparck-Jones 1986; 
Wilks et al. 1990). Corpus-based methods  like the one proposed  here have the ad- 
vantage that no manual  labor is required and that a possible mismatch be tween a 
general dict ionary and a specialized text (e.g., on chemistry) is avoided.  Finally, word  
similarity can be computed  from structural features like head-modif ier  relationships 
(Grefenstette 1994b; Ruge 1992; Dagan, Marcus, and Markovi tch 1993; Pereira, Tishby, 
and Lee 1993; Dagan, Pereira, and Lee 1994). Like document-based representations,  
structure-based representations are sparser than those based on co-occurrence. It is 
debatable whether  structural features are more informative than associational features 
(Grefenstette 1992, 1996) or not (Schtitze and Pedersen 1997). Approaches  to word  
representat ion closely related to ours were proposed  by  Niwa and Nitta (1994) and 
Burgess and Lund (1997). Instead of co-occurrence counts, vector entries are mutual  
information scores be tween the word  that is to be represented and the dimension 
words,  in Niwa and Nitta 's approach.  

The algorithms for vector derivat ion and sense discrimination are described in 
what  follows. 

2.1 Word Vectors 
A vector for word  w is der ived from the close neighbors of w in the corpus. Close 
neighbors are all words  that co-occur with w in a sentence or a larger context. In the 
simplest case, the vector has an entry for each word  that occurs in the corpus. The 
entry for word  v in the vector for w records the number  of times that word  v occurs 
close to w in the corpus. It is this representational  vector space that we refer to as 
WOrd Space. 

Figure 2 gives a schematic example of two words  being represented in a two- 
dimensional  space. The representat ion is based on the co-occurrence counts of a hypo-  
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Table 1 
Co-occurrence counts for four words in a 
hypothetical corpus. The words legal and 
clothes are interpreted as dimensions in 
Figure 2, judge and robe as vectors. 

Vector 
Dimens ion  judge robe 

legal 300 133 
clothes 75 200 

LEGAL 
300 JUDGE / 
133 f f /  ROBE 

I I 
75 200 CLOTHES 

Figure 2 
The derivation of word vectors, judge and robe are represented as word vectors in a 
two-dimensional space with the dimensions 'legal' and 'clothes.' Co-occurrence data are from 
Table 1. 

thetical corpus  in Table 1. The word  judge has a value of 300 on the d imens ion  "legal" 
because judge and legal co-occur 300 times with  each other (see be low for which words  
are selected as dimensions;  a word  can be a d imension  of Word Space and  represented 
as a word  vector  in Word Space at the same time). 

This vector  representat ion captures  the typical topic or subject mat te r  of a word.  
For example,  words  like judge and law are closer to the "legal" dimension;  words  
like robe and tailor are closer to the "clothes" dimension.  By looking at the a m o u n t  of 
over lap be tween  two vectors,  one can roughly  de termine  h o w  closely they are related 
semantically. This is because related meanings  are often expressed by  similar sets of 
words.  Semantical ly related words  will therefore co-occur wi th  similar neighbors  and  
their vectors will have  considerable overlap.  

This similarity can be measured  by  the cosine be tween  two vectors. The cosine is 
equivalent  to the normal ized  correlation coefficient: 

corr( fi, ~ ) = ~iN=l ViWi 

where  ff and  ~ are vectors and  N is the d imension  of the vector  space. The value of 
the cosine is higher, the more  over lap there is be tween  the neighbors  of the two words  
whose  vectors  are compared .  If two words  occur wi th  exactly the same neighbors  
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(perfect overlap), then the value of the cosine is 1.0. If there is no overlap at all, then 
the value of the cosine is 0.0. The cosine can therefore be used as a rough measure of 
semantic relatedness between words. 

What words should serve as the dimensions of Word Space? We will experiment 
with two strategies: a global and a local one. The local strategy focuses on the contexts 
of the ambiguous words and ignores the rest of the corpus. The global strategy is to 
select the n most frequent words of the corpus as features and use them regardless of 
the word that is to be disambiguated. (See Karov and Edelman [1996] for a different 
approach that selects features according to a combination of global frequency and local 
salience.) 

For local selection, we can also use a frequency cutoff. As an alternative, we will 
test selection according to a X 2 test. For the frequency-based selection criterion, the 
neighbors of the ambiguous word in the corpus are counted. A neighbor is any word 
that occurs at a distance of at most 25 words from the ambiguous word (that is, in a 50- 
word window centered on the ambiguous word). The 1,000 most frequent neighbors 
are chosen as the dimensions of the space. For the x2-based criterion, a x2-measure 
of dependence is applied to a contingency table containing the number of contexts of 
the ambiguous word in which the candidate word occurs (N++) and does not occur 
(N+_), and the number of contexts without an occurrence of the ambiguous word in 
which the candidate word occurs (N_+) and does not occur (N__). 

X2 = N(N++N__ - N+_N_+) 2 
(N++ + N+_)(N_+ + N__)(N++ + N_+)(N+_ + N__)  

The underlying assumption in using the x2-test is that candidate words whose occur- 
rence depends on whether the ambiguous word occurs will be indicative of one of the 
senses of the ambiguous word and hence useful for disambiguation. 2 

After 1,000 words have been selected in local selection, word vectors are formed 
by collecting a 1,000-by-I, 000 matrix C, such that element cq records the number of 
times that words i and j co-occur in a window of size k. Column n (or, equivalently, 
row n) of matrix C represents word n. Note that C is symmetric since the words that 
are represented as word vectors are also those that form the dimensions of the 1,000- 
dimensional space. We chose a window size of k = 50 because no improvement of 
discrimination performance was found in Schfitze (1997) for k > 50. 

For global selection, we choose the 20,000 most frequent words as features and 
the 2,000 most frequent words as dimensions of Word Space. A global 20, 000-by-2, 000 
co-occurrence matrix is derived from the corpus. 

Association data were extracted from the training set consisting of 17 months of 
the New York Times News Service, June 1989 through October 1990. The size of this 
set is about 435 megabytes and 60.5 million words. Two months (November 1990 and 
May 1989; 46 megabytes, 5.4 million words) were set aside as a test set. 

2.2 Context Vectors 
The representation for words derived above conflates senses. For example, both senses 
of the word suit ('lawsuit' and 'garment') are summed in its word vector, which will 
therefore be positioned somewhere between the 'legal' and 'clothes' dimensions in 
Figure 2. We need to go back to individual contexts in the corpus to acquire information 
about sense distinctions. Contexts are represented as context vectors in Word Space. 

2 Candida te  words  are selected after a list of 930 s topwords  has  been  removed.  This s top list was  based  
on  the one u sed  in the Text Data Base sys t em (Cutting, Pedersen,  and  Ha lvorsen  1991). 
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LEGAL 
CENTROID 

LAW / 
~JUDGE 

/iJ~ISTATUTE 
/ I I /// /#SUIT 

/ / /  

I/~// 
I/1/ 

CLOTHES 

Figure 3 
The derivation of context vectors. A context vector is computed as the centroid of the words 
occurring in the context. The words in this example context are law, judge, statute, and suit. 

A context vector is the centroid (or sum) of the vectors of the words occurring in the 
context. Figure 3 shows the context vector of an example context of suit containing the 
words law, judge, statute, and suit. Note that the context vector is closer to the "legal' 
than to the 'clothes' dimension, thus capturing that the context is a 'legal' use of suit. 
(The true sum of the four vectors is longer than shown. Since all correlation coefficients 
are normalized, the length of a vector does not play a role in the computations.) 

The centroid "averages" the direction of a set of vectors. If many  of the words in 
a context have a strong component  for one of the topics (like 'legal' in Figure 3), then 
the average of the vectors, the context vector, will also have a strong component  for 
the topic. Conversely, if only one or two words represent a particular topic, then the 
context vector will be weak on this component.  The context vector hence represents 
the strength of different topical or semantic components in a context. 

In the computat ion of the context vector, we will weight a word vector according 
to its discriminating potential. A rough measure of how well word wi discriminates 
between different topics is the log inverse document  frequency used in information 
retrieval (Salton and Buckley 1990): 

ai = l ° g / ~  / 

where ni is the number  of documents  that wi occurs in and N is the total number  
of documents.  Poor discriminators of topics are words such as idea or help that are 
relatively uniformly distributed and therefore have a high document  frequency. Good 
content discriminators like automobile or China have a bursty distribution (they have 
several occurrences in a short interval if they occur at all [Church and Gale 1995]), 
and therefore a low document  frequency relative to their absolute frequency. 

Other algorithms for computing context vectors have been proposed by Wilks et al. 
(1990) (based on dictionary entries), Gallant (1991) (based on hand-encoded semantic 
features), Grefenstette (1994b) (based on light parsing), and Niwa and Nitta (1994) (a 
comparison of dictionary-based and corpus-based context vectors). 
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LEGAL 

SENSE 1 
Cl 

..,,,7 ,s ~ -  SENSE 

CLOTHES 

Figure 4 
The derivation of sense vectors. Sense vectors are derived by clustering the context vectors of 
an ambiguous word (here, cl, c2, c3, c4, c5, c6, c7, and cs), and computing sense vectors as the 
centroids of the resulting clusters. The vectors SENSE 1 and SENSE 2 are the sense vectors of 
clusters {cl, c2, c3, c4} and {cs, c6, c7, cs}, respectively. 

2.3 Sense Vectors 
Sense representations are computed  as groups of similar contexts. All contexts of the 
ambiguous  word  are collected from the corpus. For each context, a context vector is 
computed.  This set of context vectors is then clustered into a prede termined  number  of 
coherent  clusters or context groups using Buckshot (Cutting et al. 1992), a combinat ion 
of the EM algori thm and agglomerative clustering. The representat ion of a sense is 
simply the centroid of its cluster. It marks the port ion of the mult idimensional  space 
that is occupied by  the cluster. 

We chose the EM algori thm for clustering since it is guaranteed to converge on a 
locally optimal solution of the clustering problem. In our  case, the solution is optimal 
in that the sum of the squared distances be tween context vectors and their centroids 
will be minimal. In other words,  the centroids are optimal representatives for the 
context vectors in their cluster. 

One problem with the EM algori thm is that it finds a solution that is only locally 
optimal. It is therefore impor tant  to find a good starting point  since a bad starting 
point  will lead to a local min imum that is not  globally optimal. Some experimental  
evidence given below shows that cluster quality varies considerably depending  on 
the initial parameters.  In order  to find a good starting point, we use group-average 
agglomerative clustering (GAAC) on a sample of context vectors. For each of the 2,000 
clustering experiments  described below, we first choose a r andom sample of 50. This 
size is roughly equal to v '~ ,  the number  of context vectors to be clustered. Since 
GAAC is of time complexi ty O(n2), this guarantees overall linear time complexi ty 
of the clustering procedure.  If the training set has more than 2,000 instances of the 
ambiguous word,  2,000 context vectors are selected randomly. The centroids of the 
resulting clusters are then the parameters  for the first i teration of EM. We compute  
five iterations of the EM algori thm for all experiments  since in most  cases only a few, 
if any, context vectors were reassigned in the fifth iteration. 

Both the EM algori thm and group-average agglomerat ive clustering are described 
in more detail in the appendix.  
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An example is shown in Figure 4. The clustering step has g rouped  context vectors 
cl, c2, c3, and c4 in the first group and c5, c6, c7, and c8 in the second group. The sense 
vector of the first group is the centroid labeled SENSE 1, the sense vector of the second 
group the centroid labeled SENSE 2. 

The result of clustering depends  on the representat ion of context vectors. For 
this reason, we also investigate a transformation of the mult idimensional  space via 
a singular value decomposi t ion (SVD) (Golub and van Loan 1989). SVD is a form of 
dimensionali ty reduction that finds the major axes of variation in Word Space. Context 
vectors can then be represented by their values on these principal dimensions. The 
motivat ion for applying SVD here is much  the same as the use of Latent Semantic 
Indexing (LSI) in information retrieval (Deerwester et al. 1990). LSI abstracts away 
from the surface word-based representation and detects under lying features. When 
similarity is computed  on these features (via cosine between SVD-reduced context 
vectors), contextual similarity can be, potentially, better measured than via cosine be- 
tween unreduced  context vectors. The appendix defines SVD and gives an example 
matrix decomposition. 

In this paper, the word  vectors will be reduced to 100 dimensions. The experiments  
reported in Schfitze (1992b, 1997) give evidence that reduction to this dimensionali ty 
does not  decrease accuracy of sense discrimination. Space requirements for context 
vectors are reduced to about  1/10 and 1/20 for a 1,000-dimensional and a 2,000- 
dimensional Word Space, respectively. Although most  word  vectors are sparse, context 
vectors are dense, since they are the sum of many  word  vectors. Time efficiency is 
increased on the same order of magni tude  when  the correlation of context vectors 
and sense vectors is computed.  The computat ion of the SVD's in this paper  took from 
a few minutes per  word  for the local feature set to about  three hours  for the global 
feature set. 

2.4 Application of Context-Group Discrimination 
Context-group discrimination uses word  vectors and sense vectors as follows to dis- 
criminate occurrences of the ambiguous word.  For an occurrence t of the ambiguous 
word v: 

• Map t into its corresponding context vector ~ in Word Space using the 
vectors of the words  in t's context (the lower dashed line in Figure 1). 

• Retrieve all sense vectors ~j of v (the two points marked  as squares in the 
figure). 

• Assign t to the sense j whose  sense vector ~j is closest to ~ (assignment 
shown as a solid arrow). 

This algori thm selects the context group whose sense vector is closest to the context 
vector of the occurrence of the word  that is to be disambiguated. Context vectors 
and sense vectors capture semantic characteristics of the corresponding context and 
sense, respectively. Consequently, the sense vector that is closest to the context vector 
has the best semantic match with the context. Therefore, context-group discrimination 
categorizes the occurrence as belonging to that sense. 

3. Evaluation 

We test context-group discrimination on the 10 natural  ambiguous  words that formed 
the test set in Schfitze (1992b) and on 10 artificial ambiguous words.  Table 2 glosses 
the major senses of the 20 words. 
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Table 2 
Number of occurrences of test words in training and test set, percent rare senses in test set, 
baseline performance (all occurrences assigned to most frequent sense), and the two main 
senses of each of the 20 artificial and natural ambiguous words used in the experiment. 

Word Training Test. Rare Senses Baseline Frequent Senses 

wide range/ 
consulting firm 1,422 149 0% 62% 

heart disease/ 
reserve board 1,197 115 0% 54% 

urban development/ 
cease fire 1,582 101 0% 50% 

drug administration / 
fernando valley 1,465 122 0% 

wide range 
consulting firm 

heart disease 
reserve board 

urban development 
cease fire 

52% drug administration 
fernando valley 

economic development / 
right field 1,030 88 0% 68% 

national park/ 
judiciary committee 1,279 122 0% 70% 

japanese companies / 
city hall 1,569 208 0% 58% 

drug dealers / 
paine webber 1,183 104 0% 55% 

league baseball/ 
square feet 1,097 143 0% 66% 

pete rose/ 
nuclear power 1,245 103 0% 52% 

capital/s 13,015 200 2% 64% 

interest/s 21,374 200 4% 58% 

motion/s 2,705 200 0% 55% 

plant/s 12,833 200 0% 54% 

economic 
development 

right field 

national park 
judiciary committee 

japanese companies 
city hall 

drug dealers 
paine webber 

league baseball 
square feet 

pete rose 
nuclear power 
stock of goods 
seat of government 
a feeling of special 

attention 
a charge for 
borrowed money 

movement 
proposal for action 
a factory 
living being 
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Table 2 
Continued. 

Word Training Test Rare Senses Baseline Frequent  Senses 

ruling 5,482 200 3.5% 60% an authoritative decision 
to exert control, or 

influence 
space 9,136 200 0% 56% area, vo lume 

outer space 
suit/s 7,467 200 12.5% 57% an action or process 

in a court  
a set of garments  

tank/s 3,909 200 4.5% 90% a combat  vehicle 
a receptacle for liquids 

train/s 4,271 200 1.5% 74% a line of railroad cars 
to teach 

vessel/s 1,618 144 13.9% 69% a ship or plane 
a tube or canal (as an artery) 

Artificial ambiguous  words  or p seudowords  are a convenient  means  of testing 
disambiguation algorithms (Schtitze 1992a; Gale, Church, and Yarowsky 1992). It is 
t ime-consuming to hand-label a large number  of instances of an ambiguous word  for 
evaluating the performance of a disambiguation algorithm. Pseudowords  circumvent 
this need: Two or more words,  e.g., banana and door, are conflated into a new type: 
banana~door. All occurrences of either word  in the corpus are then replaced by the new 
type. It is easy to evaluate disambiguation performance for pseudowords  since one 
can go back to the original text to decide whether  a correct decision was made. 

To create the pseudowords  shown in Table 2, all word  pairs were extracted from 
the corpus, i.e., all pairs of words  that occurred adjacent to each other in the corpus in 
a particular order. All numbers  were discarded, since numbers  do not seem to involve 
sense ambiguity. Pseudowords  were then created by  randomly  drawing two pairs from 
those that had a f requency between 500 and 1,000 in the corpus. Pseudowords  were 
generated from pairs rather than simple words  because pairs are less likely than words 
to be ambiguous themselves. Pair-based pseudowords  are therefore good examples of 
ambiguous words with two clearly distinct senses. 

Table 2 indicates how often the ambiguous word  occurred in the training and test 
sets, how many  instances were instances of rare senses, and the baseline performance 
that is achieved by assigning all occurrences to the most  frequent  sense. In the eval- 
uation given here, only senses that account for at least 15% of the occurrences of the 
ambiguous word  are taken into account. Rare senses are those that account for fewer 
than 15% of the occurrences. The words  in Table 2 each had two frequent  senses. The 
frequency of rare senses ranges from 0% to 13.9%, with an average of 2.1%. Rare senses 
are not eliminated from the training set. 

The training and test sets were taken from the New York Times News Service as 
described above (training set: June 1989-October 1990; test set: November  1990, May 
1989). If a word  had more than 200 occurrences in the test set, then only the first 200 
occurrences were included in the evaluation. 

The labeling of words  in the test corpus was per formed by  the author. The distinc- 
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tions between the senses in Table 2 are intuitively clear. For example, the probabili ty 
of a context in which suit could at the same time refer to a set of garments  and an 
action in court is very  low. Consequently, there were fewer than five instances where  
the appropriate  sense was not  obvious from the immediate  context. In these cases, the 
sense that seemed more plausible to the author  was assigned. 

It is impor tant  to evaluate on a test set that is separate from the training set. 
Context-group discrimination is based on the distribution of context vectors in the 
training set. The distribution in the training set is often a bad model  for the distribution 
in the test set. In practice, the in tended text of application will be from a time per iod 
not  covered in the training set (for example,  newswire  text f rom after the date of 
training). Word distributions can change considerably over  time. The test set was 
therefore constructed to be from a time period different from the time per iod of the 
training set. This is also the reason that we do not  do cross-validation. Cross-validation 
respecting the constraint that test and training sets be from different time periods 
would  have required a test set several times larger than the one that was available. 

Clustering and evaluating on the same set is also problematic because of sampling 
variation. Consider the following example. We have a set of three context vectors 
C : {C 1 : (1), c2 = (2), C 3 : (3)} in a one-dimensional  space. Contexts 1 and 2 are uses 
of sense 1, context 3 is a use of sense 2. If C is used as both training and evaluat ion set, 
then average performance is 83% (with probabili ty 0.5, we get centroids 1.5 and 3 and 
100% accuracy, with probabili ty 0.5, we get centroids 1 and 2.5 and 67% accuracy). If 
we split C into a training set T of size 2 and a test set E of size 1, we get an average 
performance of 67% (100% for E = {cl}, 50% for E = {c2}, 50% for E = { £ 3 } ) ,  which 
is lower than 83%. This example shows that conflating training and test set can result 
in artificially high performance.  

An advantage of context-group discrimination is that the granulari ty of sense 
distinctions is an adjustable parameter  of the algorithm. Experiments run  directly for 
the senses in Table 2 will test the algori thm's ability to discriminate coarse sense 
distinctions. To test performance for fine-grained sense distinctions (e.g., 'office space' 
vs. 'exhibition space'), we will run  two experiments,  one that evaluates performance for 
clustering the context vectors of a word  into ten clusters and an information retrieval 
exper iment  in which the number  of clusters is also large for sufficiently frequent  words.  

The goal of the 10-cluster experiments  is to induce more fine-grained sense distinc- 
tions than in the 2-cluster experiments.  However ,  it is harder  to determine the ground 
truth for fine sense distinctions. When it comes to fine distinctions, a large number  of 
occurrences are indeterminate  or compatible with several of the more finely individ- 
uated senses (cf. Kilgarriff [1993]). 

For this reason, experiments  with a large number  of clusters were evaluated using 
two indirect measures. The first measure is accuracy for two-way discriminations, i.e., 
the degree to which each of the ten clusters contained only one of the two "coarse" 
senses. This evaluation is indirect because a cluster that contains, say, only ' l imited 
extent in one, two, or three dimensions '  uses of space would  be deemed  100% correct, 
yet it could be randomly  mixed as far as fine sense distinctions are concerned (e.g., 
'office space' vs. 'exhibition space'). The author  inspected the data and found good 
separation of fine-grained senses in the 10-cluster experiments  to the extent that the 
evaluation measure indicated good performance on the two-way discrimination task. 
However ,  because of the above-ment ioned subjectivity of judgements  for fine sense 
distinctions, this is hard to quantify. 

Results from a second evaluation on an information retrieval task will be presented 
in Section 4.2 below. We will show that sense-based information retrieval (in which the 
relevance of documents  to a query  is de termined using context-group discrimination) 
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improves the performance of an IR system considerably. Since the success of sense- 
based retrieval depends  on the accuracy of context-group discrimination, we can infer 
that the algori thm reliably assigns ambiguous instances to induced senses even in the 
fine-grained case. 

4. Experiments 

4.1 Word Sense Discrimination 
Table 3 shows experimental  results for context-group discrimination. There were four 
conditions that were varied in the experiments (as described in Section 2): 

• local vs. global feature selection 

• feature selection according to frequency v s .  X 2 

• term representations vs. SVD-reduced representations 

• number  of clusters (2 vs. 10) 

For local feature selection, the other three parameters  are varied systematically (the first 
eight columns of Table 3). For global feature selection, selection according to X 2 is not 
possible, since the X 2 test presupposes  an event  (like the occurrence of an ambiguous 
word) that the occurrence of candidate words  depends  on. There is no such event  for 
global feature selection. A larger number  of dimensions (2,000) is used for the global 
variant of the algori thm in order  to get coverage of a large range of topics that might  
be relevant for disambiguation. We therefore apply SVD in the global feature selection 
case. Even if word  vectors are sparse, context vectors are usually not. Clustering 2,000- 
dimensional  vectors is computat ional ly expensive, so that we only ran experiments  
with SVD-reduced vectors for the global variant. 

Ten experiments with different randomly  chosen initial parameters  were run for 
each of the 200 combinations of the different levels of Word, Representation, and 
Clustering. The mean percentage correctness and the s tandard deviation for each such 
set of 10 experiments is shown in the cells of Table 3. We give mean and deviation 
of the percentage of correctly labeled occurrences of all instances in the training set 
("total" = "t . ' ) ,  of the instances of sense 1 ("$1") and of the instances of sense 2 ("$2"). 
The bot tom row of the table gives averages of the total percentage correct numbers  
over the 20 words  covered. The r ightmost  column gives averages of the means over  
the 10 experiments.  

We analyzed the results in Table 3 via analysis of variance (ANOVA, see, for 
example,  Ott [1992]). An ANOVA was per formed for a 20 x 5 x 2 design with 10 
replicates. The factors were Word, Representation (local, frequency-based,  terms; local, 
frequency-based, SVD; local, Xa-based, terms; local, x2-based, SVD; global, frequency- 
based, SVD), and Clustering (coarse = 2 clusters, fine = 10 clusters). Percentages were 
t ransformed using the funct ionf(X)  = 2 x sin -1 (v/X) as r ecommended  by  Winer (1971). 
The t ransformed percentages have a distribution that is close to a normal  distribution 
as required for the application of ANOVA. 

We found that the effects of all three factors and all interactions was significant at 
the 0.001 level. These effects are discussed in what  follows. 

Factor Word. In general, performance for pseudowords  is better than for natural  words. 
This can be explained by  the fact that pseudowords  have two focussed senses-- the  two 
word  pairs they are composed  of. In contrast, some of the senses of natural  ambiguous  
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Table 3 
Results of disambiguation experiments. Rows give total accuracy for each word ("t.') as well 
as accuracy for the two senses separately ("$1", "$2"). The average in the bottom row is an 
average over total ("t.') accuracy numbers only. Columns describe experimental conditions 
and the mean ("]~") and standard deviation ("a") of 10 replications of each experiment. The 
rightmost column contains an average over the mean values of the 10 experiments. 
Pseudowords are abbreviated to the first words of pairs. 

Local Global 

wide~consul. $1 
$2 55 16 100 0 69 31 92 9 74 25 92 13 69 24 82 10 89 6 94 4 
t. 51 4 62 0 60 4 66 3 56 6 64 3 65 8 66 2 87 3 87 3 

heart~reserve $1 66 0 78 11 100 0 99 4. 72 0 75 12 100 0 98 2 100 0 100 0 
$2 100 0 90 7 100 0 100 0 100 0 94 5 98 0 100 1 100 0 100 0 
t. 84 0 : 8 5  2 100 0 99 2 8 7  0 85 3 99 0 99 1 100 0 100 0 

urban~cease $1 86 1 87 2 96 0 97 1 9 1  4 90 8 98 0 98 1 100 0 98 2 

~rugffern. 

.ocon./right 

nat./jud. 

iap./city $1 

71rug/paine $1 

!eague/square $1 

pete~nuclear $1 

:apital $1 

interest $1 

,wtion $1 

~lant $1 

ruling $1 

;pace $1 

~uit S1 

~ank $1 

~rain $1 

vessel $1 

Average 

X 2 Frequency Frequency 
Terms I SVD Terms I SVD SVD 

2 10 2 10 2 10 2 10 2 10 

45 16 0 0 45 47 22 22 25 26 19 30 59 37 39 17 84 2 76 8 41.4 
81.6 
66.4 
88.8 
98.2 
93.8 
94.1 

$2 78 l J 70 7 100 0 100 1 73 24 80 11 100 0 96 5 100 0 100 0 89.7 
t. 82 0i 79 3 98 0 99 1 I 82 10 85 3 99 0 97 2 100 0 99 1 92.0 
S1 89 l i 87 7 98 0 100 1 I 94 4 88 5 98 0 95 1 100 0 100 0 94.9 
$2 78 1 77 12 95 0 100 1 60 35 90 7 59 8 96 2 100 0 100 1 85.5 
t. 84 I 82 3 97 0 100 0 78 15 89 2 80 4 96 1 100 0 100 0 90.6 
$1 72 2 89 6 92 1 95 1 92 0 87 5 98 0 98 3 100 0 100 0 92.3 
$2 89 0 67 13 96 0 96 2 87 2 91 5 96 0 97 2 100 0 100 0 91.9 
t. 78 1 82 1 93 1 95 1 90 1 88 2 98 0 97 1 100 0 100 0 92.1 
S1 91 1 96 3 98 0 97 0 99 0 99 0 98 01 97 1 100 0 100 0 97.5 
$2 73 0 53 14 100 0 100 1 70 0 61 9 92 0i 96 4 100 0 98 2 84.3 
t. 85 1 83 3 98 0 98 0 90 0 87 3 96 0i 97 1 100 0 99 1 93.3 

84 18 90 7 96 1 95 1 94 2 91 4 97 2 93 2 99 0 99 1 93.8 
i 

$2 56 10 63 15 71 23 87 4 66 17 71 10 88 5 90 5 99 0 99 1 79.0 
t. 73 12 79 3 86 9 92 1 82 6 83 2 93 1 92 1 99 0 99 0 87.8 

68 6 76 9 86 1 81 9 70 18 81 14 95 0 85 4 100 0 97 3 83.9 
$2 86 13 86 8 100 0 99 1 68 23 87 14 100 0 98 3 100 0 100 0 92.4 
t. 76 9 80 2 93 0 89 5 69 19 83 3 97 0 91 2 100 0 98 2 87.6 

54 8 77 8 66 41 96 3 32 31 77 10 56 32 90 4 100 0 100 1 74.-----8 
$2 60 20 94 3 100 0 99 1 91 18 94 5 100 0 96 4 100 0 99 2 93.3 
t. 58 16 88 1 88 14 98 2 71 13 88 1 85 11 94 3 100 0 99 l i  86.9 

91 0 78 10 94 1 98 2 72 21 90 10 86 19 95 6 100 0 99 1 90.3 
$2 78 0 80 8 94 0 91 2 96 1 81 13 88 20 91 7 100 0 99 1 I 89.8 
t. 84 0 79 2 94 0 95 2 83 11 86 3 87 19 93 4 100 0 99 1 90.0 

88 16 97 3 91 4 96 2 91 3 97 3 93 1 93 2 92 1 93 1 93.1 
$2 27 23 36 11 23 34 87 7 36 34 57 9 80 27 88 6 96 1 89 5 61.9 
t. 66 7 75 3 66 13 93 2 71 13 82 2 88 10 91 1 94 0 91 1; 81.7 

82 18 77 8 95 1 86 5 96 0 93 3 94 1 91 4 96 0 89 3 89.9 
$2 43 37 87 4 90 6 96 2 83 1 85 3 71 35 91 4 88 1 93 31 82.7 
t. 66 14 81 4 93 2 90 2 90 0 90 1 84 15 91 2 93 0 91 l i  86.9 

57 14 72 6 58 1 84 1 61 17 88 6 90 15 93 4 85 1 91 5 I 77.-----------9 
$2 60 15 70 10 97 0 91 8 58 20 63 16 51 24 77 7 88 13 71 151 72.6 
t. 58 10 71 3 76 1 87 3 59 12 77 4 73 12 86 2 86 5 82 5 i 75.5 

i 

73 20 0 0 92 4 " 0 0 91 16 0 0 54 46 2 5 70 37 0 0 '  38.-----2 
$2 47 12 100 0 37 5 100 0 41 30 100 0 59 36 100 0 70 26 100 0 75.4 
t. 59 8 54 0 63 4 54 0 64 11 54 0 56 7 55 2 70 13 54 0 58.3 

75 1 61 13 84 2 71 14 81 1 65 15 79 7 79 13 85 0 82 3 76.2 
$2 86 1 90 4 93 1 96 3 87 1 93 4 93 5 95 2 95 0 95 1 92.3 
t. 82 0 78 3 90 1 86 4 84 0 82 4 88 1 89 4 91 0 90 1 86.0 

10 25 48 30 0 0 48 22 15 25 38 24 16 25 51 15 8 25 54 16 28.8 
$2 87 7 91 7 96 0 95 3 97 1 96 2 96 2 96 2 94 10 93 3 94.1 
t. 53 7 72 9 54 0 74 8 61 11 71 10 60 12 76 6 56 5 75 6 65.2 

83 1 77 5 80 2 85 6 81 2 84 7 94 2 88 8 95 0 83 6 85.0 
$2 80 0 i 84 4 93 0 94 2 92 2 88 6 86 29 97 2 96 0 97 2 90.7 
t. 82 1 I 80 2 85 1 89 3 86 1 86 2 91 12] 92 4 95 0 89 3 87.5 

29 91 7 6 80 8 32 13 88 5 12 14 86 29i~ 31 22 92 3 28 19 48.5 
$2 94 15 100 0 92 95 1 100 0 87 5] 99 2 84 1 99 2 94.9 4 99 0 
t. 87 13 I 90 1 90 3 92 1 95 1 91 1 87 2i  92 1 85 1 92 2 90.1 

60 21 100 0 74 16 100 0 89 20 100 0 95 81100 1 79 19 100 0 89.7 
$2 40 2 1  0 0 12 20 0 0 18 29 0 0 8 21! 1 3 55 31 0 0 13.4 
t. 55 10 '  74 0 58 7 74 0 69 11 74 0 72 1 '  74 0 73 8 74 0 69.7 

84 18 86 14 100 0 99 1 85 30 90 7 20 42 94 2 30 48 79 5 76.7 
$2 76 14 84 9 100 0 100 0 89 3 92 5 79 17 100 0 81 9 100 0 90.1 
t. 79 15] 85 2 100 0 100 0 88 11 91 2 61 14] 98 1 65 13 93 1 .. 8 6 . O  

i[ 72.1 I 77.9 [ 84.1 i 88.5 i 77.8 i 81.8 i 82.9 [ 88.3 i 89.7 i 90.6 I] 
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Table 4 
The Tukey W test shows significantly different performance for the five 
representations. Proportions are transformed using f iX )  = 2 x sin -1 (v/X). The 
rightmost column contains the accuracy A in percent that would correspond to 
the average value Y in the second column (i.e., f (A)  = Y). Significant difference 
for a = 0.01:0.034 

Average of Difference Corresponding 
Level 2 x s in - l (V 'X)  from Closest Accuracy 

local, )/2, terms 2.11 0.13 76% 
local, frequency, terms 2.24 0.13 81% 
local, frequency, SVD 2.44 0.06 88% 
local, X 2, SVD 2.50 0.06 90% 
global, frequency, SVD 2.66 0.16 94% 

words  (for example,  space and interest) are composed of m an y  different subsenses that 
are hard to identify for both people  and computers.  

The only pseudoword  with poor  performance is wide range/consultingfirm. This 
is an illustrative example of a weakness of the particular implementat ion of context- 
group discrimination chosen here. Since we only rely on topical information, a word  
composed of a nontopical  sense, like wide range, that can occur in almost any subject 
area is disambiguated poorly. The 'area, volume '  sense of space and the ' teaching'  sense 
of train are similarly topically amorphous  and therefore hard if only topical informa- 
tion is considered. The poor  performance for 'plant '  in the 10-cluster experiments  is 
probably due  to the way  training-set clusters were assigned to senses. The training 
set was clustered into 20 clusters and each cluster was given a sense label. This proce- 
dure introduces many  misclassifications of individual  instances in the training set. In 
contrast, a performance of 92% was achieved in Schiitze (1992b) by hand-categorizing 
the training set, instance by  instance. 

Note that for some experimental  conditions and for some words,  performance 
of two-group clustering is below baseline. In a completely unsupervised setting, we 
have to make the assumption that the two induced clusters correspond to two different 
senses. In the worst  case, we will get, two clusters with identical proport ions of the 
two senses and an accuracy of 50%, below the baseline of assigning all occurrences 
to a sense that occurs in more than 50% of all cases. For example, for vessel the worst  
case would  be two clusters each with 69% 'ship' instances and 31% ' tube'  instances. 
Overall accuracy would  be 0.5 x .69 + 0.5 x .31 = 0.5. It could be argued that the true 
baseline for unsupervised two-group clustering is 50%, not  the propor t ion of the most  
frequent  sense. 

Factor Representation. A Tukey W test (Ott 1992) was per formed to evaluate the factor 
Representation. The Tukey W test determines the least significant difference between 
sample means. That is, it yields a threshold such that if two levels of a factor differ 
by more than the threshold, then they are significantly different. For the factor Rep- 
resentation, in our  case, this least significant difference is 0.034 for a = 0.01. Table 4 
shows that all differences are significant. This is evidence that SVD representations 
per form better than term representations and that global representations per form bet- 
ter than local representations. The advantage of SVD representations is part ly due  to 
the use of a normali ty  assumption in clustering. This is a poor  approximat ion for term 
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Table 5 
Occurrence of selected term features in the test set. The table shows number of words 
occurring in the test set (averaged over the 20 ambiguous words); number of words occurring 
per context (averaged over contexts); proportion of words from one representation occurring 
in another (averaged first over contexts, then over ambiguous words; e.g., on average 91% of 
X2-selected terms were also in the set selected by local frequency); average number of contexts 
that a selected term occurred in (e.g., on average a xa-selected term occurred in 8.7 contexts of 
the artificial ambiguous words, averaged over the words in a context). 

~2 Local Frequency Global Frequency 

Words Occurring in Test Set 283.0 571.2 489.6 
Words per Context  6.1 11.1 9.2 

Term Overlap 
X 2 100% 91% 53% 
local f requency 51% 100% 68% 
global f requency 34% 78% 100% 

Average Frequency of terms 
artificial words  8.7 6.7 16.7 
natural  words  39.5 22.4 17.5 

representations, but  is more accurate for SVD-reduced representations. 
Why  do globally selected features per form better? Table 5 presents data on the 

occurrence of selected terms in the test set that are relevant to this question. Note  first 
that locally selected features seem to do better than globally selected ones on several 
measures. More locally selected features occur in the test set ("words  occurring in test 
set": 571.2 vs. 489.6), more  local features occur in the individual  contexts ("words per  
context": 11.1 vs. 9.2), and more global features are also local features than vice versa 
(on  a per-context basis, 78% of global features are also local features, but  only 68% 
of local features are also global features), suggesting that local features capture more 
information than global features. The first two measures also show that X2-selected 
features suffer from sparseness. Both the total number  of features that occur in the 
training set and the number  of words  per context are small. This evidence explains 
w h y  SVD representations that address sparseness do better  than term representations 
for X 2. 

To explain the difference in performance be tween local and global f requency fea- 
tures, we have to break down  average accuracy according to artificial and natural  
ambiguous  words.  Average accuracy for artificial ambiguous  words  is 89.9% (2 clus- 
ters) and 92.2% (10 clusters) for local features and 98.6% (2 clusters) and 98.0% (10 
clusters) for global features. Average accuracy for natural  ambiguous  words  is 76.0% 
(2 clusters) and 84.4% (10 clusters) for local features and 80.8% (2 clusters) and 83.1% 
(10 clusters) for global features. These data show a clear split. Performance of local and 
global features is comparable  for natural  ambiguous  words.  Global features per form 
clearly better for artificial ambiguous  words.  

The last two rows of Table 5 explain this difference in behavior. The numbers  corre- 
spond to the average number  of contexts that the selected features occur in (averaged 
first over the words  in a context, then over  contexts; e.g., a context with three selected 
terms occurring in 10, 3, and 15 contexts of the ambiguous  word  in the training set 
would  have an average number  of contexts of ( 1 0 + 3 + 1 5 ) / 3  = 9.3). These averages are 
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small for X 2 and local f requency in the case of artificial ambiguous  words.  Clustering 
can only work  well if contexts have enough elements in common  so that similarity 
can be de termined robustly. Apparently,  there were too few elements in co m m o n  for 
X 2 and local f requency in the case of artificial ambiguous word  (and the patterns were 
so sparse that even SVD was not an effective remedy).  

The problem is that artificial ambiguous words  are much  less frequent  in the 
training set than natural  ambiguous words  (average frequencies of 1,306.9 vs. 8,231.0), 
so that reliable feature selection is harder  for artificial ambiguous words.  With ample 
information on natural  ambiguous words  available in the training set, features can 
be selected that will occur densely in the test set. The quality of feature selection for 
artificial ambiguous  words  was less successful due  to smaller training set sizes. 

This analysis reiterates the importance of a clear separation of training and test 
sets. Performance numbers  will be artificially high if feature selection is done on both 
training and test sets, avoiding the problems with feature coverage demonst ra ted  in 
Table 5. 

Since global feature selection is simpler and as effective as local approaches,  global 
feature selection is the preferred implementat ion of context-group discrimination in 
the general case. Note, however,  that different words  m ay  have different optimal repre- 
sentations. For example,  local features work  best for vessel. There are similar individual  
differences for f requency vs. x2-based selection. Frequency-based selection is best for 
suit, but  x2-based selection is better for vessel, at least for SVD-reduced representations. 

Factor Clustering. Fine clustering is generally better than coarse clustering. The one 
case for which coarse clustering comes close to the performance of fine clustering is 
global feature selection. But this small difference is almost entirely due  to the bad 
performance of fine clustering for plant, which is likely to be due to insufficient hand-  
categorization of the training set, as explained above. 

That fine clustering performs better than coarse clustering is not  surprising, since 
more information is used in the evaluation of fine clustering: the labeling of clus- 
ters in the training set. Only coarse clustering is evaluated as strictly unsupervised  
disambiguation, since we do not  have an evaluation set for fine sense distinctions. 

Variance. In general, the variance of discrimination accuracy is higher  for coarse clus- 
tering than for fine clustering. This is not  surprising, given the fact that we evaluate 
both types of clustering on how well they do on a two-way distinction. There m ay  
be several quite different ways of dividing a set of context vectors into two groups. 
But if we first cluster into ten groups and assign these groups to two senses, then the 
resulting two-way partitions are more likely to resemble each other (even if the initial 
10-group clusterings are not  very  similar). 

The experiments  indicate that context-group discrimination based on globally se- 
lected features is the best implementat ion in the general case. The algori thm achieves 
above-baseline performance (with a small number  of exceptions for certain parameter  
settings). The average performance of the SVD-based representations of 83% to 91% 
is satisfactory, al though inferior by about  5% to 10%, to disambiguation with minimal 
manual  intervention (e.g., Yarowsky [1995]). 3 

3 Manually supplied priming information about senses is not the only difference between context-group 
discrimination and other disambiguation algorithms. Could one of the other differences be responsible 
for the difference in performance? The fact that the error rate more than doubles when the seeds in 
Yarowsky's (1995) experiments are reduced from a sense's best collocations to just one word per sense 
suggests that the error rate would increase further if no seeds were provided. 
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4.2 Application to Information Retrieval 
Our principal motivation for concentrating on the discrimination subtask is to ap- 
ply disambiguation to information retrieval. While there is evidence that ambiguity 
resolution improves the performance of IR systems (Krovetz and Croft 1992), several 
researchers have failed to achieve consistent experimental improvements for practi- 
cally realistic rates of disambiguation accuracy. 

Voorhees (1993) compared two term-expansion methods for information retrieval 
queries, one in which each term was expanded with all related terms and one in which 
it was only expanded with terms related to the sense used in the query. She found that 
disambiguation did not improve the performance of term expansion. In our study, we 
will use disambiguation to eliminate document-query matches that are due to sense 
mismatches (that is, the word in question is used in different types of context in the 
query and the document). This approach decreases the number of documents that a 
query matches with whereas term expansion increases it. Another important difference 
in this study is that longer queries are used. Long queries (as they may arise in an IR 
system after relevance feedback) provide more context than the short queries Voorhees 
worked with in her experiments. 

Sanderson (1994) modified a test collection by creating pseudowords similar to the 
ones used in this study. He found that even unrealistically high rates of disambiguation 
accuracy had little or no effect on retrieval performance. An analysis presented in 
Schfitze and Pedersen (1995) suggests that the main reason for the minor effect of 
disambiguation is that most of the pseudowords created in the study had a major 
sense that accounted for almost all occurrences of the pseudoword. Creating this type 
of pseudoword amounts to adding a small amount of noise to an unambiguous word, 
which is not expbcted to have a large effect on retrieval performance. To some extent, 
actual dictionary senses have the same property: one sense often accounts for a large 
proportion of occurrences. However, this is not necessarily true when rare senses are 
not taken into account and when high-frequency senses are broken up into smaller 
groups (the example of 'office space' vs. 'exhibition space'). Large dictionaries tend 
to break up high-frequency senses into such more narrowly defined subsenses. The 
successful use of disambiguation in our study may be due to the fact that rare senses, 
which are less likely to be useful in IR, are not taken into account and that frequent 
senses are further subdivided. 

Good evidence for the potential utility of disambiguation in information retrieval 
was provided by Krovetz and Croft (1992). They showed that there is a considerable 
amount of ambiguity even in technical text (which is often assumed to be less ambigu- 
ous than nonspecialized writing). Many technical terms have nontechnical meanings 
that are used in addition to more specialized senses even in technical text (e.g., window 
and application in computer magazines, convertible in automobile magazines [Krovetz 
1997]). Krovetz and Croft also showed that sense mismatches (i.e., spurious matching 
words that were used in different senses in query and document) occurred significantly 
more often in nonrelevant than in relevant documents. This suggests that eliminating 
spurious matches could improve the separation between nonrelevant and relevant 
documents and hence the overall quality of retrieval results. 

In order to show that context-group discrimination is an approach to disambigua- 
tion that is beneficial in information retrieval, we will now summarize the experiment 
presented in Schfitze and Pedersen (1995). That experiment evaluates sense-based re- 
trieval, a modification of the standard vector-space model in information retrieval. (We 
refer to the standard vector-space model as word-based retrieval.) In word-based re- 
trieval, documents and queries are represented as vectors in a multidimensional space 
in which each dimension corresponds to a word (similar to the way that we repre- 
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sent word vectors in Word Space). In sense-based retrieval, documents and queries 
are also represented in a multidimensional space, but its dimensions are senses, not 
words. Words are disambiguated using context-group discrimination. Documents and 
queries that contain a word assigned to a particular sense have a nonzero value on 
the corresponding dimension. 

The test corpus in Sch~tze and Pedersen (1995) is the Category B TREC-1 collection 
(about 170,000 documents from the Wall Street Journal) in conjunction with its queries 
51-75 (Harman 1993). Sense-based retrieval improved average precision by 7.4% when 
compared to word-based retrieval. A combination of word-based and sense-based 
retrieval increased performance by 14.4%. The greater improvement of the combination 
is probably due to discrimination errors (i.e., the fact that discrimination is less than 
100% correct), which are partially undone by combining sense and word evidence. 
Improvement was particularly high when small sets of documents were requested, 
for example, 16.5% (sense-based) and 19.4% (word- and sense-based combined) for a 
recall level of 10% of relevant documents. This experiment suggests a high utility of 
sense discrimination for information retrieval. 

At first sight, sense-based retrieval may seem related to term expansion. Both 
sense-based retrieval and term expansion take individual terms as the starting point 
for modifying the similarity measure that determines which documents are deemed 
most closely related to the query. However, the two approaches are actually opposites 
of each other in the following sense. Term expansion increases the number of match- 
ing documents for a query. For example, if the query contains cosmonaut and expan- 
sion adds astronaut, then documents containing astronaut become additional nonzero 
matches. Sense-based retrieval decreases the number of matches. For example, if the 
word suit occurs in the query and is disambiguated as being used in the 'legal' sense, 
then documents that contain suit in a different sense will no longer match with the 
query. 

5. Discuss ion  

What distinguishes context-group discrimination from other work on disambiguation 
is that no outside source of information need be supplied as input to the algorithm. 
Other disambiguation algorithms employ various sources of information. Kelly and 
Stone (1975) consider hand-constructed disambiguation rules; Lesk (1986), Krovetz 
and Croft (1989), Guthrie et al. (1991), and Karov and Edelman (1996) use on-line dic- 
tionaries; Hirst (1987) constructs knowledge bases; Cottrell (1989) uses syntactic and 
semantic structure encoded in a connectionist net; Brown et al. (1991) and Church and 
Gale (1991) exploit bilingual corpora; Dagan, Itai, and Schwall (1991) use a bilingual 
dictionary; Hearst (1991), Leacock, Towell, and Voorhees (1993), Niwa and Nitta (1994), 
and Bruce and Wiebe (1994) exploit a hand-labeled training set; and Yarowsky (1992) 
and Walker and Amsler (1986) perform computations based on a hand-constructed 
semantic categorization of words (Roget's Thesaurus and Longman's subject codes, re- 
spectively). 

For some of these algorithms, the expense of supplying information to the disam- 
biguation algorithm is relatively small. For example, in many of the methods using 
hand-labeled training sets (e.g., Hearst [1991]), a relatively small number of training 
examples is sufficient. Yarowsky has proposed an algorithm that requires as little user 
input as one seed word per sense to start the training process (Yarowsky 1995). Such 
minimal user input will be a negligible burden for users in some situations. However, 
consider the interactive information-access application described above. When asked 
to improve their initial ambiguous information request many users will be reluctant to 
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give a seed word or a set of good features for each sense of the word. They are more 
likely to satisfy a request by the system to choose the correct sense (e.g., by mouse 
click), if example contexts corresponding to different senses are presented without the 
requirement of additional user interaction. In an application like this, it is of great ad- 
vantage that context-group discrimination does not require any manual intervention 
to induce senses. 

Another body of related work is the literature on word clustering in computational 
linguistics (Brown et al. 1992; Finch 1993; Pereira, Tishby, and Lee 1993; Grefenstette 
1994a) and document clustering in information retrieval (van Rijsbergen 1979; Willett 
1988; Sparck-Jones 1991; Cutting et al. 1992). In contrast to this earlier work, we cluster 
contexts or, equivalently, word tokens here, not words (or, more precisely, word types) 
or documents. The straightforward extension of word-type clustering and document 
clustering to word-token clustering would be to represent a token by all words it co- 
occurs with in its context and cluster these representations. Such an approach based 
on first-order co-occurrence is used, for example, by Hearst and Plaunt (1993) for the 
representation of tiles or document subunits that are similar to our notion of context. 
Instead, we use second-order co-occurrence to represent the tokens of ambiguous 
words: the words that occur with the token are in turn looked up in the training 
corpus and the words they co-occur with are used to represent the token. Second- 
order representations are less sparse and more robust than first-order representations. 

In a cluster-based approach, the subdivision of the universe of elements into clus- 
ters depends on the representation. If the representation does not capture the infor- 
mation crucial for distinguishing senses, then context-group discrimination performs 
poorly. The clearest such example in the above experiments is the pseudoword wide 
range~consulting firm. The algorithm does not do better than the baseline of always 
choosing the most frequent sense. The reason is that the representation captures only 
topic information. So a cluster will contain a group of contexts that are about the 
same topic. Unfortunately, the pair wide range can come up in text about almost any 
topic. Since there is no clear topical characterization of one sense of the pseudoword, 
context-group discrimination performs poorly. 

The reliance on topical similarity may also be the reason that performance for 
pseudowords is generally better than performance for natural ambiguous words. All 
pseudowords except for wide range/consultingJirm are composed of two pairs from dif- 
ferent topics. For example, heart disease and reserve board pertain to biology and finance, 
respectively, two clearly distinct topics. On the other hand, the senses of some of the 
ambiguous words have less clear associations with particular topics. For example, one 
can be trained to perform a wide variety of activities, so the 'teaching' sense of train 
can be invoked in many different topics. Part of the superior performance for pseu- 
dowords is due to this different topic sensitivity of natural and artificial ambiguous 
words. 

The limitation to topical distinctions is not so much a flaw of context-group dis- 
crimination as a flaw of the particular implementation we have presented here. It is 
possible to integrate information in the context vectors that reflect syntactic or sub- 
categorization behavior of different senses, such as the output of a shallow parser as 
used in Pereira, Tishby, and Lee (1993). For example, one good indicator of the two 
senses of the word interest is a preposition occurring to its right. The phrase interest 
in invokes the 'feeling of attention' sense, the phrase interest on, the sense 'charge on 
borrowed money.' It seems plausible that performance could be improved for words 
whose senses are less sensitive to topical distinctions if such "proximity" information is 
integrated. In some recent experiments, Pedersen and Bruce (1997) have used proxim- 
ity features (tags of close words and the presence or absence of close functions words 
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and content words) with some promising results. This suggests that a combination of 
the topical features used here and proximity features may  give optimal performance of 
context-group discrimination. 4 We have used only one source of information (topical 
features) in the interest of simplicity, not because we see any inherent advantage of 
topical features compared to a combination of multiple sources of evidence. 

Our justification for the basic idea of context-group discrimination, inducing senses 
from contextual similarity, has been that its results seem to align well with the ground 
truth of senses defined in dictionaries. However, there is also some evidence that 
contextual similarity plays a crucial role in human  semantic categorization. In one 
study, Miller and Charles (1991) found evidence that human  subjects determine the 
semantic similarity of words from the similarity of the contexts they are used in. They 
summarized this result in the following hypothesis: 

Strong Contextual Hypothesis: Two words are semantically similar 
to the extent that their contextual representations are similar. (p. 8) 

A contextual representation of a word is knowledge of how that word is used. The 
hypothesis states that semantic similarity is determined by the degree of similarity of 
the sets of contexts that the two words can be used in. 

The hypothesis that underlies context-group discrimination is an extension of the 
Strong Contextual Hypothesis to senses: 

Contextual Hypothesis for Senses: Two occurrences of an ambiguous 
word belong to the same sense to the extent that their contextual 
representations are similar. 

So a sense is simply a group of occurrence tokens with similar contexts. The analogy 
between the contextual hypotheses for words and senses is that both word types and 
word tokens are semantically similar to the extent that their contexts are semantically 
similar. A group of contextually similar word tokens is a sense. Miller and Charles's 
work thus provides a justification for our framework, the induction of senses from 
contextual similarity. 

There are several issues that need to be addressed in future work on context-group 
discrimination. First, our experiments only considered words with two major senses. 
The algorithm also needs to be tested for words with more than two frequent senses 
and for infrequent senses. Second, our test set consisted of a relatively small num- 
ber of natural ambiguous words. This is a flaw of almost all contemporary work on 
word sense disambiguation, but in the future more extensive test sets will be required 
to establish the general applicability of disambiguation algorithms. Finally, the imple- 
mentation of context-group discrimination proposed here is based on topical similarity 
only. It will be necessary to incorporate other, more structural constraints (such as the 
interest in vs. interest on case discussed above) to achieve adequate performance for a 
wide variety of ambiguous words. 

Appendix A: Singular Value Decomposition 

A singular value decomposition factors an m-by-n matrix A into a product  of three 
matrices: 

( , ) A  = U diag (o1,...,o.p)V T 

4 See Leacock (1993) for a discussion of proximity and topical features in supervised disambiguation. 
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Table 6 
Co-occurrence counts for eight words in a five-dimensional word space. 

judge suit robe  gangster criminal police gun bail 

legal 300 210 133 30 200 160 120 150 
clothes 75 182 200 10 5 10 20 15 
cop 100 75 25 250 10 140 200 160 
fashion 5 100 200 5 5 5 5 5 
pants 5 110 190 5 5 5 5 5 

Table 7 
SVD reduction to two dimensions of the matrix in Table 6. 

judge suit robe gangster criminal police gun bail 

dim1 -0 .47  -0 .46 -0.41 -0 .22 -0.31 -0 .30 -0.30 -0.30 
dim2 0.13 -0.31 -0 .69 0.41 0.05 0.25 0.33 0.28 

Table 8 
Correlation coefficients of three words before and after SVD 
dimensionality reduction. 

criminal robe 
Word Space SVD Space Word Space SVD Space 

gangster 0.17 0.61 0.15 -0.52 
criminal 0.41 0.37 

where  p = min{m, n}, U (the left matrix) is an or thonormal  m-by-p matrix, V (the 
right matrix) is an or thonormal  n-by-p matrix and diag(o.1 . . . .  , o.p) is a matrix with 
the diagonal elements o.1 _> o'2 > " "  _> o.p ~_ 0 (and the value zero for nondiagonal  
elements) (Golub and van Loan 1989). 

Dimensionali ty reduct ion can be based on SVD by keeping only the first k singular 
values o.1 • • • c~k and setting the remaining ones to zero. It can be shown that the product  
A' = U diag(o'l . . . . .  o.k)V T is the closest approximat ion to A in a k-dimensional space 
(that is, there is no matrix of rank k with a smaller least-square distance to A than A'). 
See Golub and van Loan (1989) and Berry (1992) for a detailed description of SVD and 
efficient algorithms to compute  it. 

The benefits of dimensionali ty reduct ion for our purposes  can best be explained 
using an example. Table 6 shows co-occurrence counts f rom a hypothet ical  corpus (e.g., 
legal and robe co-occur 133 times with each other). Note  that two semantically similar 
words,  gangster and criminal, have a low correlation in the words  they co-occur with 
because they belong to different registers (this is one of reasons that topically similar 
words  can have few neighbors in common).  Table 7 shows the two columns of the 
right matrix V of the SVD of the matrix in Table 6. Table 7 is therefore a dimensional i ty 
reduction of Table 6 to two dimensions. The advantage of the reduced space is that it 
directly represents the similar topicality of gangster and criminal: their vectors are close 
to each other in the space, as shown in Figure 5. On the other hand,  both words '  vectors 
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DIMENSION 2 

GANGSTER 

CRIMINA L 

ROBE 

r 

DIMENSION 1 

Figure 5 
The vectors for robe, gangster, and criminal in the reduced SVD space. The words gangster and 
criminal are represented as semantically similar. Both are represented as semantically 
dissimilar from robe. 

are less correlated with a topically dissimilar word like robe in the reduced space. The 
correlation coefficients of the three words are shown in Table 8 for the unreduced and 
the reduced space. The correlation of the topically related words (gangster and criminal) 
increases from 0.17 to 0.61, whereas the correlation of both words with robe decreases. 

This example demonstrates the effect of SVD dimensionality reduction: topically 
similar words are projected closer to each other in the reduced space; topically dissim- 
ilar words are projected to distant locations. Part of the motivation for using SVD for 
word vectors is the success of latent semantic indexing (LSI) in information retrieval 
(Deerwester et al. 1990). LSI projects topically similar documents  to close locations in 
the reduced space, just as we project topically similar words to close locations. 

Appendix B: The EM Algorithm 

The clustering algorithm used in this paper is the EM algorithm. The observed data 
(context vectors in our case) are interpreted as being generated by hidden causes, 
the clusters. The EM algorithm is an iterative procedure that, starting from an initial 
hypothesis of the cluster parameters, improves the estimates of the parameters in each 
iteration. We follow here the discussion and notation in Dempster, Laird, and Rubin 
(1977) and Ghahramani  (1994). 

We make the assumption that each cluster j is a Gaussian source with density ~j: 

~ j ( ~ )  - exp[ 
where ]/j is the mean and Gj the covariance matrix of a;j. We write Oj = (fij, Gj) for the 
parameters of cluster j. 
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Assume that we have N d-dimensional context vectors ,g = {Xl ...  XN} C T4 d gen- 
erated by M Gaussians COl... CVM. The EM algorithm iteratively applies the Expectation 
step (E step) and the Maximization step (M step). The E step is the estimation of pa- 
rameters hq where hq is the probability of event zij, the event that cluster j generated 
Xi (context vector i). 

hij = E(zij I ~i; O k) = 

O k is 0 at iteration k. 

P(~ I ~J ;0~) .p(~l~j;o k) -~j(~;)P(~j) 
G ~  P(~ I ~,; o~) 

The M step computes the most likely parameters of the distribution given the 
cluster membership probabilities: 

~]i=1 /j 

k+l E/N1 hq(2:i - lif)(Y:i - 11~) T 

~j = ~N=lhq 

These are the well-known maximum-likelihood estimates for mean and variance of a 
Gaussian. 

Recomputed means and variances are the parameters for the next iteration k+l.  For 
reasons of computational efficiency, we chose the implementation of the EM clustering 
known as k-means or hard clustering (Duda and Hart 1973). In each iteration, context 
vectors are first assigned to the cluster with the closest mean; then cluster means are 
recomputed as the centroid of all members of the cluster. This amounts to assuming a 
very small fixed variance for all clusters and only re-estimating the means in each step. 
The initial cluster parameters are computed by applying group-average agglomerative 
clustering to a sample of size v'N. 

Appendix C: Agglomerative Clustering 

Agglomerative clustering is a clustering technique that starts by assigning each ele- 
ment to a different cluster and then iteratively merges clusters according to a goodness 
criterion until the desired number of clusters has been reached. Two such goodness 
measures give rise to single-link clustering and complete-link clustering. Single-link 
clustering in each step merges the two clusters that have two elements with the small- 
est distance of any two clusters. Complete-link clustering in each step executes the 
merger whose resulting cluster has the smallest diameter of all possible mergers. 
Single-link clustering has been found in practice to produce elongated clusters (e.g., 
two parallel lines) that do not correspond well to the intuitive notion of a cluster as a 
mass of points with a center. Complete-link clustering is strongly affected by outliers 
and has a time complexity cubic in the number of points to be merged and, hence, is 
less efficient than single-link clustering (which can be computed in quadratic time). 

In this paper, we chose group-average agglomerative clustering (GAAC) as our 
clustering algorithm, a hybrid of single-link and complete-link clustering. GAAC in 
each iteration executes the merger that gives rise to the cluster F with the largest 
average correlation C(P): 

1 1 
C(P) - 2 IPl([rl- 1) ~ ~ corr(~,7~) 

~cF/~cP 
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