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We describe a method for automatic word sense disambiguation using a text corpus and a machine- 
readable dictionary (MRD). The method is based on word similarity and context similarity 
measures. Words are considered similar if they appear in similar contexts; contexts are similar if 
they contain similar words. The circularity of this definition is resolved by an iterative, converging 
process, in which the system learns from the corpus a set of typical usages for each of the senses 
of the polysemous word listed in the MRD. A new instance of a polysemous word is assigned the 
sense associated with the typical usage most similar to its context. Experiments show that this 
method can learn even from very sparse training data, achieving over 92% correct disambiguation 
performance. 

1. Introduct ion 

Word sense disambiguation (WSD) is the problem of assigning a sense to an ambiguous 
word, using its context. We assume that different senses of a word correspond to 
different entries in its dictionary definition. For example, suit has two senses listed in 
a dictionary: 'an action in court,' and 'suit of clothes.' Given the sentence The union's 
lawyers are reviewing the suit, we would like the system to decide automatically that 
suit is used there in its court-related sense (we assume that the part of speech of the 
polysemous word is known). 

In recent years, text corpora have been the main source of information for learn- 
ing automatic WSD (see, for example, Gale, Church, and Yarowsky [1992]). A typical 
corpus-based algorithm constructs a training set from all contexts of a polysemous 
word W in the corpus, and uses it to learn a classifier that maps instances of W (each 
supplied with its context) into the senses. Because learning requires that the examples 
in the training set be partitioned into the different senses, and because sense informa- 
tion is not available in the corpus explicitly, this approach depends critically on manual 
sense tagging--a laborious and time-consuming process that has to be repeated for 
every word, in every language, and, more likely than not, for every topic of discourse 
or source of information. 

The need for tagged examples creates a problem referred to in previous works as 
the knowledge acquisition bottleneck: training a disambiguator for W requires that 
the examples in the corpus be partitioned into senses, which, in turn, requires a fully 
operational disambiguator. The method we propose circumvents this problem by au- 
tomatically tagging the training set examples for W using other examples, that do not 
contain W, but do contain related words extracted from its dictionary definition. For 
instance, in the training set for suit, we would use, in addition to the contexts of suit, 
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all the contexts of court and of clothes in the corpus, because court and clothes appear  in 
the machine-readable dictionary (MRD) entry of suit that defines its two senses. Note 
that, unlike the contexts of suit, which may  discuss either court  action or clothing, the 
contexts of court are not likely to be especially related to clothing, and, similarly, those 
of clothes will normally have little to do with lawsuits. We will use this observation to 
tag the original contexts of suit. 

Another  problem that affects the corpus-based WSD methods  is the sparseness of 
data: these methods  typically rely on the statistics of co-occurrences of words,  while 
many  of the possible co-occurrences are not  observed even in a very  large corpus 
(Church and Mercer 1993). We address this problem in several ways. First, instead of 
tallying word  statistics from the examples for each sense (which m ay  be unreliable 
when  the examples are few), we collect sentence-level statistics, representing each 
sentence by  the set of features it contains (for more  on features, see Section 4.2). Second, 
we define a similarity measure on the feature space, which allows us to pool  the 
statistics of similar features. Third, in addit ion to the examples of the polysemous  word  
142 in the corpus, we learn also from the examples of all the words  in the dict ionary 
definition of W. In our  experiments,  this resulted in a training set that could be up to 
20 times larger than the set of original examples. 

The rest of this paper  is organized as follows. Section 2 describes the approach 
we have developed.  In Section 3, we report  the results of tests we have conducted  on 
the Treebank-2 corpus. Section 4 concludes with a discussion of related methods  and 
a summary. Proofs and other details of our  scheme can be found in the appendix.  

2. Similarity-based Disambiguation 

Our aim is to have the system learn to disambiguate the appearances of a po lysemous  
word  W (noun, verb, or adjective) with senses Sl . . . .  , sk, using as examples the appear-  
ances of W in an untagged corpus. To avoid the need to tag the training examples 
manually, we augment  the training set by  additional sense-related examples,  which 
we call a feedback  set. The feedback set for sense si of word  W is the union of all 
contexts that contain some noun  found in the entry of si(W) in an MRD. 1 Words in 
the intersection of any two sense entries, as well as examples in the intersection of 
two feedback sets, are discarded dur ing initialization; we also use a stop list to discard 
from the MRD definition high-frequency words,  such as that, which do not  contribute 
to the disambiguation process. The feedback sets can be augmented ,  in turn, by  origi- 
nal training-set sentences that are closely related (in a sense defined below) to one of 
the feedback-set sentences; these additional examples can then attract other original 
examples. 

The feedback sets constitute a rich source of data that are known to be sorted by  
sense. Specifically, the feedback set of si is known  to be more  closely related to si than 
to the other senses of the same word.  We rely on this observat ion to tag automatically 
the examples of W, as follows. Each original sentence containing W is assigned the 
sense of its most  similar sentence in the feedback sets. Two sentences are considered to 
be similar insofar as they contain similar words  (they do not have to share any word);  
words  are considered to be similar if they appear  in similar sentences. The circularity 
of this definition is resolved by  an iterative, converging process, described below. 

1 By MRD we  mean  a machine- readable  dictionary, or a thesaurus,  or any combina t ion  of such 
k n o w l e d g e  sources. 
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2.1 Terminology 
A context, or example, of the target word W is any sentence that contains W and 
(optionally) the two adjacent sentences in the corpus. The features of a sentence 8 are 
its nouns, verbs, and the adjectives of W and of any noun that appears both in $ and 
in W's MRD definition(s), all used after stemming (it is also possible to use other types 
of features, such as word n-grams or syntactic information; see Section 4.2). As the 
number of features in the training data can be very large, we automatically assign each 
relevant feature a weight indicating the extent to which it is indicative of the sense 
(see Section A.3 in the appendix). Features that appear less than two times in the 
training set, and features whose weight falls under a certain threshold, are excluded. 
A sentence is represented by the set of the remaining relevant features it contains. 

2.2 Computation of Similarity 
Our method hinges on the possibility of computing similarity between the original 
contexts of W and the sentences in the feedback sets. We concentrate on similarities 
in the way sentences use W, not on similarities in the meaning of the sentences. Thus, 
similar words tend to appear in similar contexts, and their textual proximity to the 
ambiguous word W is indicative of the sense of W. Note that contextually similar 
words do not have to be synonyms, or to belong to the same lexical category. For ex- 
ample, we consider the words doctor and health to be similar because they frequently 
share contexts, although they are far removed from each other in a typical seman- 
tic hierarchy such as the WordNet (Miller et al. 1993). Note, further, that because we 
learn similarity from the training set of W, and not from the entire corpus, it tends 
to capture regularities with respect to the usage of 14;, rather than abstract or general 
regularities. For example, the otherwise unrelated words war and trafficking are sim- 
ilar in the contexts of the polysemous word drug ('narcotic'/'medicine'), because the 
expressions drug trafficking and the war on drugs appear in related contexts of drug. As a 
result, both war and trafficking are similar in being strongly indicative of the 'narcotic' 
sense of drug. 

Words and sentences play complementary roles in our approach: a sentence is 
represented by the set of words it contains, and a word by the set of sentences in 
which it appears. Sentences are similar to the extent they contain similar words; 2 words 
are similar to the extent they appear in similar sentences. Although this definition is 
circular, it turns out to be of great use, if applied iteratively, as described below. 

In each iteration n, we update a word similarity matrix WSMn (one matrix for each 
polysemous word), whose rows and columns are labeled by all the words encountered 
in the training set of W. In that matrix, the cell (i,j) holds a value between 0 and 1, 
indicating the extent to which word Wi is contextually similar to word Wj. In addition, 
we keep and update a separate sentence similarity matrix SSM~ for each sense Sk of W 
(including a matrix SSMo k that contains the similarities of the original examples to 
themselves). The rows in a sentence matrix SSM~ correspond to the original examples 
of W, and the columns to the original examples of W, for n = 0, and to the feedback-set 
examples for sense Sk, for n > 0. 

To compute the similarities, we initialize the word similarity matrix to the identity 
matrix (each word is fully similar to itself and completely dissimilar to other words), 
and iterate (see Figure 1): 

1. update the sentence similarity matrices SSM~, using the word similarity 
matrix WSMn; 

2 Ignor ing word  order. This informat ion  can be pu t  to use  by inc luding  n-grams  in the feature set; see 
Section 4.2. 
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Figure 1 
Iterative computation of word and sentence similarities. 

. update the word similarity matrix WSMn, using the sentence similarity 
matrices SSM~. 

until the changes in the similarity values are small enough (see Section A.1 of the 
appendix for a detailed description of the stopping conditions; a proof of convergence 
appears in the appendix). 

2.2.1 The Affinity Formulae. The algorithm for updat ing the similarity matrices in- 
volves an auxiliary relation between words and sentences, which we call affinity, 
introduced to simplify the symmetric iterative treatment of similarity between words 
and sentences. A word W is assumed to have a certain affinity to every sentence. Affin- 
ity (a real number  between 0 and 1) reflects the contextual relationships between W 
and the words of the sentence. If W belongs to a sentence S, its affinity to S is 1; if 
W is totally unrelated to S, the affinity is close to 0 (this is the most common case); 
if W is contextually similar to the words of S, its affinity to S is between 0 and 1. 
In a symmetric manner, a sentence S has some affinity to every word, reflecting the 
similarity of S to sentences involving that word. 

We say that a word belongs to a sentence, denoted as W E S, if it is textually 
contained there; in this case, sentence is said to include the word: S 9 W. Affinity is 
then defined as follows: 

affn(W, S) = max simn(W, Wi) (1) 
WiCS 

aff,(S, W) = max simn(S, Sj) (2) 
8j~w 

where n denotes the iteration number, and the similarity values are defined by the 
word and sentence similarity matrices, WSMn and SSMn .3 The initial representation 
of a sentence, as the set of words that it directly contains, is now augmented  by a 

3 At  first glance it m a y  seem that  the  m e a n  rather than  the max ima l  similari ty of W to the  words  of a 
sentence shou ld  de te rmine  the  affinity be tween  the two. However ,  any  definit ion of affinity that  takes 
into account  more  words  than  just  the  one wi th  the  max ima l  similari ty to W,  m a y  result  in a word  
being directly contained in the sentence,  bu t  hav ing  an  affinity to it that  is smal ler  than  1. 
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similarity-based representation; the sentence contains more information or features 
than the words directly contained in it. Every word has some affinity to the sentence, 
and the sentence can be represented by a vector indicating the affinity of each word 
to it. Similarly, every word can be represented by the affinity of every sentence to it. 
Note that affinity is asymmetric: aft(S, 14;) ~ aft(W, S), because 14; may be similar to 
one of the words in S, which, however, is not one of the topic words of S; it is not an 
important word in S. In this case, aft(W, S) is high, because 14; is similar to a word 
in S, but aft(S, 14;) is low, because S is not a representative example of the usage of 
the word 14;. 

2.2.2 The Similarity Formulae. We define the similarity of 14;1 to 14;2 to be the average 
affinity of sentences that include 14;1 to 14;2. The similarity of a sentence $1 to another 
sentence 82 is a weighted average of the affinity of the words in $1 to $2: 

simn+l(Sb $2) = ~ weight(W, $1). affn(W, $2) (3) 
WE$1 

simn+l(14;1, 14;2) = ~ weight(S, 14;1). affn(S, 14;2) (4) 
$3W1 

where the weights sum to 1. 4 These values are used to update the corresponding 
entries of the word and sentence similarity matrices, WSM and SSM. 

2.2.3 The Importance of Iteration. Initially, only identical words are considered sim- 
ilar, so that aft(W, S) = 1 if 14; E S; the affinity is zero otherwise. Thus, in the first 
iteration, the similarity between 81 and $2 depends on the number of words from 
$1 that appear in $2, divided by the length of $2 (note that each word may carry 
different weight). In the subsequent iterations, each word 14; c $1 contributes to the 
similarity of 81 to $2 a value between 0 and 1, indicating its affinity to $2, instead of 
voting either 0 (if 14; E $2) or 1 (if 14; ~ 82). Analogously, sentences contribute values 
to word similarity. 

One may view the iterations as successively capturing parameterized "genealogi- 
cal" relationships. Let words that share contexts be called direct relatives; then words 
that share neighbors (have similar co-occurrence patterns) are once-removed relatives. 
These two family relationships are captured by the first iteration, and also by most 
traditional similarity measures, which are based on co-occurrences. The second itera- 
tion then brings together twice-removed relatives. The third iteration captures higher 
similarity relationships, and so on. Note that the level of relationship here is a gradu- 
ally consolidated real-valued quantity, and is dictated by the amount and the quality 
of the evidence gleaned from the corpus; it is not an all-or-none "relatedness" tag, as 
in genealogy. 

The following simple example demonstrates the difference between our similar- 
ity measure and pure co-occurrence-based similarity measures, which cannot capture 

4 The weight of a word estimates its expected contribution to the disambiguation task and is a product 
of several factors: the frequency of the word in the corpus; its frequency in the training set relative to 
that in the entire corpus; the textual distance from the target word; and its part of speech (more details 
on word weights appear in Section A.3 of the appendix). All the sentences that include a given word 
are assigned identical weights, 
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higher-order relationships. Consider the set of three sentence fragments: 

sl eat banana 

s2 taste banana 

s3 eat apple 

In this "corpus," the contextual similarity of taste and apple, according to the co- 
occurrence-based methods, is 0, because the contexts of these two words are disjoint. 
In comparison, our iterative algorithm will capture some contextual similarity: 

• Initialization. Every word is similar to itself only. 

• First iteration. The sentences eat banana and eat apple have contextual 
similarity of 0.5, because of the common word eat. Furthermore, the 
sentences eat banana and taste banana have contextual similarity 0.5: 

- -  banana is learned to be similar to apple because of their common 
usage (eat banana and eat apple); 

- -  taste is similar to eat because of their common usage (taste banana 
and eat banana); 

- -  taste and apple are not similar (yet). 

• Second iteration. The sentence taste banana has now some similarity to eat 
apple, because in the previous iteration taste was similar to eat and banana 
was similar to apple. The word taste is now similar to apple because the 
taste sentence (taste banana) is similar to the apple sentence (eat apple). Yet, 
banana is more similar to apple than taste, because the similarity value of 
banana and apple further increases in the second iteration. 

This simple example demonstrates the transitivity of our similarity measure, which 
allows it to extract high-order contextual relationships. In more complex situations, the 
transitivity-dependent spread of similarity is slower, because each word is represented 
by many more sentences. 

The most important properties of the similarity computation algorithm are con- 
vergence (see Section A.2 in the appendix), and utility in supporting disambiguation 
(described in Section 3); three other properties are as follows. First, word similarity 
computed according to the above algorithm is asymmetric. For example, drug is more 
similar to traffic than traffic is to drug, because traffic is mentioned more frequently 
in drug contexts than drug is mentioned in contexts of traffic (which has many other 
usages). Likewise, sentence similarity is asymmetric: if 81 is fully contained in $2, then 
sire(S1, $2) = 1, whereas sim($2, $1) < 1. Second, words with a small count in the 
training set will have unreliable similarity values. These, however, are multiplied by a 
very low weight when used in sentence similarity evaluation, because the frequency 
in the training set is taken into account in computing the word weights. Third, in 
the computation of sim(W1, W2) for a very frequent W2, the set of its sentences is 
very large, potentially inflating the affinity of W1 to the sentences that contain W2. We 
counter this tendency by multiplying sire(W1, W2) by a weight that is reciprocally 
related to the global frequency of W2 (this weight has been left out of Equation 4, to 
keep the notation there simple). 
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2.3 Using Similarity to Tag the Training Set 
Following convergence, each sentence in the training set is assigned the sense of its 
most  similar sentence in one of the feedback sets of sense si, using the final sentence 
similarity matrix. Note that some sentences in the training set belong also to one of the 
feedback sets, because they contain words from the MRD definition of the target word. 
Those sentences are automatically assigned the sense of the feedback set to which they 
belong, since they are most similar to themselves. Note also that an original training- 
set sentence S can be attracted to a sentence .T from a feedback set, even if S and .T 
do not share any word, because of the transitivity of the similarity measure. 

2.4 Learning the typical uses of each sense 
We partition the examples of each sense into typical use sets, by grouping all the 
sentences that were attracted to the same feedback-set sentence. That sentence, and 
all the original sentences attracted to it, form a class of examples for a typical usage. 
Feedback-set examples that did not attract any original sentences are discarded. If the 
number  of resulting classes is too high, further clustering can be carried out on the 
basis of the distance metric defined by 1 - sim(x, y), where sire(x, y) are values taken 
from the final sentence similarity matrix. 

A typical usage of a sense is represented by the affinity information generalized 
from its examples. For each word 14;, and each cluster C of examples of the same 
usage, we define: 

aff(W, C) = max aff(W, S) (5) 
SEC 

= max max sim(W, Wi) (6) 
SEC WiCS 

For each cluster we construct its affinity vector, whose ith component  indicates the 
affinity of word i to the cluster. It suffices to generalize the affinity information (rather 
than similarity), because new examples are judged on the basis of their similarity to 
each cluster: in the computat ion of sire(S1, $2) (Equation 3), the only information 
concerning $2 is its affinity values. 

2.5 Testing New Examples 
Given a new sentence S containing a target word W, we determine its sense by com- 
puting the similarity of S to each of the previously obtained clusters Ck, and returning 
the sense si of the most similar cluster: 

sim(Snew, Ck) = ~ weight(W, Snew)" aff(W, Ck) (7) 
W E S.ew 

sim(Snew, si) = max sim(Snew, C) (8) 
Ccsi 

3. Experimental Evaluation of the Method 

We tested the algorithm on the Treebank-2 corpus, which contains one million words 
from the Wall Street Journal, 1989, and is considered a small corpus for the present 
task. During the development  and the tuning of the algorithm, we used the method 
of pseudowords (Gale, Church, and Yarowsky 1992; Schitze 1992), to avoid the need 
for manual  verification of the resulting sense tags. 

The method of pseudowords  is based on the observation that a disambiguation 
process designed to distinguish between two meanings of the same word should also 
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Table 1 
The four polysemous test words, and the seed words they generated with the use of the MRD. 

Word Seed Words 

drug 1. stimulant, alcoholist, alcohol, trafficker, crime 
2. medicine, pharmaceutical, remedy, cure, medication, pharmacists, 

prescription 
1. conviction, judgment, acquittal, term 
2. string, word, constituent, dialogue, talk, conversation, text 
1. trial, litigation, receivership, bankruptcy, appeal, action, case, lawsuit, 

foreclosure, proceeding 
2. garment, fabric, trousers, pants, dress, frock, fur, silks, hat, boots, coat, shirt, 

sweater, vest, waistcoat, skirt, jacket, cloth 
1. musician, instrumentalist, performer, artist, actor, twirler, comedian, dancer, 

impersonator imitator, bandsman, jazz, recorder, singer, vocalist, actress, 
barnstormer, playactor, trouper, character, actor, scene-stealer, star, baseball, 
ball, football, basketball 

2. participant, contestant, trader, analyst, dealer 

sentence 

suit 

player 

be able to separate the meanings of two different words.  Thus, a data set for testing 
a disambiguation algori thm can be obtained by  starting with two collections of sen- 
tences, one containing a word  X, and the other a word  y ,  and inserting y instead of 
every  appearance of ,-Y in the first collection. The algori thm is then tested on the union 
of the two collections, in which X is now a "polysemous"  word.  The performance of 
the algori thm is judged by its ability to separate the sentences that originally contained 
,~' from those that originally contained 32; any mistakes can be used to supervise the 
tuning of the algorithm. 5 

3.1 Test data 
The final algori thm was tested on a total of 500 examples of four po lysemous  words: 
drug, sentence, suit, and player (see Table 2; a l though we confined the tests to nouns,  
the algori thm is applicable to any part  of speech). The relatively small number  of 
polysemous  words  we studied was dictated by  the size and nature of the corpus (we 
are currently testing additional words,  using texts from the British National Corpus). 

As the MRD, we used a combination of the on-line versions of the Webster's and 
the Oxford dictionaries, and the WordNet  system (the latter used as a thesaurus only; 
see Section 4.3). The resulting collection of seed words  (that is, words  used to generate 
the feedback sets) is listed in Table 1. 

We found that the single best source of seed words  was WordNet  (used as the- 
saurus only). The number  of seed words  per  sense turned out  to be of little significance. 
For example,  whereas  the MRD yielded many  garment-related words,  to be used as 
seeds for suit in the 'garment '  sense, these generated a small feedback set, because 
of the low frequency of garment-related words  in the training corpus. In comparison,  
there was a strong correlation be tween the size of the feedback set and the disam- 
biguation performance,  indicating that a larger corpus is likely to improve the results. 

As can be seen from the above, the original training data (before the addit ion of 

5 Note that our disambiguation algorithm works the best for polysemous words whose senses are 
unrelated to each other, in which case the overlap between the feedback sets is minimized; likewise, 
the method of training with pseudowords amounts to an assumption of independence of the different 
senses. 
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Table 2 
A summary of the algorithm's performance on the four test words. 

Word Senses Sample Size Feedback Size % Correct % Correct 
per Sense Total 

drug narcotic 65 100 92.3 90.5 
medicine 83 65 89.1 

sentence judgment 23 327 100.0 92.5 
grammar 4 42 50.0 

suit court 212 1,461 98.6 94.8 
garment 21 81 55.0 

player performer 48 230 87.5 92.3 
participant 44 1,552 97.7 

the feedback sets) consisted of a few dozen examples, in comparison to thousands of 
examples needed  in other corpus-based methods  (Sch~itze 1992; Yarowsky 1995). The 
average success rate of our  algori thm on the 500 appearances of the four test words  
was 92%. 

3.2 The Drug Experiment 
We now present  in detail several of the results obtained with the word  drug. Consider 
first the effects of iteration. A plot of the improvement  in the performance vs. iteration 
number  appears  in Figure 2. The success rate is plotted for each sense, and for the 
weighted average of both senses we considered (the weights are proport ional  to the 
number  of examples of each sense). Iterations 2 and 5 can be seen to yield the best 
performance;  iteration 5 is to be preferred,  because of the smaller difference between 
the success rates for the two senses of the target word.  

Figure 3 shows how the similarity values develop with iteration number. For each 
example S of the 'narcotic' sense of drug, the value of simn(S, narcotic) increases with n. 
Figure 4 compares  the similarities of a 'narcotic'-sense example to the 'narcotic'  sense 
and to the 'medicine '  sense, for each iteration. One can see that the 'medicine '  sense 
assignment, made  in the first iteration, is gradually suppressed.  The word  menace, 
which is a hint for the 'narcotic'  sense in the sentence used in this example,  did 
not help in the first iteration, because it did not  appear  in the 'narcotic' feedback 
set at all. Thus, in iteration 1, the similarity of the sentence to the 'medicine '  sense 
was 0.15, vs. a similarity of 0.1 to the 'narcotic' sense. In iteration 2, menace was 
learned to be similar to other 'narcotic'-related words,  yielding a small advantage for 
the 'narcotic' sense. In iteration 3, further similarity values were updated,  and there 
was a clear advantage to the 'narcotic'  sense (0.93, vs. 0.89 for 'medicine').  Eventually, 
all similarity values become close to 1, and, because they are bounded  by 1, they cannot  
change significantly with further iterations. The decision is, therefore, best made  after 
relatively few iterations, as we just saw. 

Table 3 shows the most  similar words  found for the words with the highest weights 
in the drug example (low-similarity words  have been omitted). Note that the similarity 
is contextual, and is affected by the polysemous  target word.  For example,  trafficking 
was found to be similar to crime, because in drug contexts the expressions drug trafficking 
and crime are highly related. In general, trafficking and crime need not  be similar, of 
course. 
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Table 3 
The drug experiment; the nearest neighbors of the highest-weight words. 

Word Most Contextually Similar Words 

The 'Medicine' Sense 

medication antibiotic blood prescription medicine percentage pressure 

prescription analyst antibiotic blood campaign introduction law line-up medication medicine 
percentage print profit publicity quarter sedative state television tranquilizer use 

medicine prescription campaign competition dollar earnings law manufacturing 
margin print product publicity quarter result sale saving sedative 
staff state television tranquilizer unit use 

disease antibiotic blood line-up medication medicine prescription 

symptom hypoglycemia insulin warning manufacturer product 
plant animal death diabetic evidence finding metabolism study 

insulin hypoglycemia manufacturer product symptom warning 
death diabetic finding report study 

tranquilizer campaign law medicine prescription print publicity sedative 
television use analyst profit state 

dose appeal death impact injury liability manufacturer miscarriage refusing ruling 
diethylstilbestrol hormone damage effect female prospect state 

The 'Narcotic' Sense 

consumer distributor effort cessation consumption country reduction requirement 
victory battle capacity cartel government mafia newspaper people 

mafia terrorism censorship dictatorship newspaper press brother nothing aspiration 
assassination editor leader politics rise action country doubt freedom 
mafioso medium menace solidarity structure trade world 

terrorism censorship doubt freedom mafia medium menace newspaper 
press solidarity structure 

murder capital-punishment symbolism trafficking furor killing substance crime 
restaurant law bill case problem 

menace terrorism freedom solidarity structure medium press censorship country doubt 
mafia newspaper way attack government magnitude people relation threat 
world 

trafficking crime capital-punishment furor killing murder restaurant substance symbolism 

dictatorship aspiration brother editor mafia nothing politics press 
assassination censorship leader newspaper rise terrorism 

assassination brother censorship dictatorship mafia nothing press terrorism 
aspiration editor leader newspaper politics rise 

laundering army lot money arsenal baron economy explosive government hand 
material military none opinion portion talk 

censorship mafia newspaper press terrorism country doubt freedom 
medium menace solidarity structure 
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Figure 2 
The drug experiment; the change in the disambiguation performance with iteration number is 
plotted separately for each sense (the asterisk marks the plot of the success rate for the 
'narcotic' sense; the other two plots are the 'medicine' sense, and the weighted average of the 
two senses). In our experiments, the typical number of iterations was 3. 
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The drug experiment; an illustration of the development of the support for a particular sense 
with iteration. The plot shows the similarity of a number of drug sentences to the 'narcotic' 
sense. To facilitate visualization, the curves are sorted by the second-iteration values of 
similarity. 

4. D i s c u s s i o n  

We now discuss in some detail the choices made  at the different stages of the devel- 
opment  of the present method,  and its relationship to some of the previous works on 
word  sense disambiguation. 
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Figure 4 
The drug experiment; the similarity of a 'narcotic'-sense example to each of the two senses. The 
sentence here was The American people and their government also woke up too late to the menace drugs 
posed to the moral structure of their country. The asterisk marks the plot for the 'narcotic' sense. 

4.1 Flexible Sense  Di s t inc t ions  
The possibility of strict definition of each sense of a polysemous word, and the possibil- 
ity of unambiguous assignment of a given sense in a given situation are, in themselves, 
nontrivial issues in philosophy (Quine 1960) and linguistics (Weinreich 1980; Cruse 
1986). Different dictionaries often disagree on the definitions; the split into senses may 
also depend on the task at hand. Thus, it is important to maintain the possibility of 
flexible distinction of the different senses, e.g., by letting this distinction be determined 
by an external knowledge source such as a thesaurus or a dictionary. Although this 
requirement may seem trivial, most corpus-based methods do not, in fact, allow such 
flexibility. For example, defining the senses by the possible translations of the word 
(Dagan, Itai and Schwall 1991; Brown et al. 1991; Gale, Church, and Yarowsky 1992), 
by the Roget's categories (Yarowsky 1992), or by clustering (Schi~tze 1992), yields a 
grouping that does not always conform to the desired sense distinctions. 

In comparison to these approaches, our reliance on the MRD for the definition of 
senses in the initialization of the learning process guarantees the required flexibility 
in setting the sense distinctions. Specifically, the user of our system may choose a 
certain dictionary definition, a combination of definitions from several dictionaries, 
or manually listed seed words for every sense that needs to be defined. Whereas 
pure MRD-based methods allow the same flexibility, their potential so far has not 
been fully tapped, because definitions alone do not contain enough information for 
disambiguation. 

4.2 Sentence  Features 
Different polysemous words may benefit from different types of features of the context 
sentences. Polysemous words for which distinct senses tend to appear in different top- 
ics can be disambiguated using single words as the context features, as we did here. 
Disambiguation of other polysemous words may require taking the sentence structure 
into account, using n-grams or syntactic constructs as features. This additional infor- 
mation can be incorporated into our method, by (1) extracting features such as nouns, 
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verbs, adjectives of the target word, bigrams, trigrams, and subject-verb or verb-object 
pairs, (2) discarding features with a low weight (cf. Section A.3 of the appendix), and 
(3) using the remaining features instead of single words (i.e., by representing a sen- 
tence by the set of significant features it contains, and a feature by the set of sentences 
in which it appears). 

4.3 Using WordNet 
The initialization of the word similarity matrix using WordNet, a hand-crafted se- 
mantic network arranged in a hierarchical structure (Miller et al. 1993), may seem to 
be advantageous over simply setting it to the identity matrix, as we have done. To 
compare these two approaches, we tried to set the initial (dis)similarity between two 
words to the WordNet path length between their nodes (Lee, Kim, and Lee 1993), and 
then learn the similarity values iteratively. This, however, led to worse performance 
than the simple identity-matrix initialization. 

There are several possible reasons for the poor performance of WordNet in this 
comparison. First, WordNet is not designed to capture contextual similarity. For ex- 
ample, in WordNet, hospital and doctor have no common ancestor, and hence their 
similarity is 0, while doctor and lawyer are quite similar, because both designate pro- 
fessionals, humans, and living things. Note that, contextually, doctor should be more 
similar to hospital than to lawyer. Second, we found that the WordNet similarity values 
dominated the contextual similarity computed in the iterative process, preventing the 
transitive effects of contextual similarity from taking over. Third, the tree distance in 
itself does not always correspond to the intuitive notion of similarity, because differ- 
ent concepts appear at different levels of abstraction and have a different number of 
nested subconcepts. For example, a certain distance between two nodes may result 
from (1) the nodes being semantically close, but separated by a large distance, stem- 
ming from a high level of detail in the related synsets, or from (2) the nodes being 
semantically far from each o t h e r .  6 

4.4 Ignoring Irrelevant Examples 
The feedback sets we use in training the system may contain noise, in the form of 
irrelevant examples that are collected along with the relevant and useful ones. For 
instance, in one of the definitions of bank in WordNet, we find bar, which, in turn, 
has many other senses that are not related to bank. Although these unrelated senses 
contribute examples to the feedback set, our system is hardly affected by this noise, 
because we do not collect statistics on the feedback sets (i.e., our method is not based 
on mere co-occurrence frequencies, as most other corpus-based methods are). The 
relevant examples in the feedback set of the sense si will attract the examples of si; 
the irrelevant examples will not attract the examples of si, but neither will they do 
damage, because they are not expected to attract examples of sj ~" ~ i). 

4.5 Related work 
4.5.1 The Knowledge Acquisition Bottleneck. Brown et al. (1991) and Gale, Church, 
and Yarowsky (1992) used the translations of ambiguous words in a bilingual corpus 
as sense tags. This does not obviate the need for manual work, as producing bilingual 
corpora requires manual translation work. Dagan, Itai, and Schwall (1991) used a 
bilingual lexicon and a monolingual corpus to save the need for translating the corpus. 

6 Resnik (1995) recently suggested that this particular difficulty can be overcome by a different measure 
that takes into account the informativeness of the most specific common ancestor of the two words. 
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The problem remains, however, that the word translations do not necessarily overlap 
with the desired sense distinctions. 

Sch/.itze (1992) clustered the examples in the training set and manually assigned 
each cluster a sense by observing 10-20 members of the cluster. Each sense was usu- 
ally represented by several clusters. Although this approach significantly decreased the 
need for manual intervention, about a hundred examples had still to be tagged man- 
ually for each word. Moreover, the resulting clusters did not necessarily correspond 
to the desired sense distinctions. 

Yarowsky (1992) learned discriminators for each Roget's category, saving the need 
to separate the training set into senses. However, using such hand-crafted categories 
usually leads to a coverage problem for specific domains or for domains other than 
the one for which the list of categories has been prepared. 

Using MRD's (Amsler 1984) for word sense disambiguation was popularized by 
Lesk (1986); several researchers subsequently continued and improved this line of 
work (Krovetz and Croft 1989; Guthrie et al. 1991; V~ronis and Ide 1990). Unlike the 
information in a corpus, the information in the MRD definitions is presorted into 
senses. However, as noted above, the MRD definitions alone do not contain enough 
information to allow reliable disambiguation. Recently, Yarowsky (1995) combined an 
MRD and a corpus in a bootstrapping process. In that work, the definition words 
were used as initial sense indicators, automatically tagging the target word examples 
containing them. These tagged examples were then used as seed examples in the 
bootstrapping process. In comparison, we suggest to further combine the corpus and 
the MRD by using all the corpus examples of the MRD definition words, instead of 
those words alone. This yields much more sense-presorted training information. 

4.5.2 The Problem of Sparse Data. Most previous works define word similarity based 
on co-occurrence information, and hence face a severe problem of sparse data. Many 
of the possible co-occurrences are not observed even in a very large corpus (Church 
and Mercer 1993). Our algorithm addresses this problem in two ways. First, we replace 
the all-or-none indicator of co-occurrence by a graded measure of contextual similarity. 
Our measure of similarity is transitive, allowing two words to be considered similar 
even if they neither appear in the same sentence, nor share neighbor words. Second, 
we extend the training set by adding examples of related words. The performance of 
our system compares favorably to that of systems trained on sets larger by a factor 
of 100 (the results described in Section 3 were obtained following learning from several 
dozen examples, in comparison to thousands of examples in other automatic methods). 

Traditionally, the problem of sparse data is approached by estimating the prob- 
ability of unobserved co-occurrences using the actual co-occurrences in the training 
set. This can be done by smoothing the observed frequencies 7 (Church and Mercer 
1993) or by class-based methods (Brown et al. 1991; Pereira and Tishby 1992; Pereira, 
Tishby, and Lee 1993; Hirschman 1986; Resnik 1992; Brill et al. 1990; Dagan, Marcus, 
and Markovitch 1993). In comparison to these approaches, we use similarity informa- 
tion throughout training, and not merely for estimating co-occurrence statistics. This 
allows the system to learn successfully from very sparse data. 

7 Smoothing is a technique widely used in applications, such as statistical pattern recognition and 
probabilistic language modeling, that require a probability density to be estimated from data. For 
sparse data, this estimation problem is severely underconstrained, and, thus, ill-posed; smoothing 
regularizes the problem by adopting a prior constraint that assumes that the probability density does 
not change too fast in between the examples. 
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4.6 Summary 
We have described an approach to WSD that combines a corpus and an MRD to gen- 
erate an extensive data set for learning similarity-based disambiguation. Our system 
combines the advantages of corpus-based approaches (large number of examples) with 
those of the MRD-based approaches (data presorted by senses), by using the MRD def- 
initions to direct the extraction of training information (in the form of feedback sets) 
from the corpus. 

In our system, a word is represented by the set of sentences in which it appears. 
Accordingly, words are considered similar if they appear in similar sentences, and sen- 
tences are considered similar if they contain similar words. Applying this definition 
iteratively yields a transitive measure of similarity under which two sentences may be 
considered similar even if they do not share any word, and two words may be consid- 
ered similar even if they do not share neighbor words. Our experiments show that the 
resulting alternative to raw co-occurrence-based similarity leads to better performance 
on very sparse data. 

Appendix 

A.1 Stopping Conditions of the Iterative Algorithm 
Let fi be the increase in the similarity value in iteration i: 

f~(X,y) = simi(X, y ) -  simi_l(X, 32) (9) 

where X, y can be either words or sentences. For each item X, the algorithm stops 
updating its similarity values to other items (that is, updating its row in the similarity 
matrix) in the first iteration that satisfies maxyf i (X ,  3;) _< ¢, where c > 0 is a preset 
threshold. 

According to this stopping condition, the algorithm terminates after at most 
iterations (otherwise, in !, iterations with eachfi > c, we obtain sim(,V, 3;) > ¢- ~ = 1, 
in contradiction to upper bound of 1 on the similarity values; see Section A.2 below). 

We found that the best results are obtained within three iterations. After that, 
the disambiguation results tend not to change significantly, although the similarity 
values may continue to increase. Intuitively, the transitive exploration of similarities 
is exhausted after three iterations. 

A.2 Proofs 
In the following, X, 3; can be either words or sentences. 

Theorem 1 
Similarity is bounded: simn (X, 3;) _< 1 

Proof 
By induction on the number of iteration. At the first iteration, sim0(X, 3;) _< 1, by 
initialization. Assume that the claim holds for n, and prove for n + 1: 

simn+l (X, Y) = E weight(K, X)maxsimn(Xj, Yk) 
YkEY ~CX 

< ~ weight(,~, X) • 1 (by the induction hypothesis) 

-- 1 
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T h e o r e m  2 

Similarity is reflexive: VX, sim(X, X) = 1 

P r o o f  

By induction on the number  of iteration, sim0(X, X) = 1, by initialization. Assume 
that the claim holds for n, and prove for n + 1: 

Simn+l(X, X) = E weight (~ ,  X) .  max simn(Xi, ,,~) 
x~cx ,~cx 

>- E weight(X/, X) .  simn(Xi, Xi) 
XiE X 

= ~ weight(Xi,  X) • 1 (by the induction hypothesis) 
XiEX 

= 1 

Thus, simn+l(,V, X) _> 1. By theorem 1, simn+l(X, X) _< 1, so simn+l(X, X) = 1. 

T h e o r e m  3 

Similarity sim, (X, 3;) is a nondecreasing function of the number  of iteration n. 

P r o o f  

By induction on the number  of iteration. Consider the case of n = 1: siml(X, Y) > 
sim0(X, 3;) (if sim0(X, y)  = 1, then X = 3;, and siml(X, 3;) = 1 as well; else 
sim0(X, 3;) = 0 and siml(X, 3;) >_ 0 ~- sim0(X, 3;)). Now, assume that the claim 
holds for n, and prove for n + 1: 

simn+l (X, Y) - siren(X, Y ) =  

= ~ weight(K, X) .  maxsim,(Xj, Yk) 
YkEY X/~X 

- E weight(Xj, A'). maxsim,_l(Xj,  Yt) 
NkEY x/ex 

> ~ weight(Xj, X ) .  (maxs imn(Xi ,  Y k ) -  maxsim,~_l(~, Yk)) 
,~cx \YkEY ". YkEY 

> 0 

The last inequality holds because, by the induction hypothesis, 

V~,Yk, s imn(~,  Yk) _> simn_l(Xj, Yk) 

maxsimn(Xj, Yk) >_ maxsim,_l(Xj,  Yk) 
YkEY YkEY 

maxsimn(Xj, Yk) -  maxsimn_l(Xj, Yk) _> 0 
Yk~Y Y~EY 

Thus, all the items under the sum are nonnegative, and so must  be their weighted 
average. As a consequence, we may conclude that the iterative estimation of similarity 
converges. 
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A.3 Word weights 
In our algorithm, the weight of a word estimates its expected contribution to the dis- 
ambiguation task, and the extent to which the word is indicative in sentence similarity. 
The weights do not change with iterations. They are used to reduce the number of 
features to a manageable size, and to exclude words that are expected to be given 
unreliable similarity values. The weight of a word is a product of several factors: fre- 
quency in the corpus, the bias inherent in the training set, distance from the target 
word, and part-of-speech label: 

. 

. 

Global frequency. Frequent words are less informative of sense and of 
sentence similarity. For example, the appearance of year, a frequent word, 
in two different sentences in the corpus we employed would not 
necessarily indicate similarity between them, and would not be effective 
in disambiguating the sense of most target words). The contribution of 

freq(W) . 
frequency is max{0, 1 max5xfreq(X) J' where max5xfreq(X) is a function 
of the five highest frequencies in the global corpus, and X is any noun, 
or verb, or adjective there. This factor excludes only the most frequent 
words from further consideration. As long as the frequencies are not 
very high, it does not label 14;1 whose frequency is twice that of W2 as 
less informative. 

Log-likelihood factor. Words that are indicative of the sense usually appear 
in the training set more than what would have been expected from their 
frequency in the general corpus. The log-likelihood factor captures this 
tendency. It is computed as 

. 

. 

Pr (Wi 114;) (10) 
log Pr (Wi) 

where Pr(14;i) is estimated from the frequency of 14; in the entire corpus, 
and Pr(Wi I 14;) from the frequency of Wi in the training set, given the 
examples of the current ambiguous word W (cf. Gale, Church, and 
Yarowsky [1992]). 8 To avoid poor estimation for words with a low count 
in the training set, We multiply the log likelihood by min{1, ~o~nt(w)10 } 
where count(W) is the number of occurrences of 14; in the training set. 

Part of speech. Each part of speech is assigned a weight (1.0 for nouns, 0.6 
for verbs, and 1.0 for the adjectives of the target word). 

Distance from the target word. Context words that are far from the target 
word are less indicative than nearby ones. The contribution of this factor 
is reciprocally related to the normalized distance: the weight of context 
words that appear in the same sentence as the target word is taken to 
be 1.0; the weight of words that appear in the adjacent sentences is 0.5. 

The total weight of a word is the product of the above factors, each normalized by 
factor(Wi, S) 

the sum of factors of the words in the sentence: weight(Wi, $) = z_,~'wjcs factor(W j, S ) '  

8 Because this estimate is unreliable for words with low frequencies in each sense set, Gale, Church, and 
Yarowsky (1992) suggested to interpolate between probabilities computed within the subcorpus and 
probabilities computed over the entire corpus. In our case, the denominator is the frequency in the 
general corpus instead of the frequency in the sense examples, so it is more reliable. 
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where  factor(., .) is the weight  before normalizat ion.  The use of weights  contr ibuted 
about  5% to the d isambiguat ion  performance.  

A.4 Other uses  of context similarity 
The similarity measure  deve loped  in the present  pape r  can be used  for tasks other than 
word  sense disambiguat ion.  Here,  we  illustrate a possible appl icat ion to automat ic  
construct ion of a thesaurus.  

Following the training phase  for a word  X, we  have  a word  similarity matr ix  for 
the words  in the contexts of :Y. Using this matrix,  we  construct  for each sense si of ,-Y 
a set of related words ,  R: 

° 

2. 

. 

Initialize R to the set of words  appear ing  in the MRD definition of si; 

Extend R recursively: for each word  in R added  in the previous  step, add  
its k nearest  neighbors ,  using the similarity matrix. 

Stop w h e n  no new words  (or too few new words)  are added.  

U p o n  termination,  ou tpu t  for each sense si the set of its contextual ly similar words  R. 
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