
Similarity-based Word Sense
Disambiguation

Yael Karov*
Weizmann Institute

S h i m o n E d e l m a n t
MIT

We describe a method for automatic word sense disambiguation using a text corpus and a machine-
readable dictionary (MRD). The method is based on word similarity and context similarity
measures. Words are considered similar if they appear in similar contexts; contexts are similar if
they contain similar words. The circularity of this definition is resolved by an iterative, converging
process, in which the system learns from the corpus a set of typical usages for each of the senses
of the polysemous word listed in the MRD. A new instance of a polysemous word is assigned the
sense associated with the typical usage most similar to its context. Experiments show that this
method can learn even from very sparse training data, achieving over 92% correct disambiguation
performance.

1. Introduct ion

Word sense disambiguation (WSD) is the problem of assigning a sense to an ambiguous
word, using its context. We assume that different senses of a word correspond to
different entries in its dictionary definition. For example, suit has two senses listed in
a dictionary: 'an action in court,' and 'suit of clothes.' Given the sentence The union's
lawyers are reviewing the suit, we would like the system to decide automatically that
suit is used there in its court-related sense (we assume that the part of speech of the
polysemous word is known).

In recent years, text corpora have been the main source of information for learn-
ing automatic WSD (see, for example, Gale, Church, and Yarowsky [1992]). A typical
corpus-based algorithm constructs a training set from all contexts of a polysemous
word W in the corpus, and uses it to learn a classifier that maps instances of W (each
supplied with its context) into the senses. Because learning requires that the examples
in the training set be partitioned into the different senses, and because sense informa-
tion is not available in the corpus explicitly, this approach depends critically on manual
sense tagging--a laborious and time-consuming process that has to be repeated for
every word, in every language, and, more likely than not, for every topic of discourse
or source of information.

The need for tagged examples creates a problem referred to in previous works as
the knowledge acquisition bottleneck: training a disambiguator for W requires that
the examples in the corpus be partitioned into senses, which, in turn, requires a fully
operational disambiguator. The method we propose circumvents this problem by au-
tomatically tagging the training set examples for W using other examples, that do not
contain W, but do contain related words extracted from its dictionary definition. For
instance, in the training set for suit, we would use, in addition to the contexts of suit,

* Dept. of Applied Mathematics and Computer Science, Rehovot 76100, Israel
t Center for Biological & Computational Learning, MIT E25-201, Cambridge, MA 02142. Present address:

School of Cognitive and Computing Sciences, University of Sussex, Falmer BN1 9QH, UK

(~) 1998 Association for Computational Linguistics

Computational Linguistics Volume 24, Number 1

all the contexts of court and of clothes in the corpus, because court and clothes appear in
the machine-readable dictionary (MRD) entry of suit that defines its two senses. Note
that, unlike the contexts of suit, which may discuss either court action or clothing, the
contexts of court are not likely to be especially related to clothing, and, similarly, those
of clothes will normally have little to do with lawsuits. We will use this observation to
tag the original contexts of suit.

Another problem that affects the corpus-based WSD methods is the sparseness of
data: these methods typically rely on the statistics of co-occurrences of words, while
many of the possible co-occurrences are not observed even in a very large corpus
(Church and Mercer 1993). We address this problem in several ways. First, instead of
tallying word statistics from the examples for each sense (which m ay be unreliable
when the examples are few), we collect sentence-level statistics, representing each
sentence by the set of features it contains (for more on features, see Section 4.2). Second,
we define a similarity measure on the feature space, which allows us to pool the
statistics of similar features. Third, in addit ion to the examples of the polysemous word
142 in the corpus, we learn also from the examples of all the words in the dict ionary
definition of W. In our experiments, this resulted in a training set that could be up to
20 times larger than the set of original examples.

The rest of this paper is organized as follows. Section 2 describes the approach
we have developed. In Section 3, we report the results of tests we have conducted on
the Treebank-2 corpus. Section 4 concludes with a discussion of related methods and
a summary. Proofs and other details of our scheme can be found in the appendix.

2. Similarity-based Disambiguation

Our aim is to have the system learn to disambiguate the appearances of a po lysemous
word W (noun, verb, or adjective) with senses Sl , sk, using as examples the appear-
ances of W in an untagged corpus. To avoid the need to tag the training examples
manually, we augment the training set by additional sense-related examples, which
we call a feedback set. The feedback set for sense si of word W is the union of all
contexts that contain some noun found in the entry of si(W) in an MRD. 1 Words in
the intersection of any two sense entries, as well as examples in the intersection of
two feedback sets, are discarded dur ing initialization; we also use a stop list to discard
from the MRD definition high-frequency words, such as that, which do not contribute
to the disambiguation process. The feedback sets can be augmented , in turn, by origi-
nal training-set sentences that are closely related (in a sense defined below) to one of
the feedback-set sentences; these additional examples can then attract other original
examples.

The feedback sets constitute a rich source of data that are known to be sorted by
sense. Specifically, the feedback set of si is known to be more closely related to si than
to the other senses of the same word. We rely on this observat ion to tag automatically
the examples of W, as follows. Each original sentence containing W is assigned the
sense of its most similar sentence in the feedback sets. Two sentences are considered to
be similar insofar as they contain similar words (they do not have to share any word);
words are considered to be similar if they appear in similar sentences. The circularity
of this definition is resolved by an iterative, converging process, described below.

1 By MRD we mean a machine- readable dictionary, or a thesaurus, or any combina t ion of such
k n o w l e d g e sources.

42

Karov and Edelman Similarity-based Word Sense Disambiguation

2.1 Terminology
A context, or example, of the target word W is any sentence that contains W and
(optionally) the two adjacent sentences in the corpus. The features of a sentence 8 are
its nouns, verbs, and the adjectives of W and of any noun that appears both in $ and
in W's MRD definition(s), all used after stemming (it is also possible to use other types
of features, such as word n-grams or syntactic information; see Section 4.2). As the
number of features in the training data can be very large, we automatically assign each
relevant feature a weight indicating the extent to which it is indicative of the sense
(see Section A.3 in the appendix). Features that appear less than two times in the
training set, and features whose weight falls under a certain threshold, are excluded.
A sentence is represented by the set of the remaining relevant features it contains.

2.2 Computation of Similarity
Our method hinges on the possibility of computing similarity between the original
contexts of W and the sentences in the feedback sets. We concentrate on similarities
in the way sentences use W, not on similarities in the meaning of the sentences. Thus,
similar words tend to appear in similar contexts, and their textual proximity to the
ambiguous word W is indicative of the sense of W. Note that contextually similar
words do not have to be synonyms, or to belong to the same lexical category. For ex-
ample, we consider the words doctor and health to be similar because they frequently
share contexts, although they are far removed from each other in a typical seman-
tic hierarchy such as the WordNet (Miller et al. 1993). Note, further, that because we
learn similarity from the training set of W, and not from the entire corpus, it tends
to capture regularities with respect to the usage of 14;, rather than abstract or general
regularities. For example, the otherwise unrelated words war and trafficking are sim-
ilar in the contexts of the polysemous word drug ('narcotic'/'medicine'), because the
expressions drug trafficking and the war on drugs appear in related contexts of drug. As a
result, both war and trafficking are similar in being strongly indicative of the 'narcotic'
sense of drug.

Words and sentences play complementary roles in our approach: a sentence is
represented by the set of words it contains, and a word by the set of sentences in
which it appears. Sentences are similar to the extent they contain similar words; 2 words
are similar to the extent they appear in similar sentences. Although this definition is
circular, it turns out to be of great use, if applied iteratively, as described below.

In each iteration n, we update a word similarity matrix WSMn (one matrix for each
polysemous word), whose rows and columns are labeled by all the words encountered
in the training set of W. In that matrix, the cell (i,j) holds a value between 0 and 1,
indicating the extent to which word Wi is contextually similar to word Wj. In addition,
we keep and update a separate sentence similarity matrix SSM~ for each sense Sk of W
(including a matrix SSMo k that contains the similarities of the original examples to
themselves). The rows in a sentence matrix SSM~ correspond to the original examples
of W, and the columns to the original examples of W, for n = 0, and to the feedback-set
examples for sense Sk, for n > 0.

To compute the similarities, we initialize the word similarity matrix to the identity
matrix (each word is fully similar to itself and completely dissimilar to other words),
and iterate (see Figure 1):

1. update the sentence similarity matrices SSM~, using the word similarity
matrix WSMn;

2 Ignor ing word order. This informat ion can be pu t to use by inc luding n-grams in the feature set; see
Section 4.2.

43

Computational Linguistics Volume 24, Number 1

Word

Similarity

Matrix

Sentence

Similarity

Matrix

Figure 1
Iterative computation of word and sentence similarities.

. update the word similarity matrix WSMn, using the sentence similarity
matrices SSM~.

until the changes in the similarity values are small enough (see Section A.1 of the
appendix for a detailed description of the stopping conditions; a proof of convergence
appears in the appendix).

2.2.1 The Affinity Formulae. The algorithm for updat ing the similarity matrices in-
volves an auxiliary relation between words and sentences, which we call affinity,
introduced to simplify the symmetric iterative treatment of similarity between words
and sentences. A word W is assumed to have a certain affinity to every sentence. Affin-
ity (a real number between 0 and 1) reflects the contextual relationships between W
and the words of the sentence. If W belongs to a sentence S, its affinity to S is 1; if
W is totally unrelated to S, the affinity is close to 0 (this is the most common case);
if W is contextually similar to the words of S, its affinity to S is between 0 and 1.
In a symmetric manner, a sentence S has some affinity to every word, reflecting the
similarity of S to sentences involving that word.

We say that a word belongs to a sentence, denoted as W E S, if it is textually
contained there; in this case, sentence is said to include the word: S 9 W. Affinity is
then defined as follows:

affn(W, S) = max simn(W, Wi) (1)
WiCS

aff,(S, W) = max simn(S, Sj) (2)
8j~w

where n denotes the iteration number, and the similarity values are defined by the
word and sentence similarity matrices, WSMn and SSMn .3 The initial representation
of a sentence, as the set of words that it directly contains, is now augmented by a

3 At first glance it m a y seem that the m e a n rather than the max ima l similari ty of W to the words of a
sentence shou ld de te rmine the affinity be tween the two. However , any definit ion of affinity that takes
into account more words than just the one wi th the max ima l similari ty to W, m a y result in a word
being directly contained in the sentence, bu t hav ing an affinity to it that is smal ler than 1.

44

Karov and Edelman Similarity-based Word Sense Disambiguation

similarity-based representation; the sentence contains more information or features
than the words directly contained in it. Every word has some affinity to the sentence,
and the sentence can be represented by a vector indicating the affinity of each word
to it. Similarly, every word can be represented by the affinity of every sentence to it.
Note that affinity is asymmetric: aft(S, 14;) ~ aft(W, S), because 14; may be similar to
one of the words in S, which, however, is not one of the topic words of S; it is not an
important word in S. In this case, aft(W, S) is high, because 14; is similar to a word
in S, but aft(S, 14;) is low, because S is not a representative example of the usage of
the word 14;.

2.2.2 The Similarity Formulae. We define the similarity of 14;1 to 14;2 to be the average
affinity of sentences that include 14;1 to 14;2. The similarity of a sentence $1 to another
sentence 82 is a weighted average of the affinity of the words in $1 to $2:

simn+l(Sb $2) = ~ weight(W, $1). affn(W, $2) (3)
WE$1

simn+l(14;1, 14;2) = ~ weight(S, 14;1). affn(S, 14;2) (4)
$3W1

where the weights sum to 1. 4 These values are used to update the corresponding
entries of the word and sentence similarity matrices, WSM and SSM.

2.2.3 The Importance of Iteration. Initially, only identical words are considered sim-
ilar, so that aft(W, S) = 1 if 14; E S; the affinity is zero otherwise. Thus, in the first
iteration, the similarity between 81 and $2 depends on the number of words from
$1 that appear in $2, divided by the length of $2 (note that each word may carry
different weight). In the subsequent iterations, each word 14; c $1 contributes to the
similarity of 81 to $2 a value between 0 and 1, indicating its affinity to $2, instead of
voting either 0 (if 14; E $2) or 1 (if 14; ~ 82). Analogously, sentences contribute values
to word similarity.

One may view the iterations as successively capturing parameterized "genealogi-
cal" relationships. Let words that share contexts be called direct relatives; then words
that share neighbors (have similar co-occurrence patterns) are once-removed relatives.
These two family relationships are captured by the first iteration, and also by most
traditional similarity measures, which are based on co-occurrences. The second itera-
tion then brings together twice-removed relatives. The third iteration captures higher
similarity relationships, and so on. Note that the level of relationship here is a gradu-
ally consolidated real-valued quantity, and is dictated by the amount and the quality
of the evidence gleaned from the corpus; it is not an all-or-none "relatedness" tag, as
in genealogy.

The following simple example demonstrates the difference between our similar-
ity measure and pure co-occurrence-based similarity measures, which cannot capture

4 The weight of a word estimates its expected contribution to the disambiguation task and is a product
of several factors: the frequency of the word in the corpus; its frequency in the training set relative to
that in the entire corpus; the textual distance from the target word; and its part of speech (more details
on word weights appear in Section A.3 of the appendix). All the sentences that include a given word
are assigned identical weights,

45

Computational Linguistics Volume 24, Number 1

higher-order relationships. Consider the set of three sentence fragments:

sl eat banana

s2 taste banana

s3 eat apple

In this "corpus," the contextual similarity of taste and apple, according to the co-
occurrence-based methods, is 0, because the contexts of these two words are disjoint.
In comparison, our iterative algorithm will capture some contextual similarity:

• Initialization. Every word is similar to itself only.

• First iteration. The sentences eat banana and eat apple have contextual
similarity of 0.5, because of the common word eat. Furthermore, the
sentences eat banana and taste banana have contextual similarity 0.5:

- - banana is learned to be similar to apple because of their common
usage (eat banana and eat apple);

- - taste is similar to eat because of their common usage (taste banana
and eat banana);

- - taste and apple are not similar (yet).

• Second iteration. The sentence taste banana has now some similarity to eat
apple, because in the previous iteration taste was similar to eat and banana
was similar to apple. The word taste is now similar to apple because the
taste sentence (taste banana) is similar to the apple sentence (eat apple). Yet,
banana is more similar to apple than taste, because the similarity value of
banana and apple further increases in the second iteration.

This simple example demonstrates the transitivity of our similarity measure, which
allows it to extract high-order contextual relationships. In more complex situations, the
transitivity-dependent spread of similarity is slower, because each word is represented
by many more sentences.

The most important properties of the similarity computation algorithm are con-
vergence (see Section A.2 in the appendix), and utility in supporting disambiguation
(described in Section 3); three other properties are as follows. First, word similarity
computed according to the above algorithm is asymmetric. For example, drug is more
similar to traffic than traffic is to drug, because traffic is mentioned more frequently
in drug contexts than drug is mentioned in contexts of traffic (which has many other
usages). Likewise, sentence similarity is asymmetric: if 81 is fully contained in $2, then
sire(S1, $2) = 1, whereas sim($2, $1) < 1. Second, words with a small count in the
training set will have unreliable similarity values. These, however, are multiplied by a
very low weight when used in sentence similarity evaluation, because the frequency
in the training set is taken into account in computing the word weights. Third, in
the computation of sim(W1, W2) for a very frequent W2, the set of its sentences is
very large, potentially inflating the affinity of W1 to the sentences that contain W2. We
counter this tendency by multiplying sire(W1, W2) by a weight that is reciprocally
related to the global frequency of W2 (this weight has been left out of Equation 4, to
keep the notation there simple).

46

Karov and Edelman Similarity-based Word Sense Disambiguation

2.3 Using Similarity to Tag the Training Set
Following convergence, each sentence in the training set is assigned the sense of its
most similar sentence in one of the feedback sets of sense si, using the final sentence
similarity matrix. Note that some sentences in the training set belong also to one of the
feedback sets, because they contain words from the MRD definition of the target word.
Those sentences are automatically assigned the sense of the feedback set to which they
belong, since they are most similar to themselves. Note also that an original training-
set sentence S can be attracted to a sentence .T from a feedback set, even if S and .T
do not share any word, because of the transitivity of the similarity measure.

2.4 Learning the typical uses of each sense
We partition the examples of each sense into typical use sets, by grouping all the
sentences that were attracted to the same feedback-set sentence. That sentence, and
all the original sentences attracted to it, form a class of examples for a typical usage.
Feedback-set examples that did not attract any original sentences are discarded. If the
number of resulting classes is too high, further clustering can be carried out on the
basis of the distance metric defined by 1 - sim(x, y), where sire(x, y) are values taken
from the final sentence similarity matrix.

A typical usage of a sense is represented by the affinity information generalized
from its examples. For each word 14;, and each cluster C of examples of the same
usage, we define:

aff(W, C) = max aff(W, S) (5)
SEC

= max max sim(W, Wi) (6)
SEC WiCS

For each cluster we construct its affinity vector, whose ith component indicates the
affinity of word i to the cluster. It suffices to generalize the affinity information (rather
than similarity), because new examples are judged on the basis of their similarity to
each cluster: in the computat ion of sire(S1, $2) (Equation 3), the only information
concerning $2 is its affinity values.

2.5 Testing New Examples
Given a new sentence S containing a target word W, we determine its sense by com-
puting the similarity of S to each of the previously obtained clusters Ck, and returning
the sense si of the most similar cluster:

sim(Snew, Ck) = ~ weight(W, Snew)" aff(W, Ck) (7)
W E S.ew

sim(Snew, si) = max sim(Snew, C) (8)
Ccsi

3. Experimental Evaluation of the Method

We tested the algorithm on the Treebank-2 corpus, which contains one million words
from the Wall Street Journal, 1989, and is considered a small corpus for the present
task. During the development and the tuning of the algorithm, we used the method
of pseudowords (Gale, Church, and Yarowsky 1992; Schitze 1992), to avoid the need
for manual verification of the resulting sense tags.

The method of pseudowords is based on the observation that a disambiguation
process designed to distinguish between two meanings of the same word should also

47

Computational Linguistics Volume 24, Number 1

Table 1
The four polysemous test words, and the seed words they generated with the use of the MRD.

Word Seed Words

drug 1. stimulant, alcoholist, alcohol, trafficker, crime
2. medicine, pharmaceutical, remedy, cure, medication, pharmacists,

prescription
1. conviction, judgment, acquittal, term
2. string, word, constituent, dialogue, talk, conversation, text
1. trial, litigation, receivership, bankruptcy, appeal, action, case, lawsuit,

foreclosure, proceeding
2. garment, fabric, trousers, pants, dress, frock, fur, silks, hat, boots, coat, shirt,

sweater, vest, waistcoat, skirt, jacket, cloth
1. musician, instrumentalist, performer, artist, actor, twirler, comedian, dancer,

impersonator imitator, bandsman, jazz, recorder, singer, vocalist, actress,
barnstormer, playactor, trouper, character, actor, scene-stealer, star, baseball,
ball, football, basketball

2. participant, contestant, trader, analyst, dealer

sentence

suit

player

be able to separate the meanings of two different words. Thus, a data set for testing
a disambiguation algori thm can be obtained by starting with two collections of sen-
tences, one containing a word X, and the other a word y , and inserting y instead of
every appearance of ,-Y in the first collection. The algori thm is then tested on the union
of the two collections, in which X is now a "polysemous" word. The performance of
the algori thm is judged by its ability to separate the sentences that originally contained
,~' from those that originally contained 32; any mistakes can be used to supervise the
tuning of the algorithm. 5

3.1 Test data
The final algori thm was tested on a total of 500 examples of four po lysemous words:
drug, sentence, suit, and player (see Table 2; a l though we confined the tests to nouns,
the algori thm is applicable to any part of speech). The relatively small number of
polysemous words we studied was dictated by the size and nature of the corpus (we
are currently testing additional words, using texts from the British National Corpus).

As the MRD, we used a combination of the on-line versions of the Webster's and
the Oxford dictionaries, and the WordNet system (the latter used as a thesaurus only;
see Section 4.3). The resulting collection of seed words (that is, words used to generate
the feedback sets) is listed in Table 1.

We found that the single best source of seed words was WordNet (used as the-
saurus only). The number of seed words per sense turned out to be of little significance.
For example, whereas the MRD yielded many garment-related words, to be used as
seeds for suit in the 'garment ' sense, these generated a small feedback set, because
of the low frequency of garment-related words in the training corpus. In comparison,
there was a strong correlation be tween the size of the feedback set and the disam-
biguation performance, indicating that a larger corpus is likely to improve the results.

As can be seen from the above, the original training data (before the addit ion of

5 Note that our disambiguation algorithm works the best for polysemous words whose senses are
unrelated to each other, in which case the overlap between the feedback sets is minimized; likewise,
the method of training with pseudowords amounts to an assumption of independence of the different
senses.

48

Karov and Edelman Similarity-based Word Sense Disambiguation

Table 2
A summary of the algorithm's performance on the four test words.

Word Senses Sample Size Feedback Size % Correct % Correct
per Sense Total

drug narcotic 65 100 92.3 90.5
medicine 83 65 89.1

sentence judgment 23 327 100.0 92.5
grammar 4 42 50.0

suit court 212 1,461 98.6 94.8
garment 21 81 55.0

player performer 48 230 87.5 92.3
participant 44 1,552 97.7

the feedback sets) consisted of a few dozen examples, in comparison to thousands of
examples needed in other corpus-based methods (Sch~itze 1992; Yarowsky 1995). The
average success rate of our algori thm on the 500 appearances of the four test words
was 92%.

3.2 The Drug Experiment
We now present in detail several of the results obtained with the word drug. Consider
first the effects of iteration. A plot of the improvement in the performance vs. iteration
number appears in Figure 2. The success rate is plotted for each sense, and for the
weighted average of both senses we considered (the weights are proport ional to the
number of examples of each sense). Iterations 2 and 5 can be seen to yield the best
performance; iteration 5 is to be preferred, because of the smaller difference between
the success rates for the two senses of the target word.

Figure 3 shows how the similarity values develop with iteration number. For each
example S of the 'narcotic' sense of drug, the value of simn(S, narcotic) increases with n.
Figure 4 compares the similarities of a 'narcotic'-sense example to the 'narcotic' sense
and to the 'medicine ' sense, for each iteration. One can see that the 'medicine ' sense
assignment, made in the first iteration, is gradually suppressed. The word menace,
which is a hint for the 'narcotic' sense in the sentence used in this example, did
not help in the first iteration, because it did not appear in the 'narcotic' feedback
set at all. Thus, in iteration 1, the similarity of the sentence to the 'medicine ' sense
was 0.15, vs. a similarity of 0.1 to the 'narcotic' sense. In iteration 2, menace was
learned to be similar to other 'narcotic'-related words, yielding a small advantage for
the 'narcotic' sense. In iteration 3, further similarity values were updated, and there
was a clear advantage to the 'narcotic' sense (0.93, vs. 0.89 for 'medicine'). Eventually,
all similarity values become close to 1, and, because they are bounded by 1, they cannot
change significantly with further iterations. The decision is, therefore, best made after
relatively few iterations, as we just saw.

Table 3 shows the most similar words found for the words with the highest weights
in the drug example (low-similarity words have been omitted). Note that the similarity
is contextual, and is affected by the polysemous target word. For example, trafficking
was found to be similar to crime, because in drug contexts the expressions drug trafficking
and crime are highly related. In general, trafficking and crime need not be similar, of
course.

49

Computational Linguistics Volume 24, Number 1

Table 3
The drug experiment; the nearest neighbors of the highest-weight words.

Word Most Contextually Similar Words

The 'Medicine' Sense

medication antibiotic blood prescription medicine percentage pressure

prescription analyst antibiotic blood campaign introduction law line-up medication medicine
percentage print profit publicity quarter sedative state television tranquilizer use

medicine prescription campaign competition dollar earnings law manufacturing
margin print product publicity quarter result sale saving sedative
staff state television tranquilizer unit use

disease antibiotic blood line-up medication medicine prescription

symptom hypoglycemia insulin warning manufacturer product
plant animal death diabetic evidence finding metabolism study

insulin hypoglycemia manufacturer product symptom warning
death diabetic finding report study

tranquilizer campaign law medicine prescription print publicity sedative
television use analyst profit state

dose appeal death impact injury liability manufacturer miscarriage refusing ruling
diethylstilbestrol hormone damage effect female prospect state

The 'Narcotic' Sense

consumer distributor effort cessation consumption country reduction requirement
victory battle capacity cartel government mafia newspaper people

mafia terrorism censorship dictatorship newspaper press brother nothing aspiration
assassination editor leader politics rise action country doubt freedom
mafioso medium menace solidarity structure trade world

terrorism censorship doubt freedom mafia medium menace newspaper
press solidarity structure

murder capital-punishment symbolism trafficking furor killing substance crime
restaurant law bill case problem

menace terrorism freedom solidarity structure medium press censorship country doubt
mafia newspaper way attack government magnitude people relation threat
world

trafficking crime capital-punishment furor killing murder restaurant substance symbolism

dictatorship aspiration brother editor mafia nothing politics press
assassination censorship leader newspaper rise terrorism

assassination brother censorship dictatorship mafia nothing press terrorism
aspiration editor leader newspaper politics rise

laundering army lot money arsenal baron economy explosive government hand
material military none opinion portion talk

censorship mafia newspaper press terrorism country doubt freedom
medium menace solidarity structure

50

98

x<

96

94

92

90

88

86

84

82

80

78 ~

!
Karov and Edelman Similarity-based Word Sense Disambiguation

2 3 4 5 6 7 8 9

Figure 2
The drug experiment; the change in the disambiguation performance with iteration number is
plotted separately for each sense (the asterisk marks the plot of the success rate for the
'narcotic' sense; the other two plots are the 'medicine' sense, and the weighted average of the
two senses). In our experiments, the typical number of iterations was 3.

Similarity of sense1 examples to sense1 feedback set

0.

~o.

~o.

O.

Example #

Figure 3

0 0
Iteration #

10

The drug experiment; an illustration of the development of the support for a particular sense
with iteration. The plot shows the similarity of a number of drug sentences to the 'narcotic'
sense. To facilitate visualization, the curves are sorted by the second-iteration values of
similarity.

4. D i s c u s s i o n

We now discuss in some detail the choices made at the different stages of the devel-
opment of the present method, and its relationship to some of the previous works on
word sense disambiguation.

51

t _ 1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Computational Linguistics Volume 24, Number 1

i i i i i i i t

2 3 4 5 6 7 8 9 10

Figure 4
The drug experiment; the similarity of a 'narcotic'-sense example to each of the two senses. The
sentence here was The American people and their government also woke up too late to the menace drugs
posed to the moral structure of their country. The asterisk marks the plot for the 'narcotic' sense.

4.1 Flexible Sense Di s t inc t ions
The possibility of strict definition of each sense of a polysemous word, and the possibil-
ity of unambiguous assignment of a given sense in a given situation are, in themselves,
nontrivial issues in philosophy (Quine 1960) and linguistics (Weinreich 1980; Cruse
1986). Different dictionaries often disagree on the definitions; the split into senses may
also depend on the task at hand. Thus, it is important to maintain the possibility of
flexible distinction of the different senses, e.g., by letting this distinction be determined
by an external knowledge source such as a thesaurus or a dictionary. Although this
requirement may seem trivial, most corpus-based methods do not, in fact, allow such
flexibility. For example, defining the senses by the possible translations of the word
(Dagan, Itai and Schwall 1991; Brown et al. 1991; Gale, Church, and Yarowsky 1992),
by the Roget's categories (Yarowsky 1992), or by clustering (Schi~tze 1992), yields a
grouping that does not always conform to the desired sense distinctions.

In comparison to these approaches, our reliance on the MRD for the definition of
senses in the initialization of the learning process guarantees the required flexibility
in setting the sense distinctions. Specifically, the user of our system may choose a
certain dictionary definition, a combination of definitions from several dictionaries,
or manually listed seed words for every sense that needs to be defined. Whereas
pure MRD-based methods allow the same flexibility, their potential so far has not
been fully tapped, because definitions alone do not contain enough information for
disambiguation.

4.2 Sentence Features
Different polysemous words may benefit from different types of features of the context
sentences. Polysemous words for which distinct senses tend to appear in different top-
ics can be disambiguated using single words as the context features, as we did here.
Disambiguation of other polysemous words may require taking the sentence structure
into account, using n-grams or syntactic constructs as features. This additional infor-
mation can be incorporated into our method, by (1) extracting features such as nouns,

!52

Karov and Edelman Similarity-based Word Sense Disambiguation

verbs, adjectives of the target word, bigrams, trigrams, and subject-verb or verb-object
pairs, (2) discarding features with a low weight (cf. Section A.3 of the appendix), and
(3) using the remaining features instead of single words (i.e., by representing a sen-
tence by the set of significant features it contains, and a feature by the set of sentences
in which it appears).

4.3 Using WordNet
The initialization of the word similarity matrix using WordNet, a hand-crafted se-
mantic network arranged in a hierarchical structure (Miller et al. 1993), may seem to
be advantageous over simply setting it to the identity matrix, as we have done. To
compare these two approaches, we tried to set the initial (dis)similarity between two
words to the WordNet path length between their nodes (Lee, Kim, and Lee 1993), and
then learn the similarity values iteratively. This, however, led to worse performance
than the simple identity-matrix initialization.

There are several possible reasons for the poor performance of WordNet in this
comparison. First, WordNet is not designed to capture contextual similarity. For ex-
ample, in WordNet, hospital and doctor have no common ancestor, and hence their
similarity is 0, while doctor and lawyer are quite similar, because both designate pro-
fessionals, humans, and living things. Note that, contextually, doctor should be more
similar to hospital than to lawyer. Second, we found that the WordNet similarity values
dominated the contextual similarity computed in the iterative process, preventing the
transitive effects of contextual similarity from taking over. Third, the tree distance in
itself does not always correspond to the intuitive notion of similarity, because differ-
ent concepts appear at different levels of abstraction and have a different number of
nested subconcepts. For example, a certain distance between two nodes may result
from (1) the nodes being semantically close, but separated by a large distance, stem-
ming from a high level of detail in the related synsets, or from (2) the nodes being
semantically far from each o t h e r . 6

4.4 Ignoring Irrelevant Examples
The feedback sets we use in training the system may contain noise, in the form of
irrelevant examples that are collected along with the relevant and useful ones. For
instance, in one of the definitions of bank in WordNet, we find bar, which, in turn,
has many other senses that are not related to bank. Although these unrelated senses
contribute examples to the feedback set, our system is hardly affected by this noise,
because we do not collect statistics on the feedback sets (i.e., our method is not based
on mere co-occurrence frequencies, as most other corpus-based methods are). The
relevant examples in the feedback set of the sense si will attract the examples of si;
the irrelevant examples will not attract the examples of si, but neither will they do
damage, because they are not expected to attract examples of sj ~" ~ i).

4.5 Related work
4.5.1 The Knowledge Acquisition Bottleneck. Brown et al. (1991) and Gale, Church,
and Yarowsky (1992) used the translations of ambiguous words in a bilingual corpus
as sense tags. This does not obviate the need for manual work, as producing bilingual
corpora requires manual translation work. Dagan, Itai, and Schwall (1991) used a
bilingual lexicon and a monolingual corpus to save the need for translating the corpus.

6 Resnik (1995) recently suggested that this particular difficulty can be overcome by a different measure
that takes into account the informativeness of the most specific common ancestor of the two words.

53

Computational Linguistics Volume 24, Number 1

The problem remains, however, that the word translations do not necessarily overlap
with the desired sense distinctions.

Sch/.itze (1992) clustered the examples in the training set and manually assigned
each cluster a sense by observing 10-20 members of the cluster. Each sense was usu-
ally represented by several clusters. Although this approach significantly decreased the
need for manual intervention, about a hundred examples had still to be tagged man-
ually for each word. Moreover, the resulting clusters did not necessarily correspond
to the desired sense distinctions.

Yarowsky (1992) learned discriminators for each Roget's category, saving the need
to separate the training set into senses. However, using such hand-crafted categories
usually leads to a coverage problem for specific domains or for domains other than
the one for which the list of categories has been prepared.

Using MRD's (Amsler 1984) for word sense disambiguation was popularized by
Lesk (1986); several researchers subsequently continued and improved this line of
work (Krovetz and Croft 1989; Guthrie et al. 1991; V~ronis and Ide 1990). Unlike the
information in a corpus, the information in the MRD definitions is presorted into
senses. However, as noted above, the MRD definitions alone do not contain enough
information to allow reliable disambiguation. Recently, Yarowsky (1995) combined an
MRD and a corpus in a bootstrapping process. In that work, the definition words
were used as initial sense indicators, automatically tagging the target word examples
containing them. These tagged examples were then used as seed examples in the
bootstrapping process. In comparison, we suggest to further combine the corpus and
the MRD by using all the corpus examples of the MRD definition words, instead of
those words alone. This yields much more sense-presorted training information.

4.5.2 The Problem of Sparse Data. Most previous works define word similarity based
on co-occurrence information, and hence face a severe problem of sparse data. Many
of the possible co-occurrences are not observed even in a very large corpus (Church
and Mercer 1993). Our algorithm addresses this problem in two ways. First, we replace
the all-or-none indicator of co-occurrence by a graded measure of contextual similarity.
Our measure of similarity is transitive, allowing two words to be considered similar
even if they neither appear in the same sentence, nor share neighbor words. Second,
we extend the training set by adding examples of related words. The performance of
our system compares favorably to that of systems trained on sets larger by a factor
of 100 (the results described in Section 3 were obtained following learning from several
dozen examples, in comparison to thousands of examples in other automatic methods).

Traditionally, the problem of sparse data is approached by estimating the prob-
ability of unobserved co-occurrences using the actual co-occurrences in the training
set. This can be done by smoothing the observed frequencies 7 (Church and Mercer
1993) or by class-based methods (Brown et al. 1991; Pereira and Tishby 1992; Pereira,
Tishby, and Lee 1993; Hirschman 1986; Resnik 1992; Brill et al. 1990; Dagan, Marcus,
and Markovitch 1993). In comparison to these approaches, we use similarity informa-
tion throughout training, and not merely for estimating co-occurrence statistics. This
allows the system to learn successfully from very sparse data.

7 Smoothing is a technique widely used in applications, such as statistical pattern recognition and
probabilistic language modeling, that require a probability density to be estimated from data. For
sparse data, this estimation problem is severely underconstrained, and, thus, ill-posed; smoothing
regularizes the problem by adopting a prior constraint that assumes that the probability density does
not change too fast in between the examples.

54

Karov and Edelman Similarity-based Word Sense Disambiguation

4.6 Summary
We have described an approach to WSD that combines a corpus and an MRD to gen-
erate an extensive data set for learning similarity-based disambiguation. Our system
combines the advantages of corpus-based approaches (large number of examples) with
those of the MRD-based approaches (data presorted by senses), by using the MRD def-
initions to direct the extraction of training information (in the form of feedback sets)
from the corpus.

In our system, a word is represented by the set of sentences in which it appears.
Accordingly, words are considered similar if they appear in similar sentences, and sen-
tences are considered similar if they contain similar words. Applying this definition
iteratively yields a transitive measure of similarity under which two sentences may be
considered similar even if they do not share any word, and two words may be consid-
ered similar even if they do not share neighbor words. Our experiments show that the
resulting alternative to raw co-occurrence-based similarity leads to better performance
on very sparse data.

Appendix

A.1 Stopping Conditions of the Iterative Algorithm
Let fi be the increase in the similarity value in iteration i:

f~(X,y) = simi(X, y) - simi_l(X, 32) (9)

where X, y can be either words or sentences. For each item X, the algorithm stops
updating its similarity values to other items (that is, updating its row in the similarity
matrix) in the first iteration that satisfies maxyf i (X , 3;) _< ¢, where c > 0 is a preset
threshold.

According to this stopping condition, the algorithm terminates after at most
iterations (otherwise, in !, iterations with eachfi > c, we obtain sim(,V, 3;) > ¢- ~ = 1,
in contradiction to upper bound of 1 on the similarity values; see Section A.2 below).

We found that the best results are obtained within three iterations. After that,
the disambiguation results tend not to change significantly, although the similarity
values may continue to increase. Intuitively, the transitive exploration of similarities
is exhausted after three iterations.

A.2 Proofs
In the following, X, 3; can be either words or sentences.

Theorem 1
Similarity is bounded: simn (X, 3;) _< 1

Proof
By induction on the number of iteration. At the first iteration, sim0(X, 3;) _< 1, by
initialization. Assume that the claim holds for n, and prove for n + 1:

simn+l (X, Y) = E weight(K, X)maxsimn(Xj, Yk)
YkEY ~CX

< ~ weight(,~, X) • 1 (by the induction hypothesis)

-- 1

55

Computational Linguistics Volume 24, Number 1

T h e o r e m 2

Similarity is reflexive: VX, sim(X, X) = 1

P r o o f

By induction on the number of iteration, sim0(X, X) = 1, by initialization. Assume
that the claim holds for n, and prove for n + 1:

Simn+l(X, X) = E weight (~ , X) . max simn(Xi, ,,~)
x~cx ,~cx

>- E weight(X/, X) . simn(Xi, Xi)
XiE X

= ~ weight(Xi, X) • 1 (by the induction hypothesis)
XiEX

= 1

Thus, simn+l(,V, X) _> 1. By theorem 1, simn+l(X, X) _< 1, so simn+l(X, X) = 1.

T h e o r e m 3

Similarity sim, (X, 3;) is a nondecreasing function of the number of iteration n.

P r o o f

By induction on the number of iteration. Consider the case of n = 1: siml(X, Y) >
sim0(X, 3;) (if sim0(X, y) = 1, then X = 3;, and siml(X, 3;) = 1 as well; else
sim0(X, 3;) = 0 and siml(X, 3;) >_ 0 ~- sim0(X, 3;)). Now, assume that the claim
holds for n, and prove for n + 1:

simn+l (X, Y) - siren(X, Y) =

= ~ weight(K, X) . maxsim,(Xj, Yk)
YkEY X/~X

- E weight(Xj, A'). maxsim,_l(Xj, Yt)
NkEY x/ex

> ~ weight(Xj, X) . (maxs imn(Xi , Y k) - maxsim,~_l(~, Yk))
,~cx \YkEY ". YkEY

> 0

The last inequality holds because, by the induction hypothesis,

V~,Yk, s imn(~, Yk) _> simn_l(Xj, Yk)

maxsimn(Xj, Yk) >_ maxsim,_l(Xj, Yk)
YkEY YkEY

maxsimn(Xj, Yk) - maxsimn_l(Xj, Yk) _> 0
Yk~Y Y~EY

Thus, all the items under the sum are nonnegative, and so must be their weighted
average. As a consequence, we may conclude that the iterative estimation of similarity
converges.

56

Karov and Edelman Similarity-based Word Sense Disambiguation

A.3 Word weights
In our algorithm, the weight of a word estimates its expected contribution to the dis-
ambiguation task, and the extent to which the word is indicative in sentence similarity.
The weights do not change with iterations. They are used to reduce the number of
features to a manageable size, and to exclude words that are expected to be given
unreliable similarity values. The weight of a word is a product of several factors: fre-
quency in the corpus, the bias inherent in the training set, distance from the target
word, and part-of-speech label:

.

.

Global frequency. Frequent words are less informative of sense and of
sentence similarity. For example, the appearance of year, a frequent word,
in two different sentences in the corpus we employed would not
necessarily indicate similarity between them, and would not be effective
in disambiguating the sense of most target words). The contribution of

freq(W) .
frequency is max{0, 1 max5xfreq(X) J' where max5xfreq(X) is a function
of the five highest frequencies in the global corpus, and X is any noun,
or verb, or adjective there. This factor excludes only the most frequent
words from further consideration. As long as the frequencies are not
very high, it does not label 14;1 whose frequency is twice that of W2 as
less informative.

Log-likelihood factor. Words that are indicative of the sense usually appear
in the training set more than what would have been expected from their
frequency in the general corpus. The log-likelihood factor captures this
tendency. It is computed as

.

.

Pr (Wi 114;) (10)
log Pr (Wi)

where Pr(14;i) is estimated from the frequency of 14; in the entire corpus,
and Pr(Wi I 14;) from the frequency of Wi in the training set, given the
examples of the current ambiguous word W (cf. Gale, Church, and
Yarowsky [1992]). 8 To avoid poor estimation for words with a low count
in the training set, We multiply the log likelihood by min{1, ~o~nt(w)10 }
where count(W) is the number of occurrences of 14; in the training set.

Part of speech. Each part of speech is assigned a weight (1.0 for nouns, 0.6
for verbs, and 1.0 for the adjectives of the target word).

Distance from the target word. Context words that are far from the target
word are less indicative than nearby ones. The contribution of this factor
is reciprocally related to the normalized distance: the weight of context
words that appear in the same sentence as the target word is taken to
be 1.0; the weight of words that appear in the adjacent sentences is 0.5.

The total weight of a word is the product of the above factors, each normalized by
factor(Wi, S)

the sum of factors of the words in the sentence: weight(Wi, $) = z_,~'wjcs factor(W j, S) '

8 Because this estimate is unreliable for words with low frequencies in each sense set, Gale, Church, and
Yarowsky (1992) suggested to interpolate between probabilities computed within the subcorpus and
probabilities computed over the entire corpus. In our case, the denominator is the frequency in the
general corpus instead of the frequency in the sense examples, so it is more reliable.

57

Computational Linguistics Volume 24, Number 1

where factor(., .) is the weight before normalizat ion. The use of weights contr ibuted
about 5% to the d isambiguat ion performance.

A.4 Other uses of context similarity
The similarity measure deve loped in the present pape r can be used for tasks other than
word sense disambiguat ion. Here, we illustrate a possible appl icat ion to automat ic
construct ion of a thesaurus.

Following the training phase for a word X, we have a word similarity matr ix for
the words in the contexts of :Y. Using this matrix, we construct for each sense si of ,-Y
a set of related words , R:

°

2.

.

Initialize R to the set of words appear ing in the MRD definition of si;

Extend R recursively: for each word in R added in the previous step, add
its k nearest neighbors , using the similarity matrix.

Stop w h e n no new words (or too few new words) are added.

U p o n termination, ou tpu t for each sense si the set of its contextual ly similar words R.

Acknowledgments
We thank Dan Roth for many useful
discussions, and the anonymous reviewers
for constructive comments on the
manuscript. This work was first presented
at the 4th International Workshop on Large
Corpora, Copenhagen, August 1996.

References
Brill, Eric, David Magerman, Mitchell P.

Marcus, and Beatrice Santorini. 1990.
Deducing linguistic structure from the
statistics of large corpora. In DARPA
Speech and Natural Language Workshop,
pages 275-282, June.

Brown, Peter F., Stephen Della Pietra,
Vincent J. Della Pietra, and Robert L.
Mercer. 1991. Word sense disambiguation
using statistical methods. In Proceedings of
the 29th Annual Meeting, pages 264-270.
Association for Computational
Linguistics.

Church, Kenneth W. and Robert L. Mercer.
1993. Introduction to the special issue on
computational linguistics using large
corpora. Computational Linguistics, 19:1-24.

Cruse, D. Alan. 1986. Lexical Semantics.
Cambridge University Press, Cambridge,
England.

Dagan, Ido, Alon Itai, and Ulrike Schwall.
1991. Two languages are more informative
than one. In Proceedings of the 29th Annual
Meeting, pages 130-137. Association for
Computational Linguistics.

Dagan, Ido, Shaul Marcus, and Shaul
Markovitch. 1993. Contextual word

similarity and estimation from sparse
data. In Proceedings of the 31st Annual
Meeting, pages 164-174. Association for
Computational Linguistics.

Gale, William, Kenneth W. Church, and
David Yarowsky. 1992. A method for
disambiguating word senses in a large
corpus. Computers and the Humanities,
26:415-439.

Guthrie, Joe A., Louise Guthrie, Yorick
Wilks, and Homa Aidinejad. 1991.-
Subject-dependent cooccurrence and
word sense disambiguation. In Proceedings
of the 29th Annual Meeting, pages 146-152.
Association for Computational
Linguistics.

Hirschman, Lynette. 1986. Discovering
sublanguage structure. In Ralph
Grishman and Richard Kittredge, editors,
Analyzing Language in Restricted Domains:
Sublanguage Description and Processing.
Lawrence Erlbaum, Hillsdale, NJ, pages
211-234.

Krovetz, Robert and W. Bruce Croft. 1989.
Word sense disambiguation using
machine readable dictionaries. In
Proceedings of ACM SIGIR'89, pages
127-136.

Lee, Joon H., Myoung H. Kim, and Yoon J.
Lee. 1993. Information retrieval based on
conceptual distance in IS-A hierarchies.
Journal of Documentation, 49:188-207.

Lesk, Michael. 1986. Automatic sense
disambiguation: How to tell a pine cone
from an ice cream cone. In Proceedings of
the 1986 ACM SIGDOC Conference, pages
24-26.

58

Karov and Edelman Similarity-based Word Sense Disambiguation

Miller, George A., Richard Beckwith,
Christiane Fellbaum, Derek Gross, and
Katherine J. Miller. 1993. Introduction to
WordNet: An on-line lexical database.
CSL 43, Cognitive Science Laboratory,
Princeton University, Princeton, NJ.

Pereira, Fernando and Naftali Tishby. 1992.
Distibutional similarity, phase transitions
and hierarchical clustering. In Working
Notes of the AAAI Fall Symposium on
Probabilistic Approaches to Natural Language,
pages 108-112.

Pereira, Fernando, Naftali Tishby, and
Lillian Lee. 1993. Distibutional clustering
of English words. In Proceedings of the 31st
Annual Meeting, pages 183-190.
Association for Computational
Linguistics.

Quine, Willard V. O. 1960. Word and Object.
MIT Press, Cambridge, MA.

Resnik, Philip. July 1992. WordNet and
distribuitional analysis: A class-based
approach to lexical discovery. In AAAI
Workshop on Statistically-based Natural
Language Processing Techniques, pages
56-64.

Resnik, Philip. June 1995. Disambiguating
noun groupings with respect to WordNet
senses. In Third Workshop on Very Large
Corpora, pages 55-68, Cambridge, MA.

Schi~tze, Hinrich. 1992. Dimensions of
meaning. In Proceedings of Supercomputing
Symposium, pages 787-796, Minneapolis,
MN.

V6ronis, Jean and Nancy Ide. 1990. Word
sense disambiguation with very large
neural networks extracted from machine
readable dictionaries. In Proceedings of
COLING-90, pages 389-394.

Walker, Donald E. and Robert A. Amsler.
1986. The use of machine-readable
dictionaries in sublanguage analysis. In
R. Grisham, editor, Analyzing Languages in
Restricted Domains: Sublanguage Description
and Processing. Lawrence Erlbaum
Associates, Hillsdale, NJ.

Weinreich, Uriel. 1980. On Semantics.
University of Pennsylvania Press,
Philadelphia, PA.

Yarowsky, David. 1992. Word sense
disambiguation using statistical models of
Roget's categories trained on large
corpora. In Proceedings of COLING-92,
pages 454-460, Nantes, France.

Yarowsky, David. 1995. Unsupervised word
sense disambiguation rivaling supervised
methods. In Proceedings of the 33rd Annual
Meeting, pages 189-196, Cambridge, MA.
Association for Computational
Linguistics.

59

