
A Computational Treatment of Lexical Rules
in HPSG as Covariation in Lexical Entries

W. Detmar Meurers*
University of Tiibingen

Guido Minnen
University of Tiibingen

This paper proposes a new computational treatment of lexical rules as used in the HPSG frame-
work. A compiler is described which translates a set of lexical rules and their interaction into a
definite clause encoding, which is called by the base lexical entries in the lexicon. This way, the
disjunctive possibilities arising from lexical rule application are encoded as systematic covariation
in the specification of lexical entries. The compiler ensures the automatic transfer of properties
not changed by a lexical rule. Program transformation techniques are used to advance the en-
coding. The final output of the compiler constitutes an efficient computational counterpart of the
linguistic generalizations captured by lexical rules and allows on-the-fly application of lexical
rules.

1. Introduct ion

In the paradigm of HPSG, lexical rules have become one of the key mechanisms used
in current linguistic analysis. Computationally, lexical rules have mainly been dealt
with in two ways: On the one hand, lexical rules are used to expand out the full
lexicon at compile-time. On the other hand, lexical rules are encoded as unary phrase
structure rules. Both of these computational treatments of lexical rules, however, have
significant shortcomings with respect to lexical rules as used in HPSG.

A computational treatment expanding out the lexicon cannot be used for the in-
creasing number of HPSG analyses that propose lexical rules that would result in an
infinite lexicon. Most current HPSG analyses of Dutch, German, Italian, and French
fall into that category. 1 Furthermore, since lexical rules in such an approach only serve
in a precompilation step, the generalizations captured by the lexical rules cannot be
used at run-time. Finally, all such treatments of lexical rules currently available pre-
suppose a fully explicit notation of lexical rule specifications that transfer properties
not changed by the lexical rules to the newly created lexical entry. This conflicts with
the standard assumption made in HPSG that only the properties changed by a lexical
rule need be mentioned. As shown in Meurers (1994) this is a well-motivated conven-
tion since it avoids splitting up lexical rules to transfer the specifications that must be
preserved for different lexical entries.

• The authors are listed alphabetically. SFB 340, Kleine Wilhelmstr. 113, D-72074 Tiibingen, Germany.
email: {dm,minnen}@sfs.nphil.uni-tuebingen.de URL: http://www.sfs.nphil.uni-tuebingen.de/sfb
/b4home.html

1 This is, for example, the case for all proposals working with verbal lexical entries that raise the
arguments of a verbal complement (Hinrichs and Nakazawa 1989) that also use lexical rules such a s

the Complement Extraction Lexical Rule (Pollard and Sag 1994) or the Complement Cliticization
Lexical Rule (Miller and Sag 1993) to operate on those raised elements. Also an analysis treating
adjunct extraction via lexical rules (van Noord and Bouma 1994) results in an infinite lexicon.

(~) 1997 Association for Computational Linguistics

Computational Linguistics Volume 23, Number 4

Treatments of lexical rules as unary phrase structure rules also require their fully
explicit specification, which entails the last problem mentioned above. In addition,
computationally treating lexical rules on a par with phrase structure rules fails to
take computational advantage of their specific properties. For example, the interaction
of lexical rules is explored at run-time, even though the possible interaction can be
determined at compile-time given the information available in the lexical rules and
the base lexical entries. 2

Based on the research results reported in Meurers and Minnen (1995, 1996), we
propose a new computational treatment of lexical rules that overcomes these short-
comings and results in a more efficient processing of lexical rules as used in HPSG.
We developed a compiler that takes as its input a set of lexical rules, deduces the nec-
essary transfer of properties not changed by the individual lexical rules, and encodes
the set of lexical rules and their interaction into definite relations constraining lexical
entries. Each lexical entry is automatically extended with a definite clause encoding of
the lexical rule applications which the entry can undergo. The definite clauses thereby
introduce what we refer to as systematic covariation in lexical entries.

Definite relations are a convenient way of encoding the interaction of lexical rules,
as they readily support various program transformations to improve the encoding: We
show that the definite relations produced by the compiler can be refined by program
transformation techniques to increase efficiency. The resulting encoding allows the
execution of lexical rules on-the-fly, i.e., coroutined with other constraints at some
time after lexical lookup. The computational treatment of lexical rules proposed can
be seen as an extension to the principled method discussed by G6tz and Meurers
(1995, 1996, 1997b) for encoding the main building block of HPSG grammars--the
implicative constraints--as a logic program.

The structure of the paper is as follows: We start with a brief introduction of the
formal background on which our approach is based in Section 2. We then describe
(Section 3) how lexical rules and their interaction can be encoded in a definite clause
encoding that expresses systematic covariation in lexical entries. We show how the
encoding of lexical rule interaction can be improved by specializing it for different
word classes and, in Section 4, focus on an improvement of this specialization step
by means of program transformation techniques. A further improvement relevant to
on-the-fly application of lexical rules is presented in Section 5. In Section 6, we dis-
cuss implementation results and illustrate the efficiency of the proposed encoding. A
comparison with other computational approaches to lexical rules (Section 7) and some
concluding remarks (Section 8) end the paper.

2. Background

In this section we introduce the formal setup of HPSG grammars that we assume and
discuss two ways to formalize a lexical rule mechanism and their consequences for a
computational treatment.

2.1 A Formal Setup for HPSG Grammars
An HPSG grammar formally consists of two parts (Pollard and Sag 1994): The signature
defines the ontology of linguistic objects, and the theory, i.e., the usually implicative
constraints encoding the grammatical principles, describes the subset of those linguistic

2 This is not to say that a special precompilation treatment along those lines would not be profitable for
phrase structure rules. In fact, such a proposal is made by Torisawa and Tsuji (1996).

544

Meurers and Minnen Covariation Approach to HPSG Lexical Rules

objects that are grammatical. The constraints constituting the theory are expressions
of a formal language that define the set of grammatical objects, in the sense that every
grammatical object is described by every principle in the theory.

The signature consists of the type hierarchy defining which types of objects ex-
ist and the appropriateness conditions specifying which objects have which features
defined on them to represent their properties. 3 A signature is interpreted as follows:
Every object is assigned exactly one most specific type, and in case a feature is ap-
propriate for some object of a certain type, then it is appropriate for all objects of this
type. 4

A logic that provides the formal architecture required by Pollard and Sag (1994)
was defined by King (1989, 1994). The formal language of King allows the expression
of grammatical principles using type assignments to refer to the type of an object
and path equalities to require the (token) identity of objects. These atomic expressions
can be combined using conjunction, disjunction, and negation. The expressions are
interpreted by a set-theoretical semantics.

2.2 Lexical Rules in HPSG
While the setup of King provides a clear formal basis for basic HPSG grammars,
nothing is said about how special linguistic mechanisms like lexical rules fit into this
formal setup. Two formalizations of lexical rules as used by HPSG linguists have been
proposed, the meta-level lexical rules (MLRs; Calcagno 1995; Calcagno and Pollard
1995) and the .description-level lexical rules (DLRs; Meurers 1995). 5

2.2.1 Meta-Level Lexical Rules. The MLR approach sees lexical rules in the more
traditional sense as relations between lexical entries, i.e., descriptions of word objects.
The set of lexical entries constituting the lexicon is closed under the application of
lexical rules, which results in a (possibly infinite) set of lexical entries. In order to be
grammatical, every word object occurring in a sentence has to be described by one of
the descriptions in this expanded lexicon set. In the MLR setup, lexical rules are thus
external to the rest of the theory, they only serve to provide an expanded lexicon set.
Licensing grammatical words is then done by this set--the lexical rules play no direct
role. Externalizing the lexicon and lexical rule application from the theory in such a
way has an interesting consequence, namely that the lexical entries serving as input
to a lexical rule are not tested for grammaticality.

A computational treatment of lexical rules that expands out the lexicon at compile-
time closely resembles the MLR interpretation of lexical rules. The work on MLRs can
therefore be seen as providing a semantics for such a computational treatment. It also
allows a clear view of its restrictions: First, no restrictions on lexical entries serving
as input to a lexical rule can be enforced that cannot be executed on the basis of
the information present in the lexical entry alone, 6 and second, grammars including
lexical rules that, under the MLR formalization, result in an infinite lexicon, can only

3 The terminology used in the literature varies. Types are also referred to as sorts, appropriateness
conditions as feature declarations, and features as attributes. To avoid confusion, we will only use the
terminology introduced in the text.

4 This interpretation of the signature is sometimes referred to as closed world (Gerdemann and King
1994; Gerdemann 1995).

5 An in-depth discussion including a comparison of both approaches is provided in Calcagno, Meurers,
and Pollard (in preparation).

6 The Partial-VP Topicalization Lexical Rule proposed by Hinrichs and Nakazawa (1994, 10) is a
linguistic example. The in-specification of this lexical rule makes use of an append relation to constrain
the valence attribute of the auxiliaries serving as its input. In the lexicon, however, the complements of
an auxiliary are uninstantiated because it raises the arguments of its verbal complement.

545

Computational Linguistics Volume 23, Number 4

simple-word ---* LE1 v . . • V LEn

derived-word ~ ([IN LRl- in] A LRl-out) V . . . V ([IN LRm-in] A LRm-oUt)

Figure 1
The extended lexicon under the DLR approach.

partially be dealt with, for example, by using a depth bound on lexical rule application
to ensure that a finite number of lexical entries is obtained. 7

2.2.2 Description-Level Lexical Rules. The DLR approach formalizes lexical rules
as relations between word objects. Lexical rules under this approach are part of the
theory, just like any other constraint of the grammar, and they relate the word objects
licensed by the base lexical entries to another set of well-formed word objects. Thus,
under the DLR approach, no new lexical entries are created, but the theory itself is
extended in order to include lexical rules. One possibility for extending the theory is
to introduce two subtypes of word, i.e., simple-word and derived-word, and define an
additional feature IN with appropriate value word for objects of type derived-word. The
principles encoding the extended lexicon in such an approach are shown in Figure 1.
Each basic lexical entry is a disjunct LE in an implicative constraint on simple-word.
This disjunction thus constitutes the base lexicon. The disjuncts in the constraint on
derived-word, on the other hand, encode the lexical rules. The in-specification of a
lexical rule specifies the IN feature, the out-specification, the derived word itself. Note
that the value of the IN feature is of type word and thus also has to satisfy either a
base lexical entry or an out-specification of a lexical rule. While this introduces the
recursion necessary to permit successive lexical rule application, it also grounds the
recursion in a word described by a base lexical entry. Contrary to the MLR setup, the
DLR formalization therefore requires all words feeding lexical rules to be grammatical
with respect to the theory.

Since lexical rules are expressed in the theory just like any other part of the theory,
they are represented in the same way, as unary immediate dominance schemata. 8 This
conception of lexical rules thus can be understood as underlying the computational
approach that treats lexical rules as unary phrase structure rules as, for example,
adopted in the LKB system (Copestake 1992). Both the input and output of a lexical
rule, i.e., the mother and the daughter of a phrase structure rule, are available during
a generation or parsing process. As a result, in addition to the information present
in the lexical entry, syntactic information can be accessed to execute the constraints
on the input of a lexical rule. The computational treatment of lexical rules that we
propose in this paper is essentially a domain-specific refinement of such an approach
to lexical rules. 9

2.2.3 Lexical Rule Specification and Framing. An important difference between unary
immediate dominance schemata and lexical rules, however, is that immediate dom-
inance schemata are fully specified in the linguistic theory and can thus be directly
interpreted as a relation on objects. Lexical rules, on the other hand, are usually not

7 This approach is, for example , taken in the ALE sys tem. See Section 7 for more d iscuss ion of different
computa t iona l approaches.

8 Elaborating this analogy, the IN feature of der ived words can be unde r s tood as the DTRS feature of a
phrase .

9 See Section 7 for a more detai led d iscuss ion of the relation be tween our approach and this perspect ive
on lexical rules.

546

Meurers and Minnen Covariation Approach to HPSG Lexical Rules

sl

] LOC] CAT

LOC[CAT

HEAD

VAL

 HAVrFbVFOOpsP tlJ
su , INDEX [VAL (IL 'CONT

LCOMpS /[LOC]CONTll NDEX [~]1 []

t---+
VFORM pas]

SUBJ / [LOC] CONT [INDEX []]/

/ ([LOC ICATI HEAD prep[PFORM
COMPS [] O L CONT]INDEX []

Figure 2
A passivization lexical rule.

written as fully specified relations between words, rather, only what is supposed to
be changed is specified.

Consider, for example, the lexical rule in Figure 2, which encodes a passive lexicai
rule like the one presented by Pollard and Sag (1987, 215) in terms of the setup of
Pollard and Sag (1994, ch. 9). This lexical rule could be used in a grammar of English
to relate past participle forms of verbs to their passive form2 ° The rule takes the index
of the least oblique complement of the input and assigns it to the subject of the output.
The index that the subject bore in the input is assigned to an optional prepositional
complement in the output.

Only the verb form and some indices are specified to be changed, and thus other
input properties, like the phonology, the semantics, or the nonlocal specifications, are
preserved in the output. This is so since the lexical rule in Figure 2 "(like all lexical rules
in HPSG) preserves all properties of the input not mentioned in the rule." (Pollard and
Sag [1994, 314], following Flickinger [1987]). This idea of preserving properties can be
considered an instance of the well-known frame problem in AI (McCarthy and Hayes
1969), and we will therefore refer to the specifications left implicit by the linguist as the
frame specification, or simply frame, of a lexical rule. Not having to represent the frame
explicitly not only enables the linguist to express only the relevant things, but also
allows a more compact representation of lexical rules where explicit framing would
require the rules to be split up (Meurers 1994).

One thus needs to distinguish the lexical rule specification provided by the linguist
from the fully explicit lexical rule relations integrated into the theory. The formalization
of DLRs provided by Meurers (1995) defines a formal lexical rule specification language
and provides a semantics for that language in two steps: A rewrite system enriches the
lexical rule specification into a fully explicit description of the kind shown in Figure 1.
This description can then be given the standard set-theoretical interpretation of King
(1989, 1994). 11

10 Note that the passivization lexical rule in Figure 2 is only intended to illustrate the mechanism. We do
not make the linguistic claim that passives should be analyzed using such a lexical rule. For space
reasons, the SYNSEM feature is abbreviated by its first letter. The traditional (First I Rest) list notation is
used, and the operator • stands for the append relation in the usual way.

1l Manandhar (1995) proposes to unify these two steps by including an update operator in the

547

Computational Linguistics Volume 23, Number 4

The computat ional t reatment we discuss in the rest of the paper follows this setup
in that it automatically computes, for each lexical rule specification, the frames neces-
sary to preserve the propert ies not changed by it. 12 We will show that the detection
and specification of frames and the use of p rogram transformation to advance their
integration into the lexicon encoding is one of the key ingredients of the covariation
approach to HPSG lexical rules.

3. Lexical Covariation: Encoding Lexical Rules and their Interaction
as Definite Relations

Having situated the computat ional approach presented in this paper as a computa-
tional t reatment of DLRs that emphasizes their domain-specific properties, we now
turn to the compiler that realizes this approach. We describe four compilat ion steps
that translate a set of lexical rules, as specified by the linguist, and their interaction
into definite relations to constrain lexical entries. To give the reader a global idea of
our approach, we focus on those aspects of the compiler that are crucial to the pre-
sented conception of lexical rules. The different steps of the compiler are discussed
with emphasis on understandabi l i ty and not on formal details. 13

Figure 3 shows the overall setup of the compiler. The first compilat ion step, dis-
cussed in Section 3.1, translates lexical rules into a definite clause representat ion and
derives, for each lexical rule, a frame predicate that ensures the transfer of propert ies
that remain unchanged. In the second compilat ion step (Section 3.2), we determine the
possible interaction of the lexical rules. This results in a finite-state au tomaton repre-
senting global lexical rule interaction, i.e., the interaction of lexical rules irrespective
of the lexical entries in the lexicon. In the subsequent step of word class specialization
(Section 3.3) this finite-state au tomaton is f ine-tuned for each of the natural classes
of lexical entries in the lexicon. In the fourth compilat ion step (Section 3.4) these au-
tomata are translated into definite relations and the lexical entries are adapted to call
the definite relation corresponding to the au tomaton fine-tuned for the natural class
to which they belong.

3.1 Lexical Rules as Definite Relations and the Automatic Specification of Frames
We start by translating each lexical rule into a definite clause predicate, called the
lexical rdle predicate. The first a rgument of a lexical rule predicate corresponds to the
in-specification of the lexical rule and the second a rgument to its out-specification.

Assume the signature in Figure 4 on which we base the example th roughout the
paper and suppose the lexical rule specification shown in Figure 5.14 This lexical rule
applies to base lexical entries that unify 15 w i t h the in-specification, i.e., lexical entries
specifying B and Y as - . The der ived lexical entry licenses word objects with + as the
value of x and Y, and b as that of A.

The translation of the lexical rule into a predicate is trivial. The result is d isplayed

description language.
12 In order to focus on the computational aspects of the covariation approach, in this paper we will not go

into a discussion of the full lexical rule specification language introduced in Meurers (1995). The reader
interested in that language and its precise interpretation can find the relevant details in that paper.

13 A more detailed presentation can be found in Minnen (in preparation).
14 We use rather abstract lexical rules in the examples to be able to focus on the relevant aspects.
15 Hinrichs and Nakazawa (1996) show that the question of whether the application criterion of lexical

rules should be a subsumption or a unification test is an important question deserving of more
attention. We here assume unification as the application criterion, which formally corresponds to the
conjunction of descriptions and their conversion to normal form (G6tz 1994). Computationally, a
subsumption test could equally well be used in our compiler.

548

Meurers and Minnen Covariation Approach to HPSG Lexical Rules

i nput :

o u t p u t :

Figure 3
The compiler setup.

~ x i c o ~ +

translation
I of lexical rules

into
definite relations

~ ~ ~ ~ ~ f ~ ~me

determination of
lexical rule
interaction

word class

3 specialization of
lexical rule
interaction

pruned
finite state / /

translation
4 of lexical rules

interaction into
definite relations

in Figure 6. Though this predicate represents what was explicitly specified in the lexi-
cal rule, it does not accomplish exactly what is intended. As discussed in Section 2.2.3,
features specified in a lexical entry unifying with the in-specification of the lexical rule
that are not specified differently in the out-specification of the lexical rule are intended
to receive the same value on the derived word as on the input: The compiler imple-
ments this by enriching the lexical rule with type specifications and path equalities
between the in- and the out-specification to arrive at an explicit representation of its
frame.

The detection of which additional specifications are intended by the linguist cru-
cially depends on the interpretation of the signature assumed in HPSG, discussed in
Section 2.1. This interpretation makes it possible to determine which kind of word
objects (by ontological status fully specified) may undergo the rule. A type can always
be replaced by a disjunction of its most specific subtypes and the appropriate features

549

Computational Linguistics Volume 23, Number 4

T

t[w bool 1 val]
x bool|

t, t2[z list]

Figure 4
An example signature.

list bool val

AA
elist [HD val] + _ a b

nelist TL list]

[c,Y
Figure 5
Lexical rule 1.

lex-rule-l([B [y - -]] , [~ [bX ~]])

Figure 6
Definite clause representation of lexical rule 1.

word[C tl]

Figure 7
A sample lexical entry.

of each type are known. So, on the basis of the signature, we can determine which
"appropriate" paths the linguist left unspecified in the out-specification of the lexical
rule. For those appropriate paths not specified in the out-specification, one can then
add path equalities between the in- and the out-specifications of the lexical rule to
ensure framing of those path values.

Frame specification becomes slightly more difficult when one considers type spec-
ifications of those paths in words serving as input to a lexical rule that occur in the
out-specification of the lexical rule but are not assigned a type value. For example, the
lexical rule 1 of Figure 6 applies to word objects with tl as their c value and to those
having t2 as their c value. With respect to frame specification this means that there
can be lexical entries, such as the one in Figure 7, for which we need to make sure
that tl as the value of c gets transferred. 16

One would think that the type information tl, which is more specific than that

16 A linguistic example based on the signature given by Pollard and Sag (1994) would be a lexical rule
deriving predicative signs from nonpredicative ones, i.e., changing the PRD value of substantive signs
from - to +, much like the lexical rule for NPs given by Pollard and Sag (1994, p. 360, fn. 20). In such
a Predicative Lexical Rule (which we only note as an example and not as a linguistic proposal) the
subtype of the head object undergoing the rule as well as the value of the features only appropriate for
the subtypes of substantive either is lost or must be specified by a separate rule for each of the subtypes.

550

Meurers and Minnen Covariation Approach to HPSG Lexical Rules

b lex lel, [:, _,]ollx framel
Figure 8
Lexical rule predicate representing lexical rule 1.

[B o lIB] c w r frame_l(,). frame_l(|W
tl [~1] Ch[W ~] L t2LZ

Figure 9
Definition of the frame predicate for lexical rule 1.

g iven in the ou tpu t of the lexical rule, can be specified on the out-specification of the
lexical rule if the specification of c is t ransferred as a whole (via structure sharing of
the value of c). This is not possible, though, since the values of x and Y are specified
in the out-specification of the lexical rule. The p rob lem seems to be that there is no
notion of shar ing just the type of an object. However , int roducing such type sharing
would not actually solve the problem, since one also needs to account for addi t ional
appropr ia te features. The subtypes of t have different appropr ia te features, the values
of which have to be preserved. In particular, in case the lexical entry has t2 as the
value of c, we need to ensure that the value of the feature z is t ransferred properly.

To ensure that no informat ion is lost as a result of app ly ing a lexical rule, it
seems to be necessary to split up the lexical rule to make each instance deal wi th
a specific case. In the above example , this would result in two lexical rules: one for
words wi th tl as their c value and one for those wi th t2 as their c value. In the
latter case, we can also take care of t ransferr ing the value of z. However , as discussed
by Meurers (1994), creating several instances of lexical rules can be avoided. Instead,
the disjunctive possibilities in t roduced by the f rame specification are at tached as a
constraint to a lexical rule. This is accompl ished by hav ing each lexical rule predicate
call a so-called frame predicate, which can have mult iple defining clauses. So for the
lexical rule 1, the f rame specification is taken care of by extending the predicate in
Figure 6 with a call to a f rame predicate, as shown in Figure 8.17

On the basis of the lexical rule specification and the signature, the compi ler de-
duces the f rame predicates wi thout requir ing addi t ional specifications by the linguist.
The f rame predicate for lexical rule 1 is defined by the two clauses d isplayed in Fig-
ure 9. The first case applies to lexical entries in which c is specified as tl. We have to
ensure that the value of the feature w is transferred. In the second case, w h e n feature
c has t2 as its value, we addi t ional ly have to ensure that z gets transferred. Note that
neither clause of the f rame predicate needs to specify the features A, X, and Y since
these features are changed by lex_rule_l. Furthermore, filling in features of the struc-
ture be low z is unnecessary as the value of z is structure shared as a whole. Finally, if
a lexical entry specifies c as t, bothframe_l clauses apply. TM

17 We use indexing of predicate names to be able to indicate later on which lexical rule a frame predicate
belongs to.

18 Since in computational systems, in contrast to the general theoretical case, we only need to ensure
transfer for the properties actually specified in the lexical entries of a given grammar, some of the
distinctions made in the signature can possibly be ignored. One could therefore improve the
calculation of frame predicates by taking the base lexical entries into account at this stage of the

551

Computational Linguistics Volume 23, Number 4

i V - - . V n

Figure 10
Finite-state automaton representing free application.

Summing up, we distinguish the lexical rule predicates encoding the specification
of the linguist from the frame predicates taking care of the frame specification. Based
on the signature, the frame predicates are automatically derived from the lexical rule
predicates and they can have a possibly large number of defining clauses. In Sec-
tion 4 we will show that the encoding can be advanced in a way that eliminates the
nondeterminism introduced by the multiply defined frame predicates.

3.2 Determining Global Lexical Rule Interaction
In the second compilation step, we use the definite clause representation of a set
of lexical rules, i.e., the lexical rule and the frame predicates, to compute a finite-
state automaton representing how the lexical rules interact (irrespective of the lexical
entries).

In general, any lexical rule can apply to the output of another lexical rule, which is
sometimes referred to as free application. As shown in Figure 10, this can be represented
as a finite-state automaton that consists of a single state with a cycle from/into this
state for all lexical rules. 19 When looking at a specific set of lexical rules though, one
can be more specific as to which sequences of lexical rule applications are possible. One
can represent this information about the interaction of lexical rules as a more complex
finite-state automaton, which can be used to avoid trying lexical rule applications at
run-time that are bound to fail. To derive a finite-state automaton representing global
lexical rule interaction, we first determine which lexical rules can possibly follow which
other lexical rules in a grammar. The set of follow relationships is obtained by testing
which in-specifications unify with which out-specifications. 2°

To illustrate the steps in determining global lexical rule interaction, let us add
three more lexical rules to the one discussed in Section 3.1. Figure 11 shows the full
set of four lexical rules.

Figure 12 shows the definite clause representations of lexical rules 2, 3, and 4 and
the frame predicates derived for them. The definite clauses representing lexical rule 1
and its frame were already given in Figures 8 and 9. The follow relation obtained for
the set of four lexical rules is shown in Figure 13, where follow(LR,ListOfLRs) specifies

compilation process.
19 We use the following conventions with respect to finite-state automata to represent lexical rule

interaction: The state annotated wi th an angle bracket represents the initial state. All states (including
the initial state) are final states. The labels of the transitions from one state to another are (disjunctions
of) the lexical rule predicate indices, i.e., the lexical rule names constitute the alphabet of the finite-state
automaton.

20 For the computat ion of the follow relationships, the specifications of the frame predicates are taken into
account. In case the frame relation called by a lexical rule has several defining clauses, the
generalization of the frame possibilities is used.

552

Meurers and Minnen Covariation Approach to HPSG Lexical Rules

Rule 1:

Rule 3:

C[Y --] ~ C[X Rule 2:

c r w +]] [c[Y
t2 LZ] TL ~ ~ Rule 4:

Figure 11
A set of four lexical rules.

c[w -]

[B -]1 c I w , ~ [:Ex+d
L t2 LZ 0

lex_rule_2([/ll BA b -L C[W -]]'E][C[W +]]):- frame2([~).

'ex~'e~,OVC [W
L t2LZI

w
lex_rule_4(~ C x

L taL z

+]][l] TL ~ '[~ C[YZ ~):-frame-3([~'m)'

(~]] ,[~][~[X+ _]]): - frame_4([~I~).

r frame-2(C Ix ~] ' C t l L tl "Y x
).

B ['~ B ~]
frame-3(C rw ~] ' c t 2 L t2 uX xW

).

Figure 12
The definite clause encoding of lexical rules 2, 3, and 4.

IA BO IA iBO fra~e~, c [X~ 'C X ~ ~

L t2 Lz t2 z

wo 1][;i 1 [] frame-4(Ct2 zY ~ ' t2 Z yW [.~).

follow(I, [2, 3, 4]). follow(2, [1, 3, 4]). follow(3, [3, 4]). follow(4, []).

Figure 13
The follow relation for the four lexical rules of the example.

that only the lexical rules in ListOfLRs can possibly be appl ied to a word result ing
f rom the applicat ion of lexical rule LR.

Once the follow relation has been obtained, it can be used to construct an au toma-
ton that represents which lexical rule can be appl ied after which sequence of lexical
rules. Special care has to be taken in case the same lexical rule can app ly several t imes
in a sequence. To obtain afinite automaton , such a repeti t ion is encoded as a transit ion
cycling back to a state in the lexical rule sequence preceding it.

In order to be able (in the following steps) to r emove a transit ion represent ing
a certain lexical rule appl icat ion in one sequence wi thout el iminating the lexical rule
applicat ion f rom other sequences, every transition, except those introducing cycles, is
taken to lead to a new state. The finite-state au toma ton in Figure 14 is constructed on
the basis of the follow relation of Figure 13.

553

Computational Linguistics Volume 23, Number 4

q19

q2 1 1 3 4 q15 3 4 q20

q5 4 ~) q l 2

Figure 14
Finite-state automaton representing global lexical rule interaction.

The finite-state automaton representing global lexical rule interaction can be used
as the backbone of a definite clause encoding of lexical rules and their interaction
(see Section 3.4). Compared to free application, the finite-state automaton in Figure 14
limits the choice of lexical rules that can apply at a certain point. However, there still
are several places where the choices can be further reduced. One possible reduction
of the above automaton consists of taking into account the propagation of specifications
along each possible path through the automaton. This corresponds to actually unifying
the out-specification of a lexical rule with the in-specification of the following lexical
rule along each path in the automaton, instead of merely testing for unifiability, which
we did to obtain the follow relation. 21 As a result of unifying the out-specification
of a lexical rule in a path of the finite-state automaton with the in-specification of
the following lexical rule, the out-specification of the second rule can become more
specific. This is because of the structure sharing between the second lexical rule's in-
and out-specifications, which stem from the lexical rule and its frame specification.
This makes it possible to eliminate some of the transitions that seem to be possible
when judging on the basis of the follow relation alone. 22

For example, solely on the basis of the follow relation, we are not able to discover
the fact that upon the successive application of lexical rules 1 and 2, neither lexical rule
1 nor 2 can be applied again. Taking into account the propagation of specifications,
the result of the successive application of lexical rule 1 and lexical rule 2 in any order
(leading to state q7 or q9) bears the value + on features w and Y. This excludes lexical

21 The reason for first determining the automaton on the basis of the follow relation alone, instead of
taking propagat ion of specifications into account right from the start, is that the follow relations allow
a very simple construction of a finite-state automaton representing lexical rule interaction. Using
unification right away would significantly complicate the algorithm, in particular for automata
containing cycles.

22 Note that in the case of transitions belonging to a cycle, only those transitions can be removed that are
useless at the first visit and after any traversal of the cycle.

554

Meurers and Minnen Covariation Approach to HPSG Lexical Rules

j] W --).

lex_entry(C X i

Z ,b
t2

Figure 15
A lexical entry.

rules 1 and 2 as possible followers of that sequence since their in-specifications do not
unify with those values. As a result, the arcs 1(q7, q2) and 2(q9, q3), which are marked
with grey dots in Figure 14, can be removed.

Two problems remain: First, because of the procedural interpretation of lexical
rules, duplicate lexical entries can possibly be derived. And second, relative to a spe-
cific lexical entry, many sequences of lexical rules that are bound to fail are tried any-
way. We tackle these problems by means of word class specialization, i.e., we prune
the automaton with respect to the propagation of specifications belonging to the base
lexical entries.

3.3 Word Class Specialization of Lexical Rule Interaction
In the third compilation step, the finite-state automaton representing global lexical
rule interaction is fine-tuned for each base lexical entry in the lexicon. The result is
a pruned finite-state automaton. The pruning is done by performing the lexical rule
applications corresponding to the transitions in the automaton representing global
lexical rule interaction. To ensure termination in case of direct or indirect cycles, we
use a subsumption check. If the application of a particular lexical rule with respect
to a lexical entry fails, we know that the corresponding transition can be pruned for
that entry. In case of indirect or direct cycles in the automaton, however, we cannot
derive all possible lexical entries, as there may be infinitely many. Even though one can
prune certain transitions even in such cyclic cases, it is possible that certain inapplicable
transitions remain in the pruned automaton. However, this is not problematic since the
lexical rule application corresponding to such a transition will simply fail at run-time.

Consider the base lexical entry in Figure 15. With respect to this base lexical en-
try, we fine-tune the finite-state automaton representing global lexical rule interaction
by pruning transitions. In the automaton of Figure 14, we can prune the transitions
{3(q2, q8), 4(q2, q6), 3(q3, q11), 4(q3, ql0), 3(ql, q4), 4(ql, q5)}, because the lexical rules
3 and 4 can not be applied to a (derived) lexical entry that does not have both w
and x of value +. As a consequence, the states q8, q15, q11, q18, q4, and q12 are no
longer reachable and the following transitions can be eliminated as well: {3(q8,q8),
4(q8, q15), 3(q11, q11), 4(q11, q18), 3(q4, q4), 4(q4, q12)}. We can also eliminate the tran-
sitions {4(q7,q13),4(q9, q17)}, because the lexical rule 4 requires the value of z to be
empty list. Note that the lexical rules 3 and 4 remain applicable in q14 and q16.

Furthermore, due to the procedural interpretation of lexical rules in a computa-
tional system (in contrast to the original declarative intention), there can be sequences
of lexical rule applications that produce identical entries. 23 To avoid having arcs in
the pruned automaton leading to such identical entries, we use a tabulation method

23 Note that the order in which two lexical rules are appl ied is immater ia l as long as bo th rules modify
the value of different features of a lexical entry.

555

Computational Linguistics Volume 23, Number 4

3
1 2 3 ~,.,~ 4

q3

Figure 16
Pruned finite state automaton representing lexical rule interaction for a lexical entry.

during word class specialization that keeps track of the feature structures obtained for
each node. If we find a feature structure for a node qn that is identical to the feature
structure corresponding to another node qm, the arc leading to qn or the arc leading
to qm is discarded. 24 In the example, q7 and q9 are such identical nodes. So we can
discard either 2(q2, q7) or 1(q3, q9) and eliminate the arcs from states that then become
unreachable. Choosing to discard 1(q3, q9), the pruned automaton for the example
lexical entry looks as displayed in Figure 16. 25

Note that word class specialization of lexical rule interaction does not influence the
representation of the lexical rules themselves. Pruning the finite-state automaton rep-
resenting global lexical rule interaction only involves restricting lexical rule interaction
in relation to the lexical entries in the lexicon.

The fine-tuning of the automaton representing lexical rule interaction results in
a finite-state automaton for each lexical entry in the lexicon. However, identical au-
tomata are obtained for certain groups of lexical entries and, as shown in the next
section, each automaton is translated into definite relations only once. We therefore
automatically group the lexical entries into the natural classes for which the linguist
intended a certain sequence of lexical rule applications to be possible. 26 No additional
hand-specification is required. Moreover, the alternative computational treatment to
expand out the full lexicon at compile-time is just as costly and, furthermore, impos-
sible in case of an infinite lexicon.

An interesting aspect of the idea of representing lexical rule interaction for partic-
ular word classes is that this allows a natural encoding of exceptions to lexical rules.
More specifically, the linguist specifies exceptions as a special property of either a lex-
ical rule or a lexical entry. During word class specialization, the compiler then deals
with such specifications by pruning the corresponding transitions in the finite-state
automaton representing global lexical rule interaction for the particular lexical entry
under consideration. This results in an encoding of exceptions to a lexical rule in the
interaction predicate called by the irregular lexical entries. An advantage of the setup
presented is that entries that behave according to subregularities will automatically be
grouped together again and call the same interaction predicate. The final representa-

24 In general, there is not always enough information available to determine whether two sequences of
lexical rule applications produce identical entries. This is because in order to be able to treat recursive
lexical rules producing infinite lexica, we perform word class specialization of the interaction predicate
instead of expanding out the lexicon.

25 Note that an automaton can be made even more deterministic by unfurling instances of cycles prior to
pruning. In our example, unfurling the direct cycle by replacing 3(q14, q14) with
{3(q14, q14~), 3(q14 ~, q14~), 4(q14 ~, q19~)} would allow pruning of the cyclic transition 3(q14 ~, q14 ~) and
the transition 4(q14, q19). Note, however, that unfurling of the first n instances of a cycle does not
always allow pruning of transitions, i.e., reduce nondeterminism.

26 The pruned finite-state automaton constitutes valuable feedback, as it represents the interaction of the
set of lexical rules possible for a word class in a succinct and perspicuous manner.

556

Meurers and Minnen Covariation Approach to HPSG Lexical Rules

W m
lex_entry(I-6~):- q_l(X ~ ,[~]).

Z ,b
t2

Figure 17
An extended lexical entry.

tion of the lexical rules and the lexical entries remains, without a special specification
of exceptions. 27

3.4 Lexical Rule Interaction as Def ini te Relat ions
In the fourth compilation step, the finite-state automata produced in the last step are
encoded in definite clauses, called interaction predicates. The lexical entries belonging
to a particular natural class all call the interaction predicate encoding the automaton
representing lexical rule interaction for that class. Figure 17 shows the extended version
of the lexical entry of Figure 15. The base lexical entry is fed into the first argument
of the call to the interaction predicate q_l. For each solution to a call to q_l the value
of ~ is a derived lexical entry.

Encoding a finite-state automaton as definite relations is rather straightforward.
In fact, one can view the representations as notational variants of one another. Each
transition in the automaton is translated into a definite relation in which the corre-
sponding lexical rule predicate is called, and each final state is encoded by a unit
clause. Using an accumulator passing technique (O'Keefe 1990), we ensure that upon
execution of a call to the interaction predicate q_l a new lexical entry is derived as
the result of successive application of a number of lexical rules. Because of the word
class specialization step discussed in Section 3.3, the execution avoids trying out many
lexical rule applications that are guaranteed to fail.

We illustrate the encoding with the finite-state automaton of Figure 16. As the
lexical rules themselves are already translated into a definite clause representation in
the first compilation step, the interaction predicates only need to ensure that the right
combination of lexical rule predicates is called. The interaction predicate encoding the
finite-state automaton of Figure 16 is shown in Figure 18. 28

We now have a first complete encoding of the lexical rules and their interaction repre-
sented as covariation in lexical entries. The encoding consists of three types of definite
clause predicates:

1. Lexical rule predicates representing the lexical rules;

2. Frame predicates specifying the frame for the lexical rule predicates; and

3. Interaction predicates encoding lexical rule interaction for the natural
classes of lexical entries in the lexicon.

The way these predicates interconnect is represented in Figure 19.

27 Briscoe and Copestake (1996) argue that semi-productivity of lexical rules, which can be unders tood as
a generalization of exceptions to lexical rules, can be integrated wi th our approach by assigning
probabilities to the automaton associated wi th a particular lexical entry.

28 In order to dist inguish the different interaction predicates for the different classes of lexical entries, the
compiler indexes the names of the interaction predicates. Since for expository reasons we will only
discuss one kind of lexical entry in this paper, we will not show those indices in the examples given.

557

Computational Linguistics Volume 23, Number 4

q_l(E]~):- lex_rule_l([~,~,

q_l([~]):- lexxule.2([~[g/~,

q_2([~]~]):- lexn'ule.2([~],[~),

q_7(D~],[-6-~):- lex_rule_3(E],[~),

q_14 ([~],[~) :-lex ~-ule _3 (E],[X~,

q_14 ([/T],[O~):-lex ~ule _4 (E],[X~),

q~2(~[~) .

q_3([NNN~.

q_7([d~[~]).

q_14([x~],[~]).

q_14([-X~,[~]).

q_l 9(rA-~,[~]).

q_l(E]~]), q2(E]E), q_3(E]~, q_7([~[~]), q_14([~E]), q_19([~[~]).

Figure 18
The definite relations representing the pruned finite state automaton of Figure 16.

extended lexical entries

call I
= i n t e r a c t i o n predicates

call I
= l e x i c a l ru le predicates

call [
--- frame predicates

Figure 19
Schematic representation of definite clause encoding of lexical rules and their interaction.

4. Partial Unfolding of Frame Predicates

The automata resulting from word class specialization group the lexical entries into
natural classes. In case the automata corresponding to two lexical entries are identical,
the entries belong to the same natural class. However, each lexical rule application, i.e.,
each transition in an automaton, calls a frame predicate that can have a large number
of defining clauses. Intuitively understood, each defining clause of a frame predicate
corresponds to a subclass of the class of lexical entries to which a lexical rule can be
applied. During word class specialization, though, when the finite-state automaton
representing global lexical rule application is pruned with respect to a particular base
lexical entry, we know which subclass we are dealing with. For each interaction defini-
tion we can therefore check which of the f lame clauses are applicable and discard the
non-applicable ones. We thereby eliminate the redundant nondeterminism resulting
from mult iply defined frame predicates.

The elimination of redundant nondeterminism is based on Unfo ld /Fold trans-
formation techniques (Tamaki and Sato 1984). 29 The unfolding transformation is also
referred to as partial execution, for example, by Pereira and Shieber (1987). Intuitively
understood, unfolding comprises the evaluation of a particular literal in the body of
a clause at compile-time. As a result, the literal can be removed from the body of

29 This improvement of the covariation encoding can also be viewed as an instance of the program
transformation technique referred to as deletion of clauses with a finitely failed body (Pettorossi and Proietti
1994).

558

Meurers and Minnen Covariation Approach to HPSG Lexical Rules

extended lexical entries

call I
.~ interaction predicates

call unfolding

c unfolding

Figure 20
Schematic representation of the successive unfolding transformation.

extended lexical entries

call I
,, interaction predicates

c a l l

,, lexical rule predicates " ~ unfolding

/
call

.~ frame predicates /

Figure 21
Schematic representation of the partial unfolding transformation.

the clause. Whereas unfolding can be viewed as a symbolic way of going forward in
computation, folding constitutes a symbolic step backwards in computation.

Given a lexical entry as in Figure 15, we can discard all frame clauses that presup-
pose tl as the value of c, as discussed in the previous section. To eliminate the frame
predicates completely, we can successively unfold the frame predicates and the lexical
rule predicates with respect to the interaction predicates. 3° The successive unfolding
steps are schematically represented in Figure 20.

Such a transformation, however, would result in the loss of a representation of the
lexical rule predicates that is independent of a particular word class, but an indepen-
dent representation of lexical rules constitutes an advantage in space in case lexical
rules can be applied across word classes. Our compiler therefore performs what can
be viewed as "partial" unfolding: it unfolds the frame predicates directly with respect
to the interaction predicates, as shown in Figure 21.

One can also view this transformation as successive unfolding of the frame predi-
cates and the lexical rule predicates with respect to the interaction predicates followed
by a folding transformation that isolates the original lexical rule predicates. The defi-
nite clause encoding of the interaction predicates resulting from unfolding the frame
predicates for the lexical entry of Figure 15 with respect to the interaction predicate of
Figure 18 is given in Figure 22. The lexical rule predicates called by these interaction
predicates are defined as in Figures 8 and 12, except that the frame predicates are no
longer called.

30 Note that it is only possible to eliminate the frame predicates, since they are never called
independently of the covariation encoding.

559

Computational Linguistics Volume 23, Number 4

[B iC q_l([~] W , [~)

t2

1] [] IN~) q_l/

t2 Z

[] IN~)
q_2([/;;] C yX

t2 Z

:- lex _rule _1 (17~-I,[-X~]),

:- lex_rule_2(E],[~,

:- lex _rule22([~[~]),

:- l e x _ r u l e ~ 3 ([~ ,

q_2([-~7~ W , [~) .

t2

t2 z []

B []
q_7

t2 z []

B []
q_14([X~] C [W '[~])"

L t2 LX

q_14(FX~l c w I ~ .
x

t2

q-,9 c
t2 Z

B []
q_14([F~] C [W ~] ,[b-~):-lex_rule_3([~],[~]),

L t2t"

L t2LZ []
q_l(E],[~]), q _ 2 ([~) , q~3([~,~]), q_7([~[~]), q _ 1 4 ([~) , q_19([~]) .

Figure 22
Unfolding the frame predicates for the example entry with respect to the interaction predicate.

5. On-the-f ly Appl i ca t ion of Lexical Rules

We want our compiler to produce an encoding of lexical rules that allows us to execute
lexical rules on-the-fly, i.e., at some time after lexical lookup. This is advantageous
because postponing the execution of the interaction predicates allows more constraints
on the word to be collected. When the interaction predicate is finally called, as a result
of syntactic information being present, many of its possible solutions simply fail. The
search tree that would have resulted from pursuing these possibilities at the beginning
of processing does not have to be explored. 31

As it stands, our encoding of lexical rules and their application as covariation in
lexical entries does not yet support the application of lexical rules on-the-fly. With
respect to processing, the extended lexical entry of Figure 17 is problematic because
before execution of the call to q_l, it is not known which information of the base lexical
entry ends up in a derived lexical entry, i.e., tag ~ is completely uninstantiated. This
means that there is no way of indexing the lexical entries according to what kind of

31 According to Pollard and Sag (1987) on-the-fly application of lexical rules is also well-suited to playing
a role in a model of language use.

560

Meurers and Minnen Covariation Approach to HPSG Lexical Rules

derived entry one is looking for. As a result, it is necessary to execute the call to q_l
immediately when the lexical entry is used during processing. Otherwise, there would
be no information available to restrict the search-space of a generation or parsing
process.

Flickinger, Pollard, and Wasow (1985) solve this problem using additional specifi-
cations: "By providing with each lexical rule a generic class frame which specifies the
general form and predictable properties of the rule's output, we avoid unnecessary
work when the lexical rule applies" (p. 264). In the following, we show that the addi-
tional specifications on the extended lexical entry needed to guide processing can be
deduced automatically.

5.1 Constraint Propagation
The intuitive idea behind this improvement of the covariation encoding is to lift into
the extended lexical entry the information that is ensured after all sequences of possible
lexical rule applications for a particular base lexical entry have occurred. Note that this
is not an unfolding step. Unfolding the interaction predicates with respect to the lexical
entries basically expands out the lexicon off-line. Instead, what we do is factor out the
information common to all definitions of the called interaction predicate by computing
the most specific generalization of these definitions.

The most specific generalization does not necessarily provide additional constrain-
ing information. However, usually it is the case that lexical entries resulting from lexical
rule application differ in very few specifications compared to the number of specifica-
tions in a base lexical entry. Most of the specifications of a lexical entry are assumed to
be passed unchanged via the automatically generated frame specification. Therefore,
after lifting the common information into the extended lexical entry, the out-argument
in many cases contains enough information to permit a postponed execution of the
interaction predicate. When C is the common information, and D1, . . . , Dk are the
definitions of the interaction predicate called, we use distributivity to factor out C in
(C A D1) V -.. V (C A Dk): We compute C A (D1 V . . . V Dk), where the r) are assumed
to contain no further common factors. Once we have computed c, we use it to make
the extended lexical entry more specific. This technique closely resembles the off-line
constraint propagation technique described by Marriott, Naish, and Lassez (1988). The
reader is referred to Meurers and Minnen (1996) for a more detailed discussion of our
use of constraint propagation. 32

We illustrate the result of constraint propagation with our example grammar. Since
the running example of this paper was kept small, for expository reasons, by only
including features that do get changed by one of the lexical rules (which violates
the empirical observation mentioned above), the full set of lexical rules would not
provide a good example. Let us therefore assume that only the lexical rules 1 and 2
of Figure 11 are given. We then only obtain seven of the clauses of Figure 22: those
calling lex_rule_l or lex_rule_2, as well as the unit clauses for q_l, q_2, q3, and q_7.
Applying constraint propagation to the extended lexical entry of Figure 17 yields the
result shown in Figure 23. The information common to all solutions to the interaction
call is lifted up into the lexical entry and becomes available upon lexical lookup.

32 In certain cases an extension of the constraint language with named disjunctions or contexted
constraints (Maxwell and Kaplan 1989; Eisele and D6rre 1990; Griffith 1996) can be used to circumvent
constraint propagation. Encoding the disjunctive possibilities for lexical rule application in this way,
instead of with definite clause attachments, makes all relevant lexical information available at lexical
lookup. For analyses proposing infinite lexica, though, a definite clause encoding of disjunctive
possibilities is still necessary and constraint propagation is indispensable for efficient processing.

561

Computational Linguistics Volume 23, Number 4

- 1] Lct2[zB]j c x _
t2Lz [](a'b)JJ

Figure 23
An entry suitable for on-the-fly application (lexical rules 1 and 2 only).

5.2 Dynamic and Static Coroutining
Even though we see on-the-fly application as a prerequisite of a computational treat-
ment of lexical rules, it is important to note that a postponed evaluation of lexical
rule application is not always profitable. For example, in the case of generation, un-
derspecification of the head of a construction can lead to massive nondeterminism or
even nontermination when not enough restricting information is available to generate
its complements (Martinovi4 and Strzalkowski 1992; Minnen, Gerdemann, and G6tz
1995). Criteria to determine when it is most profitable to execute calls to an interaction
predicate are required.

One possibility is to annotate the lexical rule encoding with such criteria by means
of delay statements, as, for example, suggested by van Noord and Bouma (1994). While
we consider this kind of control facility (Naish [1986] and references therein) to be, in
general, indispensable for efficient processing, it also has disadvantages that make it
desirable to search for alternative or additional mechanisms: Delay statements presup-
pose the procedural annotation of an otherwise declarative specification. Substantial
computational expertise is required to provide restrictions on the instantiation status
of a goal, which must be fulfilled before the goal can be executed. Furthermore, the
computational bookkeeping necessary for the delaying mechanism is very expensive.
An interesting alternative, therefore, is to automatically determine certain control prob-
lems and deal with them in an off-line fashion along the lines of Minnen, Gerdemann,
and G6tz (1995) and Minnen, Gerdemann, and Hinrichs (1996). They describe the
use of a dataflow analysis for an off-line improvement of grammars that determines
automatically when a particular goal in a clause can best be executed.

6. Efficiency Evaluation

The computational treatment of lexical rules as covariation in lexical entries was im-
plemented in Prolog by the authors in cooperation with Dieter Martini for the ConTroll
system (Gerdemann and King 1994; G6tz and Meurers 1997a). We tested the covaria-
tion approach with a complex grammar implementing an HPSG analysis covering the
so-called aux-flip phenomenon, and partial-VP topicalization in the three clause types
of German (Hinrichs, Meurers, and Nakazawa 1994). This test grammar includes eight
lexical rules; some serve syntactic purposes, like the Partial-VP Topicalization Lexical
Rule, others are of morphological nature as, for example, an inflectional lexical rule
that relates nonfinite verbs to their finite form. Our compiler distinguished seven word
classes. Some nouns and most verbal lexical entries fed lexical rules, and a single base
lexical entry resulted in up to 12 derivations.

6.1 Time Efficiency
To evaluate the time efficiency of the covariation encoding, we compared the parse
times for our test grammar with three different computational encodings of the lexicon:

562

Meurers and Minnen Covariation Approach to HPSG Lexical Rules

the expanded out lexicon, the basic covariation encoding, and the covariation encoding
improved by constraint propagation. 33

As discussed in Section 5.1, the parsing times with a covariation lexicon without
constraint propagation suffer significantly from the lack of information directly avail-
able upon lexical lookup. For the test grammar, the resulting extended search-space of
parsing with the basic covariation encoding leads to a performance that is, on average,
18 times slower than that with the expanded out lexicon.

The use of constraint propagation, however, makes it possible to exploit the covari-
ation encoding of lexical rule application such that it results in an increase in speed.
Parsing with the test grammar using the constraint propagated covariation lexicon is,
on average, 25 percent faster than the performance with the expanded out lexicon.
The representation of lexical information in a constraint propagated covariation lex-
icon makes the maximum information available at lexical lookup while requiring a
minimum number of nondeterministic choices to obtain this information.

Summing up, the relation between parsing times with the expanded out (EXP),
the covariation (COV), and the constraint propagated covariation (IMP) lexicon for
the test grammar can be represented as IMP : EXP : COV = 0.75 : 1 : 18. With respect
to our test grammar, the constraint propagated covariation lexicon thus is the fastest
lexical encoding.

6.2 Space Efficiency
Besides the effect of requiring a minimum of nondeterministic choices and thereby
reducing the number of resolution steps to increase time efficiency, the covariation
encoding of lexical rules can result in an additional speedup since it reduces the space
requirements of large grammars.

A comparison of space efficiency between an expanded out and a covariation lex-
icon needs to compare two different encodings. The expanded out lexicon consists
solely of lexical entries, whereas the covariation lexicon is made up of three differ-
ent data structures: the extended base lexical entries, the interaction predicates, and
the lexical rule predicates. We focus on a qualitative evaluation of space efficiency,
rather than on providing results for the test grammar, since the space efficiency of
the covariation encoding relative to the expanded out lexicon is dependent on several
properties of the grammar: the number of lexical entries in the lexicon that can un-
dergo lexical rule application, the size of the lexical entries, and the number of lexical
entries belonging to a word class.

Since only base lexical entries that feed lexical rules are modified by the lexical
rule compiler, the covariation encoding naturally only results in space savings for
those lexical entries to which lexical rules apply.

The space efficiency is dependent on the size of the lexical entries since in the
covariation encoding much of the lexical information that is specified in a base lexical
entry is not duplicated in the lexical entries that can be derived from it, as is the case
for an expanded lexicon. Thus, the more information represented in a base lexical
entry, the greater the space saving achieved by the covariation encoding. In lexically
oriented grammar formalisms like HPSG, the lexical entries are highly information
rich. A covariation treatment of HPSG lexica therefore can be particularly profitable.

The number of lexical entries belonging to a word class is relevant since the inter-
action predicates are identical for all lexical entries belonging to the same word class.

33 The lexicon of the test grammar can be expanded out off-line since the recursive Complement
Extraction Lexical Rule applies only to full verbs, i.e, lexical entries with a complement list of finite
length. As a result, the grammar does not have an infinite lexicon.

563

Computational Linguistics Volume 23, Number 4

This means that the more lexical entries in a word class, the greater the saving in
space. The covariation approach therefore is particularly attractive for grammars with
a large lexicon.

7. Related Work

The powerful mechanism of lexical rules (Carpenter 1991) has been used in many
natural language processing systems. In this section we briefly discuss some of the
more prominent approaches and compare them with the treatment proposed in this
paper.

7.1 Off-line Expansion of Lexical Rules
A common computational treatment of lexical rules adopted, for example, in the ALE
system (Carpenter and Penn 1994) consists of computing the transitive closure of the
base lexical entries under lexical rule application at compile-time. While this provides
a front-end to include lexical rules in the grammars, it has the disadvantage that the
generalizations captured by lexical rules are not used for computation. We mentioned
in Section 2.2 that eliminating lexical rules in a precompilation step makes it impossible
to process lexical rules or lexical entries that impose constraints that can only be
properly executed once information from syntactic processing is available. A related
problem is that for analyses resulting in infinite lexica, the number of lexical rule
applications needs to be limited. In the ALE system, for example, a depth bound can
be specified for this purpose. Finally, as shown in Section 6, using an expanded out
lexicon can be less time and space efficient than using a lexicon encoding that makes
computational use of generalizations over lexical information, as, for example, the
covariation encoding.

7.2 Lexical Rules as Unary Phrase Structure Rules
Another common approach to lexical rules is to encode them as unary phrase structure
rules. This approach is taken, for example, in LKB (Copestake 1992) where lexical rules
are introduced on a par with phrase structure rules and the parser makes no distinction
between lexical and nonlexical rules (Copestake 1993, 31). A similar method is included
in PATR-II (Shieber et al. 1983) and can be used to encode lexical rules as binary
relations in the CUF system (Dbrre and Eisele 1991; D6rre and Dorna 1993b) or the
TFS system (Emele and Zajac 1990; Emele 1994). The covariation approach described
in this paper can be viewed as a domain-specific refinement of such a treatment of
lexical rules.

The encoding of lexical rules used in the covariation approach is related to the
work of van Noord and Bouma (1994), who describe the hand-encoding of a single
lexical rule as definite relations and show how these relations can be used to constrain
a lexical entry. The covariation approach builds on this proposal and extends it in
three ways: First, the approach shows how to detect and encode the interaction of a
set of lexical rules. Second, it provides a way to automatically obtain a definite clause
encoding of lexical rules and their interaction. Finally, it automatically derives the
frame specification for lexical rules such that, following standard HPSG practice, only
the information changed in a lexical rule needs to be specified.

7.3 Alternative Ways to Express Lexical Generalizations
Lexical rules have not gone unchallenged as a mechanism for expressing generaliza-
tions over lexical information. In a number of proposals, lexical generalizations are
captured using lexical underspecification (Kathol 1994; Krieger and Nerbonne 1992;

564

Meurers and Minnen Covariation Approach to HPSG Lexical Rules

Riehemann 1993; Oliva 1994; Frank 1994; Opalka 1995; Sanfilippo 1995). The lexical
entries are only partially specified, and various specializations are encoded via the
type hierarchy, definite clause attachments, or a macro hierarchy.

These approaches seem to propose a completely different way to capture lexical
generalizations. It is therefore interesting that the covariation lexical rule compiler
produces a lexicon encoding that, basically, uses an underspecification representation:
The resulting definite clause representation after constraint propagation represents the
common information in the base lexical entry, and uses a definite clause at tachment
to encode the different specializations.

8. Summary

We presented a new computational treatment of HPSG lexical rules by describing a
compiler that translates a set of lexical rules as specifed by a linguist into definite
relations, which are used to constrain lexical entries. The frame of a lexical rule and
lexical rule interaction is automatically determined and the interaction is represented
as a finite-state automaton. The automaton allows us to encode lexical rule interaction
without actually having to apply lexical rules a possibly infinite number of times.
Word classes relevant to lexical rule application are automatically detected and the
corresponding finite-state automata are refined in order to avoid lexical rule applica-
tions that are guaranteed to fail. The refined automata are encoded as definite relations
and each base lexical entry is extended to call the relation corresponding to its class.
Finally, the encoding of lexical rules and their interaction is advanced using constraint
propagation to allow coroutining of its execution with other grammar constraints. This
reduces the number of nondeterministic choices related to lexical lookup, and, more
importantly, allows syntactic information to be used to ensure termination of the co-
variation encoding of lexical rules. Finally, we discussed implementation results and
illustrated the improvement in time and space efficiency resulting from the covariation
encoding.

Acknowledgments
The research reported here was supported
by Teilprojekt B4 "From Constraints to
Rules: Efficient Compilation of HPSG
Grammars" of SFB 340 "Sprachtheoretische
Grundlagen f~ir die Computerlinguistik" of
the Deutsche Forschungsgemeinschaft. The
authors wish to thank Thilo G6tz and Dale
Gerdemann, Erhard Hinrichs, Paul King,
Suresh Manandhar, Dieter Martini, Bill
Rounds, and the anonymous reviewers. Of
course, the authors are responsible for all
remaining errors.

References
Briscoe, Ted and Ann Copestake. 1996.

Controlling the application of lexical
rules. In Proceedings of the SIGLEX
Workshop on Breadth and Depth of Semantic
Lexicons, Santa Cruz, CA.

Briscoe, Ted, Ann Copestake, and Valeria
de Paiva, editors. 1992. Default Inheritance
Within UniX'cation-Based Approaches to the
Lexicon. Cambridge University Press,

Cambridge, UK.
Calcagno, Mike. 1995. Interpreting lexical

rules. In Proceedings of the Conference on
Formal Grammar, Barcelona. Also in:
Proceedings of the ACQUILEX II
Workshop on Lexical Rules, 1995,
Cambridge, UK.

Calcagno, Mike, Detmar Meurers, and Carl
Pollard. In preparation. On the nature of
lexical rules in head-driven phrase
structure grammar. Unpublished
manuscript, Ohio State University and
University of T~ibingen.

Calcagno, Mike and Carl Pollard. 1995.
Lexical rules in HPSG: What are they?
Unpublished manuscript, Ohio State
University, Columbus, OH.

Carpenter, Bob. 1991. The generative power
of categorial grammars and Head-Driven
Phrase Structure Grammars with lexical
rules. Computational Linguistics,
17(3):301-314.

Carpenter, Bob and Gerald Penn. 1994.
ALE--The Attribute Logic Engine, User's

565

Computational Linguistics Volume 23, Number 4

Guide, Version 2.0.1, December 1994.
Technical report, Computational
Linguistics Program, Philosophy
Department, Carnegie Mellon University,
Pittsburgh, PA.

Copestake, Ann. 1992. The Representation of
Lexical Semantic Information. Cognitive
science research paper CSRP 280,
University of Sussex, Sussex, UK.

Copestake, Ann. 1993. The Compleat LKB.
Technical report 316, University of
Cambridge Computer Laboratory,
Cambridge, UK.

D6rre, Jochen and Michael Dorna, editors.
1993a. Computational Aspects of
Constraint-Based Linguistic Description I.
University of Stuttgart, Stuttgart,
Germany.

DOrre, Jochen and Michael Dorna. 1993b.
CUF--A formalism for linguistic
knowledge representation. In D6rre and
Dorna (1993a).

DOrre, Jochen and Andreas Eisele. 1991. A
Comprehensive Unification Based
Formalism. DYANA Deliverable R3.1.B,
University of Stuttgart, Stuttgart,
Germany.

Eisele, Andreas and Jochen D6rre. 1990.
Disjunctive Unification. Technical Report
124, IBM Wissenschaftliches Zentrum,
Institut fiir Wissensbasierte Systeme.

Emele, Martin. 1994. The typed feature
structure representation formalism. In
Proceedings of the International Workshop on
Sharable Natural Language Resources, Nara,
Japan.

Emele, Martin and R~mi Zajac. 1990. Typed
unification grammars. In Proceedings of the
13th Conference on Computational Linguistics
(COLING), Helsinki, Finland.

Flickinger, Daniel. 1987. Lexical Rules in the
Hierarchical Lexicon. Ph.D. thesis, Stanford
University, Stanford, CA.

Flickinger, Daniel, Carl Pollard, and Thomas
Wasow. 1985. Structure-sharing in lexical
representation. In Proceedings of the 23rd
Annual Meeting, pages 262-267, Chicago,
IL. Association for Computational
Linguistics.

Frank, Annette. 1994. Verb second by
underspecification. In Proceedings of
KONVENS, Berlin. Springer-Verlag.

Gerdemann, Dale. 1995. Open and closed
world types in NLP systems. In
Proceedings of the DGfS Fachtagung
Computerlinguistik, Diisseldorf, Germany.

Gerdemann, Dale and Paul King. 1994. The
correct and efficient implementation of
appropriateness specifications for typed
feature structures. In Proceedings of the 15th
Conference on Computational Linguistics

(COLING), Kyoto, Japan.
Ginsberg, Matthew L., editor. 1987. Readings

in Nonmonotonic Reasoning. Morgan
Kaufmann.

G6tz, Thilo. 1994. A Normal Form for
Typed Feature Structures. Arbeitspapiere
des SFB 340 no. 40, University of
T~ibingen, IBM, Heidelberg, Germany.

G6tz, Thilo and Detmar Meurers. 1995.
Compiling HPSG type constraints into
definite clause programs. In Proceedings of
the 33rd Annual Meeting, Boston, MA.
Association for Computational
Linguistics.

G6tz, Thilo and Detmar Meurers. 1996. The
importance of being lazy--Using lazy
evaluation to process queries to HPSG
grammars. In Proceedings of TALN 96 (Joint
Session with the Third International
Conference on HPSG), Marseille, France.

GOtz, Thilo and Detmar Meurers. 1997a.
The ConTroll system as large grammar
development platform. In Proceedings of
the ACL/EACL Post-Conference Workshop on
Computational Environments for Grammar
Development and Linguistic Engineering,
Madrid, Spain.

G6tz, Thilo and Detmar Meurers. 1997b.
Interleaving universal principles and
relational constraints over typed feature
logic. In Proceedings of the 35th Annual
Meeting of the ACL and the 8th Conference of
the EACL, Madrid, Spain.

Griffith, John. 1996. Modularizing contexted
constraints. In Proceedings of the 16th
Conference on Computational Linguistics
(COLING), Copenhagen, Denmark.

Hinrichs, Erhard, Detmar Meurers, and
Tsuneko Nakazawa, editors. 1994.
Partial-VP and Split-NP Topicalization in
German--An HPSG Analysis and its
Implementation. Number 58.

Hinrichs, Erhard and Tsuneko Nakazawa.
1989. Flipped out: Aux in German. In
Papers from the 25th Regional Meeting, pages
193-202, Chicago. Chicago Linguistic
Society.

Hinrichs, Erhard and Tsuneko Nakazawa.
1994. Partial-VP and split-NP
topicalization in German: An HPSG
analysis. In Hinrichs, Meurers, and
Nakazawa (1994).

Hinrichs, Erhard and Tsuneko Nakazawa.
1996. Applying lexical rules under
subsumption. In Proceedings of the 16th
Conference on Computational Linguistics
(COLING), pages 543-549, Copenhagen,
Denmark.

Kathol, Andreas. 1994. Passive without
lexical rules. In John Nerbonne, Klaus
Netter, and Carl Pollard, editors, HPSGfor

566

Meurers and Minnen Covariation Approach to HPSG Lexical Rules

German. CSLI Lecture Notes, Stanford
University, Stanford, CA.

King, Paul. 1989. A Logical Formalism for
Head-driven Phrase Structure Grammar.
Ph.D. thesis, University of Manchester,
Manchester, UK.

King, Paul. 1994. An Expanded Logical
Formalism for Head-driven Phrase
Structure Grammar. Arbeitspapiere des
Sonderforschungsbereich 340 no. 59,
University of Tfibingen, Tfibingen,
Germany.

Krieger, Hans-Ulrich and John Nerbonne.
1992. Feature-based inheritance networks
for computational lexicons. In Briscoe,
Copestake, and de Paiva (1992).

Manandhar, Suresh. 1995. The Update
Operation in Feature Logic. Unpublished
Manuscript, HCRC at University of
Edinburgh, UK.

Marriott, Kim, Lee Naish, and Jean-Louis
Lassez. 1988. Most specific logic
programs. In Proceedings of 5th International
Conference and Symposium on Logic
Programming.

MartinoviG Miroslav and Tomek
Strzalkowski. 1992. Comparing two
grammar-based generation algorithms: A
case study. In Proceedings of the 30th
Annual Meeting, Newark, DE. Association
for Computational Linguistics.

Maxwell, John and Ronald Kaplan. 1989. An
overview of disjunctive constraint
satisfaction. In Proceedings of the
International Workshop on Parsing
Technologies, pages 18-27.

McCarthy, John and Patrick Hayes. 1969.
Some philosophical problems from the
standpoint of artificial intelligence. In
Meltzer and Michie (1969). Reprinted in
Ginsberg (1987).

Meltzer, Bernard and Donald Michie,
editors. 1969. Machine Intelligence 4.
Edinburgh University Press, Edinburgh,
UK.

Meurers, Detmar. 1994. On implementing
an HPSG theory: Aspects of the logical
architecture, the formalization and the
implementation of Head-driven Phrase
Structure Grammars. In Hinrichs,
Meurers, and Nakazawa (1994).

Meurers, Detmar. 1995. Towards a semantics
for lexical rules as used in HPSG. In
Proceedings of the Conference on Formal
Grammar, Barcelona. Also in Proceedings of
the ACQUILEX II Workshop on Lexical Rules,
1995, Cambridge, UK.

Meurers, Detmar and Guido Minnen. 1995.
A computational treatment of HPSG
lexical rules as covariation in lexical
entries. In Proceedings of the Fifth

International Workshop on Natural Language
Understanding and Logic Programming,
Lisbon, Portugal.

Meurers, Detmar and Guido Minnen. 1996.
Off-line constraint propagation for
efficient HPSG processing. In Proceedings
of TALN 96 (Joint Session with the Third
International Conference on HPSG),
Marseille, France.

Miller, Philip and Ivan Sag. 1993. French
Clitic Climbing Without Clitics or
Climbing. Unpublished Manuscript,
University of Lille and Stanford
University.

Minnen, Guido. In preparation. Natural
Language Processing with Constraint-Logic
Grammars: Grammar Compilation for
Declarative Under-determination. Ph.D.
thesis.

Minnen, Guido, Dale Gerdemann, and Thilo
GOtz. 1995. Off-line optimization for
earley-style HPSG processing. In
Proceedings of the 7th Conference of the EACL,
Dublin, Ireland.

Minnen, Guido, Dale Gerdemann, and
Erhard Hinrichs. 1996. Direct automated
inversion of logic grammars. New
Generation Computing 14(2):131-168.

Naish, Lee. 1986. Negation and Control in
Prolog. Springer Verlag, New York.

O'Keefe, Richard. 1990. The Craft of Prolog.
MIT Press, Cambridge, MA.

Oliva, Karel. 1994. HPSG lexicon without
lexical rules. In Proceedings of the 15th
Conference on Computational Linguistics
(COLING), Kyoto, Japan.

Opalka, Annette. 1995. Statische
Programmtransformationen zur
effizienten Verarbeitung
constraintbasierter Grammatiken.
Diplomarbeit, University of Stuttgart,
Stuttgart, Germany.

Pereira, Fernando and Stuart Shieber. 1987.
Prolog and Natural Language Analysis. CSLI
Lecture Notes. Center for the Study of
Language and Information, Stanford
University, Stanford, CA.

Pettorossi, Alberto and Maurizio Proietti.
1994. Transformations of logic programs:
Foundations and techniques. Journal of
Logic Programming 19/20:261-320.

Pollard, Carl and Ivan Sag. 1987.
Information-based Syntax and Semantics, Vol.
1. Number 13 of CSLI Lecture Notes.
Center for the Study of Language and
Information, Stanford University,
Stanford, CA.

Pollard, Carl and Ivan Sag. 1994.
Head-Driven Phrase Structure Grammar.
University of Chicago Press, Chicago, IL.

567

Computational Linguistics Volume 23, Number 4

Riehemann, Susanne. 1993. Word Formation
in Lexical Type Hierarchies: A Case Study
of bar-Adjectives in German. Master's
thesis, University of Ti~bingen, Tiibingen,
Germany. Also published as
SfS-Report-02-93, Seminar fiir
Sprachwissenschaft, University of
Ti~bingen.

Sanfilippo, Antonio. 1995. Lexical
polymorphism and word disambiguation.
In Proceedings of the American Associa tion.for
Arti~cial Intelligence (AAAI), Stanford
University, Stanford, CA.

Shieber, Stuart, Hans Uszkoreit, Fernando
Pereira, Jane Robinson, and Mabry Tyson.
1983. The formalism and implementation
of PATR II. In Research on Interactive
Acquisition and Use of Knowledge. SRI
International, Menlo Park, CA, pages
39-79.

Tamaki, Hisao and Taisuke Sato. 1984.
Unfold/Fold transformation of logic
programs. In Proceedings of the 2nd
International Conference on Logic
Programming, Uppsala, Sweden.

Torisawa, Kentaro and Jun'ichi Tsuji. 1996.
Off-line raising, dependency analysis and
partial unification. In Proceedings of TALN
96 (Joint Session with the Third International
Conference on HPSG), Marseille, France.

van Noord, Gertjan and Gosse Bouma. 1994.
The scope of adjuncts and the processing
of lexical rules. In Proceedings of the 15th
Conference on Computational Linguistics
(COLING), Kyoto, Japan.

Some of the above papers can be obtained
electronically through the URL provided on
the first page.

568

