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The sentence is a standard textual unit in natural language processing applications. In many 
languages the punctuation mark that indicates the end-of-sentence boundary is ambiguous; thus 
the tokenizers of most NLP systems must be equipped with special sentence boundary recognition 
rules for every new text collection. 

As an alternative, this article presents an efficient, trainable system for sentence boundary 
disambiguation. The system, called Satz, makes simple estimates of the parts of speech of the 
tokens immediately preceding and following each punctuation mark, and uses these estimates as 
input to a machine learning algorithm that then classifies the punctuation mark. Satz is very 
fast both in training and sentence analysis, and its combined robustness and accuracy surpass 
existing techniques. The system needs only a small lexicon and training corpus, and has been 
shown to transfer quickly and easily from English to other languages, as demonstrated on French 
and German. 

1. Introduction 

Recent  years  have  seen a d ramat i c  increase in the availabil i ty of  on-l ine text collections,  
w h i c h  are useful  in m a n y  areas of  c o m p u t a t i o n a l  l inguist ics research. One  act ive area 
of  research is the d e v e l o p m e n t  of  a lgor i thms  for  a l igning  sentences  in paral lel  corpora .  
The success  of  m o s t  na tu ra l  l a n g u a g e  p rocess ing  (NLP) a lgor i thms ,  inc lud ing  mul t i -  
l ingual  sentence  a l ignmen t  a lgor i thms  (Kay a n d  R6scheisen  1993; Gale and  C h u r c h  
1993), 1 par t -of - speech  taggers  (Cut t ing  et al. 1991), and  parsers ,  d e p e n d s  on  pr io r  
k n o w l e d g e  of  the locat ion of  sentence  boundar ies .  

Segmen t ing  a text into sentences  is a nont r iv ia l  task, however ,  since in Engl i sh  
and  m a n y  o ther  l anguages  the end-of -sen tence  p u n c t u a t i o n  m a r k s  are a m b i g u o u s .  2 
A per iod ,  for example ,  can  deno te  a dec imal  point ,  an  abbrevia t ion,  the end  of  a 
sentence,  or  even  an  abbrev ia t ion  at the e nd  of  a sentence.  Exc lamat ion  po in t s  and  
ques t ion  m a r k s  can occur  wi th in  quo ta t ion  m a r k s  or  pa ren theses  as wel l  as at the end  
of  a sentence.  Ellipsis, a series of  pe r iods  ( . . . ) ,  can  occur  b o t h  wi th in  sentences  a n d  at 
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sentence boundaries. The ambiguity of these punctuation marks is illustrated in the 
following difficult cases: 

(1) The group included Dr. J. M. Freeman and T. Boone Pickens Jr. 

(2) "This issue crosses party lines and crosses philosophical lines!" said Rep. John 
Rowland (R., Conn.). 

(3) Somit entsprach ein ECU am 17. 9. 1984 0.73016 US$ (vgl. Tab. 1). 

(4) Crdd au ddbut des ann~es 60 . . . . . .  par un gouvernement conservateur : . . .  cet 
Office s'~tait vu accorder six ans . . .  

The existence of punctuation in grammatical subsentences suggests the possibility 
of a further decomposition of the sentence boundary problem into types of sentence 
boundaries, one of which would be "embedded sentence boundary." Such a distinction 
might be useful for certain applications that analyze the grammatical structure of 
the sentence. However, in this work we will only address the simpler problem of 
determining boundaries between sentences, finding that which Nunberg (1990) calls 
the "text-sentence." 

In examples (1-4), the word immediately preceding and the word immediately 
following a punctuation mark provide important information about its role in the 
sentence. However, more context may be necessary, such as when punctuation occurs 
in a subsentence within quotation marks or parentheses, as seen in example (2), or 
when an abbreviation appears at the end of a sentence, as seen in (5a): 

(5)a. It was due Friday by 5 p.m. Saturday would be too late. 

(5)b. She has an appointment at 5 p.m. Saturday to get her car fixed. 

Examples (5a-b) also show some problems inherent in relying on brittle features, 
such as capitalization, when determining sentence boundaries. The initial capital in 
Saturday does not necessarily indicate that Saturday is the first word in the sentence. 
As a more dramatic example, some important kinds of text consist only of upper-case 
letters, thus thwarting any system that relies on capitalization rules. Another obstacle 
to systems that rely on brittle features is that many texts are not well-formed. One 
such class of texts are those that are the output of optical character recognition (OCR); 
typically these texts contain many extraneous or incorrect characters. 

This article presents an efficient, trainable system for sentence boundary disam- 
biguation that circumvents these obstacles. The system, called Satz, makes simple 
estimates of the parts of speech of the tokens immediately preceding and following 
each punctuation mark, and uses these estimates as input to a machine learning al- 
gorithm that determines whether the punctuation mark is a sentence boundary or 
serves another purpose in the sentence. Satz is very fast in both training and sentence 
analysis; training is accomplished in less than one minute on a workstation, and it can 
process 10,000 sentences per minute. The combined robustness and accuracy of the 
system surpasses existing techniques, consistently producing an error rate less than 
1.5% on a range of corpora and languages. It requires only a small lexicon (which can 
be less than 5,000 words) and a training corpus of 300-500 sentences. 

The following sections discuss related work and the criteria used to evaluate such 
work, describe our system in detail, and present the results of applying the system to 
a variety of texts. The transferability of the system from English to other languages is 
also demonstrated on French and German text. Finally, the learning-based system is 
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shown to be able to improve the results of a more conventional system on especially 
difficult cases. 

2. Related Work 

2.1 Evaluation of Related Work 
An important consideration when discussing related work is the mode of evaluation. 
To aid our evaluation, we define a lower bound, an objective score which any reason- 
able algorithm should be able to match or better. In our test collections, the ambiguous 
punctuation mark is used much more often as a sentence boundary marker than for 
any other purpose. Therefore, a very simple, successful algorithm is one in which ev- 
ery potential boundary marker is labeled as the end-of-sentence. Thus, for the task of 
sentence boundary disambiguation, we define the lower bound of a text collection as 
the percentage of possible sentence-ending punctuation marks in the text that indeed 
denote sentence boundaries. 

Since the use of abbreviations in a text depends on the particular text and text 
genre, the number of ambiguous punctuation marks, and the corresponding lower 
bound, will vary dramatically depending on text genre. For example, Liberman and 
Church (1992) report on a Wall Street Journal corpus containing 14,153 periods per 
million tokens, whereas in the Tagged Brown corpus (Francis and Kucera 1982), the 
figure is only 10,910 periods per million tokens. Liberman and Church also report that 
47% of the periods in the WSJ corpus denote abbreviations (thus a lower bound of 
53%), compared to only 10% in the Brown corpus (lower bound 90%) (Riley 1989). In 
contrast, Mfiller, Amerl, and Natalis (1980) reports lower bound statistics ranging from 
54.7% to 92.8% within a corpus of scientific abstracts. Such a range of lower bound 
figures suggests the need for a robust approach that can adapt rapidly to different text 
requirements. 

Another useful evaluation technique is the comparison of a new algorithm against 
a strong baseline algorithm. The baseline algorithm should perform better than the 
lower bound and should represent a strong effort or a standard method for solving 
the problem at hand. 

Although sentence boundary disambiguation is an essential preprocessing step of 
many natural language processing systems, it is a topic rarely addressed in the litera- 
ture and there are few public-domain programs for performing the segmentation task. 
For our studies we compared our system against the results of the UNIX STYLE pro- 
gram (Cherry and Vesterman 1991). 3 The STYLE program, which attempts to provide 
a stylistic profile of writing at the word and sentence level, reports the length and 
structure for all sentences in a document, thereby indicating the sentence boundaries. 
STYLE defines a sentence as a string of words ending in one of: period, exclamation 
point, question mark, or backslash-period (the latter of which can be used by an au- 
thor to mark an imperative sentence ending). The program handles numbers with 
embedded decimal points and commas and makes use of an abbreviation list with 48 
entries. It also uses the following heuristic: initials cause a sentence break only if the 
next word begins with a capital letter and is found in a dictionary of function words. 
In an evaluation on a sample of 20 documents, the developers of the program found 
it to incorrectly classify sentence boundaries 204 times out of 3287 possible (an error 
rate of 6.3%). 

3 Comparison against the STYLE program was suggested to us by Mickey Chandrasekar. 
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2.2 Regular Expressions and Heuristic Rules 
The method currently widely used for determining sentence boundaries is a regu- 
lar grammar, usually with limited lookahead. In the simplest implementation of this 
method, the grammar rules attempt to find patterns of characters, such as "period- 
space-capital letter," which usually occur at the end of a sentence. More elaborate 
implementations, such as the STYLE program discussed above, consider the entire 
word preceding and following the punctuation mark and include extensive word lists 
and exception lists to attempt to recognize abbreviations and proper nouns. There are 
a few examples of rule-based and heuristic systems for which performance numbers 
are available, discussed in the remainder of this subsection. 

The Alembic information extraction system (Aberdeen et al. 1995) contains a very 
extensive regular-expression-based sentence boundary disambiguation module, cre- 
ated using the lexical scanner generator Flex (Nicol 1993). The boundary disambigua- 
tion module is part of a comprehensive preprocess pipeline that utilizes a list of 75 
abbreviations and a series of over 100 hand-crafted rules to identify sentence bound- 
aries, as well as titles, date and time expressions, and abbreviations. The sentence 
boundary module was developed over the course of more than six staff months. On 
the Wall Street Journal corpus described in Section 4, Alembic achieved an error rate 
of 0.9%. 

Christiane Hoffmann (1994) used a regular expression approach to classify punctu- 
ation marks in a corpus of the German newspaper die tageszeitung with a lower bound 
(as defined above) of 92%. She used the UNIX tool LEX (Lesk and Schmidt 1975) 
and a large abbreviation list to classify occurrences of periods. Her method incorrectly 
classified less than 2% of the sentence boundaries when tested on 2,827 periods from 
the corpus. The method was developed specifically for the tageszeitung corpus, and 
Hoffmann reports that success in applying her method to other corpora would be de- 
pendent on the quality of the available abbreviation lists. Her work would therefore 
probably not be easily transportable to other corpora or languages. 

Mark Wasson and colleagues invested nine staff months developing a system that 
recognizes special tokens (e.g., nondictionary terms such as proper names, legal statute 
citations, etc.) as well as sentence boundaries. From this, Wasson built a stand-alone 
boundary recognizer in the form of a grammar converted into finite automata with 
1,419 states and 18,002 transitions (excluding the lexicon). The resulting system, when 
tested on 20 megabytes of news and case law text, achieved an error rate of 0.3% at 
speeds of 80,000 characters per CPU second on a mainframe computer. When tested 
against upper-case legal text the system still performed very well, achieving error 
rates of 0.3% and 1.8% on test data of 5,305 and 9,396 punctuation marks, respectively. 
According to Wasson, it is not likely, however, that the results would be this strong 
on lower-case-only data. 4 

Although the regular grammar approach can be successful, it requires a large 
manual effort to compile the individual rules used to recognize the sentence bound- 
aries. Such efforts are usually developed specifically for a text corpus (Liberman and 
Church 1992; Hoffmann 1994) and would probably not be portable to other text gen- 
res. Because of their reliance on special language-specific word lists, they are also not 
portable to other natural languages without repeating the effort of compiling exten- 
sive lists and rewriting rules. In addition, heuristic approaches depend on having a 

4 This work has not been published. All information about this system is courtesy of a personal 
communication with Mark Wasson. Wasson's reported processing time cannot be compared directly to 
the other systems since it was obtained from a mainframe computer and was estimated in terms of 
characters rather than sentences. 
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well-behaved corpus with regular punctuation and few extraneous characters, and 
they would probably not be very successful with texts obtained via optical character 
recognition (OCR). 

Miiller, Amerl, and Natalis (1980) provides an exhaustive analysis of sentence 
boundary disambiguation as it relates to lexical endings and the identification of ab- 
breviations and words surrounding a punctuation mark, focusing on text written in 
English. This approach makes multiple passes through the data to find recognizable 
suffixes and thereby filters out words that are not likely to be abbreviations. The mor- 
phological analysis makes it possible to identify words not otherwise present in the 
extensive word lists used to identify abbreviations. Error rates of 2-5% are reported 
for this method tested on over 75,000 scientific abstracts, with lower bounds ranging 
from 54.7% to 92.8%. 

2.3 Approaches Using Machine Learning 
There have been two other published attempts to apply machine-learning techniques 
to the sentence boundary disambiguation task. Both make use of the words in the 
context found around the punctuation mark. 

2.3.1 Regression Trees. Riley (1989) describes an approach that uses regression trees 
(Breiman et al. 1984) to classify periods according to the following features: 

• Probability[word preceding "." occurs at end of sentence] 

• Probability[word following "." occurs at beginning of sentence] 

• Length of word preceding .... 

• Length of word after "." 

• Case of word preceding ".': Upper, Lower, Cap, Numbers 

• Case of word following ".": Upper, Lower, Cap, Numbers 

• Punctuation after "." (if any) 

• Abbreviation class of words with "." 

The method uses information about one word of context on either side of the 
punctuation mark and thus must record, for every word in the lexicon, the probability 
that it occurs next to a sentence boundary. Probabilities were compiled from 25 million 
words of prelabeled training data from a corpus of AP newswire. The probabilities 
were actually estimated for the beginning and end of paragraphs rather than for all 
sentences, since paragraph boundaries were explicitly marked in the AP corpus, while 
the sentence boundaries were not. The resulting classification tree was used to identify 
whether a word ending in a period is at the end of a declarative sentence in the Brown 
corpus, and achieved an error rate of 0.2%. 5 Although this is an impressive error rate, 
the amount of training data (25 million words) required is prohibitive for a problem 
that acts as a preprocessing step to other natural language processing tasks; it would 
be impractical to expect this amount of data to be available for every corpus and 
language to be tagged. 

5 Time for training was  not reported, nor  was  the amount  of the Brown corpus against which testing 
was  performed; we assume the entire Brown corpus was  used. Furthermore, no estimates of scalability 
were given, so we are unable to report results with a smaller set. 
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2.3.2 Feed-forward Neural Networks. Humphrey and Zhou (1989) report using a feed- 
forward neural network to disambiguate periods, and achieve an error rate averaging 
7%. They use a regular grammar to tokenize the text before training the neural nets, 
but no further details of their approach are available. 6 

2.4 Our Approach 
Each of the approaches described above has disadvantages to overcome. In the follow- 
ing sections we present an approach that avoids the problems of previous approaches, 
yielding a very low error rate and behaving more robustly than solutions that require 
manually designed rules. We present results of testing our system on several corpora 
in three languages: English, German, and French. 

3. The Satz System 

This section describes the structure of our adaptive sentence boundary disambiguation 
system, known as Satz. 7 The Satz system represents the context surrounding a punc- 
tuation mark as a sequence of vectors, where the vector constructed for each context 
word represents an estimate of the part-of-speech distribution for the word, obtained 
from a lexicon containing part-of-speech frequency data. This use of part-of-speech 
estimates of the context words, rather than the words themselves, is a unique aspect 
of the Satz system, and is responsible in large part for its efficiency and effectiveness. 

The context vectors, which we call descriptor arrays, are input to a machine learn- 
ing algorithm trained to disambiguate sentence boundaries. The output of the learning 
algorithm is then used to determine the role of the punctuation mark in the sentence. 
The architecture of the system is shown in Figure 1. The Satz system works in two 
modes--learning mode and disambiguation mode. In learning mode, the input text 
is a training text with all sentence boundaries manually labeled, and the parameters 
in the learning algorithm are dynamically adjusted during training. Once learning 
mode is completed, the parameters in the learning algorithm remain fixed. Training 
of the learning algorithm is therefore necessary only once for each language, although 
training can be repeated for a new corpus or genre within a language, if desired. In 
disambiguation mode, the input is the text whose sentence boundaries have not been 
marked up yet and need to be disambiguated. 

The essence of the Satz system lies in how machine learning is used, rather than 
in which particular method is used. In this article we report results using two different 
learning methods: neural networks and decision trees. The two methods are almost 
equally effective for this task, and both train and run quickly using small resources. 
For some applications, one may be more appropriate than another, (e.g., the scores 
produced by a neural net may be useful for another processing step in a natural 
language program), so we do not consider either learning algorithm to be the "correct" 
one to use. Therefore, when we refer to the Satz system, we refer to the use of machine 
learning with a small training corpus, representing the word context surrounding each 
punctuation mark in terms of estimates of the parts of speech of those words, where 
these estimates are derived from a very small lexicon. 

6 Results were obtained courtesy of a personal communication with Joe Zhou. 
7 "Satz" is the German word for "sentence." 
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Figure 1 
The Satz architecture. 
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3.1 Tokenization 
The first stage of the process is lexical analysis, which breaks the input text (a stream 
of characters) into tokens. The Satz tokenizer is implemented using the UNIX tool 
LEX (Lesk and Schmidt 1975) and is modeled on the tokenizer used by the PARTS 
part-of-speech tagger (Church 1988). The tokens returned by the LEX program can 
be a sequence of alphabetic characters, a sequence of digits, 8 or a sequence of one or 
more non-alphanumeric characters such as periods or quotation marks. 

3.2 Part-of-Speech Lookup 
The individual tokens are next assigned a series of possible parts of speech, based on 
a lexicon and simple heuristics described below. 

3.2.1 Representing Context. The context surrounding a punctuation mark can be rep- 
resented in various ways. The most straightforward is to use the individual words 
preceding and following the punctuation mark, as in this example: 

at the plant. He had thought 

Using this approach, a representation of an individual word's position in a context 
must be made for every word in the language. Compiling these representations for 
each word is undesirable due to the large amount of training data, training time, and 
storage overhead required, especially since it is unlikely that such information will be 
useful to later stages of processing. 

As an alternative, the context could be approximated by using a single part of 
speech for each word. The above context would then be represented by the following 
part-of-speech sequence: 

preposition article noun 
pronoun verb verb 

However, requiring a single part-of-speech assignment for each word introduces a 
processing circularity: because most part-of-speech taggers require predetermined sen- 
tence boundaries, the boundary disambiguation must be done before tagging. But if 

8 Numbers containing periods acting as decimal points are considered a single token. This eliminates 
one possible ambiguity of the period at the lexical analysis stage. 
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the disambiguation is done before tagging, no part-of-speech assignments are avail- 
able for the boundary-determination system. To avoid this circularity, we approximate 
each word's part of speech in one of two ways: (1) by the prior probabilities of all 
parts of speech for that word, or (2) by a binary value for each possible part of speech 
for that word. 

In the case of prior probabilities, each word in the context is represented by the 
probability that the word occurs as each part of speech, with all part-of-speech prob- 
abilities in the vector summing to 1.0. Continuing the example, the context becomes 
(and for simplicity, suppressing the parts of speech with value 0.0): 

preposition(1.0) article(1.0) noun(O.8)/verb(0.2) 
pronoun(1.0) verb(1.0) noun(O.1)/verb(0.9) 

This denotes that at and the have a probability of 1.0 of occurring as a preposition 
and article respectively, plant has a probability of 0.8 of occurring as a noun and a 
probability of 0.2 of occurring as a verb, and so on. These probabilities, which are 
more accurately "scaled frequencies," are based on occurrences of the words in a 
pretagged corpus, and are therefore corpus dependent. 9 

In the case of binary part-of-speech assignment, for each possible part of speech, 
the vector is assigned the value 1 if the word can ever occur as that part of speech 
(according to the lexicon), and the value 0 if it cannot. In this case the sum of all items 
in the vector is not predefined, as it is with probabilities. Continuing the example with 
binary POS vectors (and, for simplicity, suppressing the parts of speech with value 0), 
the context becomes: 

preposition(I) article(I) noun(1)/verb(1) 
pronoun(I) verb(l) noun(1)/verb(1) 

The part-of-speech data necessary to construct probabilistic and binary vectors 
is often present in the lexicon of a part-of-speech tagger or other existing NLP tool, 
or it can easily be obtained from word lists; the data would thus be readily avail- 
able and would not require excessive storage overhead. It is also possible to estimate 
part-of-speech data for new or unknown words. For these reasons, we chose to ap- 
proximate the context in our system by using the prior part-of-speech information. In 
Section 4.7 we give the results of a comparative study of system performance with 
both probabilistic and binary part-of-speech vectors. 

3.2.2 The Lexicon. An important component of the Satz system is the lexicon contain- 
ing part-of-speech frequency data from which the descriptor arrays are constructed. 
Words in the lexicon are followed by a series of part-of-speech tags and associated 
frequencies, representing the possible parts of speech for that word and the frequency 
with which the word occurs as each part of speech. The frequency information can 
be obtained in various ways, as discussed in the previous section. The lexical lookup 
stage of the Satz system finds a word in the lexicon (if it is present) and returns the 
possible parts of speech. For the English word well, for example, the lookup module 
might return the tags 

JJ/15 NN/18  QL/68 RB/634 UH/22  VB/5 

9 The frequencies can be obtained from an existing corpus tagged manually or automatically; the corpus 
does not need to be tagged specifically for this task. 
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indicating that, in the corpus on which the lexicon is based, the word well occurred 
15 times as an adjective, 18 as a singular noun, 68 as a qualifier, 634 as an adverb, 22 
as an interjection, and 5 as a singular verb)  ° 

3.2.3 Heuristics for Unknown Words. If a word is not present in the lexicon, the Satz 
system contains a set of heuristics that attempt to assign the most reasonable parts of 
speech to the word. A summary of these heuristics is listed below. 

Unknown tokens containing a digit (0-9) are assumed to be numbers. 

Any token beginning with a period, exclamation point, or question mark 
is assigned a "possible end-of-sentence punctuation" tag. This catches 
common sequences like "?!" and ". . .  ". 

Common morphological endings are recognized and the appropriate 
part(s)-of-speech is assigned to the entire word. 

Words containing a hyphen are assigned a series of tags and frequencies 
equally distributed between adjective, common noun, and proper noun. 

Words containing an internal period are assumed to be abbreviations. 

A capitalized word is not always a proper noun, even when it appears 
somewhere other than in a sentence's initial position (e.g., the word 
American is often used as an adjective). Those words not present in the 
lexicon are assigned a certain language-dependent probability (0.9 for 
English) of being a proper noun, and the remainder is distributed 
uniformly among adjective, common noun, verb, and abbreviation, the 
most likely tags for unknown words, n 

Capitalized words appearing in the lexicon but not registered as proper 
nouns can nevertheless still be proper nouns. In addition to the 
part-of-speech frequencies present in the lexicon, these words are 
assigned a certain probability of being a proper noun (0.5 for English) 
with the probabilities already assigned to that word redistributed 
proportionally in the remaining 0.5. The proportion of words falling into 
this category varies greatly depending on the style of the text and the 
uniformity of capitalization. 

As a last resort, the word is assigned the tags for common noun, verb, 
adjective, and abbreviation with a uniform frequency distribution. 

These heuristics can be easily modified and adapted to the specific needs of a new 
language, 12 although we obtained low error rates without changing the heuristics. 

3.3 Descriptor Array Construction 
A vector, or descriptor array, is constructed for each token in the input text. The lexicon 
may contain as many as several hundred very specific tags, which we first need to map 
into more general categories. For example, the Brown corpus tags of present tense verb, 

10 In this example, the frequencies are derived from the Brown corpus (Francis and Kucera 1982). 
11 Note that in the case of binary vectors, all probabilities receive the value 1. 
12 For example, the probability of a capitalized word being a proper noun is higher in English than in 

German, where all nouns are also capitalized. 
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Figure 2 

noun 
article 
conjunction 
preposition 
number 
left parentheses 
non-punctuation character 
colon or dash 
sentence-ending punctuation 

verb 
modifier 
pronoun 
proper noun 
comma or semicolon 
right parentheses 
possessive 
abbreviation 
others 

Elements of the descriptor array assigned to each incoming token. 

past participle, and modal verb are all mapped into the more general "verb" category. The 
parts of speech returned by the lookup module are thus mapped into the 18 general 
categories given in Figure 2, and the frequencies for each category are summed. In 
the case of a probabilistic vector described in Section 3.2.1, the 18 category frequencies 
for the word are then converted to probabilities by dividing the frequencies for each 
by the total frequency for the word. For a binary vector, all categories with a nonzero 
frequency count are assigned a value of 1, and all others are assigned a value of 
0. In addition to the 18 category frequencies, the descriptor array also contains two 
additional flags that indicate if the word begins with a capital letter and if it follows a 
punctuation mark, for a total of 20 items in each descriptor array. These last two flags 
allow the system to include capitalization information when it is available without 
having to require that this information be present. 

3.4 Classification by a Learning Algorithm 
The descriptor arrays representing the tokens in the context are used as the input to 
a machine learning algorithm. To disambiguate a punctuation mark given a context 
of k surrounding words (referred to in this article as k-context), a window of k + 1 
tokens and their descriptor arrays is maintained as the input text is read. The first 
k/2 and final k/2 tokens of this sequence represent the context in which the middle 
token appears. If the middle token is a potential end-of-sentence punctuation mark, 
the descriptor arrays for the context tokens are input to the learning algorithm and the 
output result indicates whether the punctuation mark serves as a sentence boundary 
or not. In learning mode, the descriptor arrays are used to train the parameters of 
the learning algorithm. We investigated the effectiveness of two separate algorithms: 
(1) back-propagation training of neural networks, and (2) decision tree induction. The 
learning algorithms are described in the next two sections, and the results obtained 
with the algorithms are presented in Section 4. 

3.4.1 Neural Network. Artificial neural networks have been successfully applied for 
many years in speech recognition applications (Bourland and Morgan 1994; Lippmann 
1989), and more recently in NLP tasks such as word category prediction (Nakamura 
et al. 1990) and part-of-speech tagging (Schmid 1994). Neural networks in the context 
of machine learning provide a well-tested training algorithm (back-propagation) that 
has achieved high success rates in pattern-recognition problems similar to the problem 
posed by sentence boundary disambiguation (Hertz, Krogh, and Palmer 1991). 

For Satz, we used a fully-connected feed-forward neural network, as shown in 
Figure 3. The network accepts k • 20 input values, where k is the size of the context 
and 20 is the number of elements in the descriptor array described in Section 3.3. The 
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DA D A .  • • DA DA 

Output (0 < x < 1) 
Figure 3 
Neural network architecture (DA = descriptor array of 20 items). 

Input Layer 

Hidden Layer 

Output Layer 

input layer is fully connected to a hidden layer consisting of j hidden units; the hidden 
units in turn feed into one output unit that indicates the results of the function. In a 
traditional back-propagation network, the input to a node is the sum of the outputs 
of the nodes in the previous layer multiplied by the weights between the layers. This 
sum is then passed through a "squashing" function to produce a node output between 
0 and 1. A commonly-used squashing function--due to its mathematical properties, 
which assist in network training--is the sigrnoidal function, given byf(hi) = ~ ' 1  
where hi is the node input and T is a constant to adjust the slope of the sigmoid. 

In the Satz system we use a sigrnoidal squashing function on all hidden nodes and 
the single output node of the neural network. The output of the network is thus a single 
value between 0 and 1, and represents the strength of the evidence that a punctuation 
mark occurring in its context is indeed the end of a sentence. Two adjustable sensitivity 
thresholds, to and tl, are used to classify the results of the disambiguation. If the 
output is less than to, the punctuation mark is not a sentence boundary; if the output 
is greater than or equal to tl, it is a sentence boundary. Outputs which fall between 
the thresholds cannot be disambiguated by the network (which may indicate that the 
mark is inherently ambiguous) and are marked accordingly, so they can be treated 
specially in later processing. 13 For example, the sentence alignment algorithm in Gale 
and Church (1993) allows a distinction between hard and soft boundaries, where soft 
boundaries are movable by the alignment program. In our case, punctuation marks 
remaining ambiguous after processing by Satz can be treated as soft boundaries while 
unambiguous punctuation marks (as well as paragraph boundaries) can be treated as 
hard boundaries, thus allowing the alignment program greater flexibility. 

A neural network is trained by presenting it with input data paired with the de- 
sired output. For Satz, the input is the context surrounding the punctuation mark to be 
disambiguated, and the output is a score indicating how much evidence there is that 
the punctuation mark is acting as an end-of-sentence boundary. The nodes are con- 
nected via links that have weights assigned to them, and if the network produces an 
incorrect score, the weights are adjusted using an algorithm called back-propagation 
(Hertz, Krogh, and Palmer 1991) so that the next time the same input is presented 
to the network, the output should more closely match the desired score. This train- 
ing procedure is often iterated many times in order to allow the weights to adjust 

13 When to ---- tl, no punctuation mark is left ambiguous. 
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appropriately, and the same input data is presented multiple times. Each round of 
presenting the same input data is called an epoch; of course, it is desirable to require 
as few training epochs and as little training data as possible. If one trains the network 
too often on the same data, overfitting can occur, meaning that the weights become 
too closely aligned with the particular training data that has been presented to the 
network, and so may not correspond well to new examples that will come later. For 
this reason, training should be accompanied by cross-validation (Bourland and Mor- 
gan 1994), a check against a held-out set of data to be sure that the weights are not 
too closely tailored to the training text. This will be described in more detail below. 

Training data for the neural network consist of two sets of text in which all sen- 
tence boundaries have been manually disambiguated. The first text, the training text, 
contains 300-600 test cases, where a test case is an ambiguous punctuation mark. The 
weights of the neural network are trained on the training text using the standard back- 
propagation algorithm (Hertz, Krogh, and Palmer 1991). The second set of texts used 
in training is the cross-validation set, whose contents are separate from the training 
text and which contains roughly half as many test cases as the training text. Training 
of the weights is not performed on this text; the cross-validation text is instead used 
to increase the generalization of the training, such that when the total training error 
over the cross-validation text reaches a minimum, training is halted. TM Testing is then 
performed on texts independent of the training and cross-validation texts. We measure 
the speed of training by the number of training epochs required to complete training, 
where an epoch is a single pass through all the training data. Training times for all 
experiments reported in this article were less than one minute and were obtained on 
a DEC Alpha 3000 workstation, unless otherwise noted. 

In Sections 4.1-4.9 we present results of testing the Satz system with a neural 
network, including investigations of the effects of varying network parameters such 
as hidden layer size, threshold values, and amount of training data. 

3.4.2 Decision Tree. Algorithms for decision tree induction (Quinlan 1986; Bahl et 
al. 1989) have been successfully applied to NLP problems such as parsing (Resnik 
1993; Magerman 1995) and discourse analysis (Siegel and McKeown 1994; Soderland 
and Lehnert 1994). We tested the Satz system using the c4.5 (Quinlan 1993) decision 
tree induction program as the learning algorithm and compared the results to those 
obtained previously with the neural network. These results are discussed in Section 
4.10. 

The induction algorithm proceeds by e;caluating the information content of a series 
of binary attributes and iteratively building a tree from the attribute values, with the 
leaves of the decision tree being the values of the goal attributes. At each step in the 
learning procedure, the evolving tree is branched on the attribute that divides the data 
items with the highest gain in information. Branches are added to the tree until the 
decision tree can classify all items in the training set. Overfitting is also possible in 
decision tree induction, resulting in a tree that can very accurately classify the training 
data but may not be able to accurately classify new examples. To reduce the effects of 
overfitting, the c4.5 learning algorithm prunes the tree after the entire decision tree has 
been constructed. It recursively examines each subtree to determine whether replacing 
it with a leaf or a branch would reduce the number of errors. This pruning produces 
a decision tree better able to classify data different from the training data. 

14 The training error is the  least  m e a n  squares  error, one-hal f  the  s u m  of the  squares  of all the  errors, 
where  the  error of  a part icular  i tem is the difference be tween  the des i red  ou tpu t  and  the  actual  o u t p u t  
of the  neura l  net. 
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Table 1 
Results of comparing context sizes. 

Context Size Training Epochs Testing Errors Error (%) 

4-context 1,731 1,424 5.2% 
6-context 218 409 1.5% 
8-context 831 877 3.2% 

Integrating the decision tree induction algorithm into the Satz system was simply 
a matter of defining the input attributes as the k descriptor arrays in the context, 
with a single goal attribute representing whether the punctuation mark is a sentence 
boundary or not. Training data for the induction of the decision tree were identical to 
the training set used to train the neural network. 

4. Experiments with English Texts 

We first tested the Satz system using English texts from the Wall Street Journal portion 
of the ACL/DCI collection (Church and Liberman 1991). We constructed a training text 
of 573 test cases and a cross-validation text of 258 test cases. 15 We then constructed 
a separate test text consisting of 27,294 test cases, with a lower bound of 75.0%. The 
baseline system (UNIX STYLE) achieved an error rate of 8.3% on the sentence bound- 
aries in the test set. The lexicon and thus the frequency counts used to calculate the 
descriptor arrays were derived from the Brown corpus (Francis and Kucera 1982). In 
initial experiments we used the extensive lexicon from the PARTS part-of-speech tag- 
ger (Church 1988), which contains 30,000 words. We later experimented with a much 
smaller lexicon, and these results are discussed in Section 4.4. In Sections 4.1-4.9 we 
describe the results of our experiments with the Satz system using the neural network 
as the learning algorithm. Section 4.10 describes results using decision tree induction. 

4.1 Context Size 
In order to determine how much context is necessary to accurately disambiguate sen- 
tence boundaries in a text, we varied the size of the context from which the neural 
network inputs were constructed and obtained the results in Table 1. The number in 
the Training Epochs column is the number of passes through, the training data required 
to learn the training set; the number in the Testing Errors cohnnn is the number of 
errors on the 27,294 item test set the system made after training with the correspond- 
ing context size. From these data we concluded that a 6-token context, 3 preceding the 
punctuation mark and 3 following, produces the best results. 

4.2 Hidden Units 
The number of hidden units in a neural network can affect its performance. To de- 
termine the size of the hidden layer in the neural network that produced the lowest 
output error rate, we experimented with various hidden layer sizes and obtained the 
results in Table 2. From these data we concluded that the lowest error rate in this case 
is possible using a neural network with two nodes in its hidden layer. 

15 Note that "constructing" a training, cross-validation, or test text simply involves manually 
disambiguating the sentence boundaries by inserting a unique character sequence at the end of each 
sentence. 
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Table 2 
Results of comparing hidden layer sizes (6-context). 

# Hidden Units Training Epochs Testing Errors Error (%) 

1 623 721 2.6% 
2 216 409 1.5% 
3 239 435 1.6% 
4 350 1,343 4.9% 

4.3 Sources  of  Errors 
As described in Sections 4.1 and 4.2, the best results were obtained with a context size 
of 6 tokens and a hidden layer with 2 units. This configuration produced a total of 409 
errors out of 27,294 test cases, for an error rate of 1.5%. These errors fall into two major 
categories: (i) false positive, i.e., a punctuation mark the method erroneously labeled 
as a sentence boundary, and (ii) false negative, i.e., an actual sentence boundary that 
the method did not label as such. Table 3 contains a summary of these errors. 

These errors can be decomposed into the following groups: 

(37.6%) false positive at an abbreviation within a title or name, usually 
because the word following the period exists in the lexicon with other 
parts of speech (Mr. Gray, Col. North, Mr. Major, Dr. Carpenter, Mr. Sharp). 

(22.5%) false negative due to an abbreviation at the end of a sentence, 
most frequently Inc., Co., Corp., or U.S., which all occur within sentences 
as well. 

(11.0%) false positive or negative due to a sequence of characters 
including a period and quotation marks, as this sequence can occur both 
within and at the end of sentences. 

(9.2%) false negative resulting from an abbreviation followed by 
quotation marks; related to the previous two types. 

(9.8%) false positive or false negative resulting from presence of ellipsis 
(...), which can occur at the end of or within a sentence. 

(9.9%) miscellaneous errors, including extraneous characters (dashes, 
asterisks, etc.), ungrammatical sentences, misspellings, and parenthetical 
sentences. 

The first two items indicate that the system is having difficulty recognizing the 
function of abbreviations. We attempted to counter this by dividing the abbreviations 
in the lexicon into two distinct categories, title abbreviations such as Mr. and Dr., 
which almost never occur at the end of a sentence, and all other abbreviations. This 
new classification, however, significantly increased the training time and eliminated 
only 12 of the 409 errors (2.9%). 

The third and fourth items demonstrate the difficulty of distinguishing subsen- 
tences within a sentence. This problem may be addressed by creating a new classifi- 
cation for punctuation marks, the "embedded end-of-sentence," as suggested in Sec- 
tion 1. The fifth class of error may similarly be addressed by creating a new classifica- 
tion for ellipses, and then attempting to determine the role of the ellipses independent 
of the sentence boundaries. 
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Table 3 
Results of testing on 27,294 
mixed-case items; to = tl = 0.5, 
6-context, 2 hidden units. 

224 (54.8%) false positives 
185 (45.2%) false negatives 

409 total errors out of 27,294 test cases 

Table 4 
Results of comparing lexicon size (27,294 potential sentence 
boundaries). 

Words in Lexicon Training Epochs Testing Errors Error (%) 

30,000 218 411 1.5% 
5,000 372 483 1.8% 
3,000 1,056 551 2.0% 

4.4 Lexicon Size 
The results in Sections 4.1-4.3 depended on a very large lexicon with more than 30,000 
words. It is not always possible to obtain or build a large lexicon, so it is important 
to understand the impact of a smaller lexicon on the training time and error rate of 
the system. We altered the size of the English lexicon used in training and testing 
by removing large sections of the original lexicon and obtained the results in Table 4. 
These data demonstrate that a larger lexicon provides faster training and a lower error 
rate, although the performance with the smaller lexica was still almost as accurate. In 
the experiments describecl in Sections 4.5--4.10, we used a 5,000 word lexicon. 

It is important to note, however, that in reducing the size of the lexicon as a whole, 
the number of abbreviations remained constant (at 206). Recognizing abbreviations 
gives important evidence as to the location of sentence boundaries, and reducing the 
number of abbreviations in the lexicon naturally reduces the accuracy of the system. 
Most existing boundary disambiguation systems, such as the STYLE program, depend 
heavily on abbreviation lists and would be relatively ineffective without information 
about abbreviations. However, the robustness of the Satz system allows it to still 
produce a relatively high accuracy without relying on extensive abbreviation lists. 
To demonstrate this robustness, we removed all abbreviations from the lexicon after 
reducing it in size to 5,000 words. The resulting Satz error rate was 4.9%, which was 
still significantly better than the STYLE baseline error rate of 8.3%, which was obtained 
with a 48 entry abbreviation list. 

4.5 Single-Case Results  
A major advantage of the Satz approach to sentence boundary recognition is its robust- 
ness. In contrast to many existing systems, which depend on brittle parameters such 
as capitalization and spacing, Satz is able to adapt to texts that are not well-formed, 
such as single-case texts. The two descriptor array flags for capitalization, discussed in 
Section 3.3, allow the system to include capitalization information when it is available. 
When this information is not available, the system is nevertheless able to adapt and 
produce a low error rate. To demonstrate this robustness, we converted the training, 
cross-validation, and test texts used in previous testing to a lower-case-only format, 
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with no capital letters. After retraining the neural network with the lower-case-only 
texts, the Satz system was able to correctly disambiguate all but 3.3% of the sentence 
boundaries. After converting the texts to an upper-case-only format, with all capital 
letters, and retraining the network on the texts in this format, the system was able to 
correctly label all but 3.5%. 16 

4.6 Results on OCR Texts 
A large and ever-increasing source of on-line texts is texts obtained via optical character 
recognition (OCR). These texts require very robust processing methods, as they contain 
a large number of extraneous and incorrect characters. The robustness results of the 
Satz system in the absence of an abbreviation list and capitalization suggest that it 
would be well suited for processing OCR texts as well. To test this, we prepared 
a small corpus of raw OCR data containing 1,157 punctuation marks. The STYLE 
program produced an error rate of 11.7% over the OCR texts; the Satz system, using 
a neural network trained on mixed-case WSJ texts, produced an error rate of 4.2%. 

In analyzing the sources of the errors produced by Satz over the raw OCR data, it 
was clear that many errors came from areas of high noise in the texts, such as the line 
in example (6), which contains an extraneous question mark and three periods. These 
areas probably represented charts or tables in the source text and would most likely 
need to be eliminated anyway, as it is doubtful any text-processing program would 
be able to productively process them. We therefore applied a simple filter to the raw 
OCR data to locate areas of high noise and remove them from the text. In the resulting 
text of 1,115 punctuation marks, the STYLE program had an error rate of 9.6% while 
the Satz system improved to 1.9%. 

(6) e:)i. i)'e;y',?;.i#i TCE grades' are' 

(7) newsprint. Furthermore, shoe presses have Using rock for granite roll 
Two years ago we reported on advances in 

While the low error rate on OCR texts is encouraging, it should not be viewed as 
an absolute figure. One problem with OCR texts is that periods in the original text 
may be scanned as commas or dropped from the text completely. Our system is unable 
to detect these cases. Similarly, the definition of a sentence boundary is not necessarily 
absolute, as large parts of texts may be incorrectly or incompletely scanned by the 
OCR program. The resulting "sentences" may not correspond to those in the original 
text, as can be seen in example (7). Such problems cause a low error rate to have less 
significance in OCR texts than in more well-formed texts such as the WSJ corpus. 

4.7 Probabilistic vs. Binary Inputs 
In the discussion of methods of representing context in Section 3.2.1, we suggested two 
ways of approximating the part-of-speech distribution of a word, using prior prob- 
abilities and binary features. The results reported in the previous sections were all 
obtained using the prior probabilities in the descriptor arrays for all tokens. Our ex- 
periments in comparing probabilisfic inputs to binary feature inputs, given in Table 5, 
indicate that using binary feature inputs significantly improves the performance of the 
system on both mixed-case and single-case texts, as well as decreasing the training 

16 The difference in results with upper-case-only and lower-case-only formats can probably be attributed 
to the capitalization flags in the descriptor arrays, as these flags would always be on in one case and 
off in the other. 
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Table 5 
Results of comparing probabilistic to binary feature inputs (5,000 word lexicon, 27,294 English 
test cases). 

Probabilistic Binary 

Training Testing Error (%) Training Testing Error (%) 
Epochs Errors Epochs Errors 

Mixed case 368 483 1.8% 312 474 1.7% 
Lower case 182 890 3.3% 148 813 3.0% 
Upper case 542 956 3.5% 190 744 2.7% 

Table 6 
Results of varying the sensitivity thresholds (27,294 test cases, 6-context, 2 hidden units). 

Lower Upper False False Not Were % Not Error (%) 
Threshold Threshold Positive Negative Labeled Correct Labeled 

0.5 0.5 209 200 0 0 0.0 1.5 
0.4 0.6 173 174 145 83 0.50 1.3 
0.3 0.7 140 148 326 205 1.20 1.1 
0.2 0.8 111 133 541 376 1.98 0.9 
0.1 0.9 79 94 1,021 785 3.74 0.6 

times. The lower error  rate and faster training t ime suggest that the simpler approach 
of using binary feature inputs to the neural  ne twork  is better than the frequency-based 
inputs previously used. 

4.8 Thresholds 
As described in Section 3.4.1, the output  of the neural  ne twork  (after passing through 
the sigmoidal squashing function) is used to determine the function of a punctuat ion 
mark  based on its value relative to two sensitivity thresholds, with outputs  that fall 
be tween the thresholds denot ing that the function of the punctuat ion  mark is still 
ambiguous.  These are shown in the Not  Labeled column of Table 6, which gives the 
results of a systematic exper iment  with the sensitivity thresholds. As the thresholds 
were move d  from the initial values of 0.5 and 0.5, certain items that had been classi- 
fied as False Pos or False Neg fell be tween the thresholds and became Not  Labeled. 
At the same time, however,  items that had been correctly labeled also fell between 
the thresholds, and these are shown in the Were Correct  c o l u m n .  17 There is thus a 
tradeoff: decreasing the error percentage by  adjusting the thresholds also decreases 
the percentage of cases correctly labeled and increases the percentage of items left 
ambiguous.  

4.9 Amount  of Training Data 
To obtain the results in Sections 4.1-4.8, we used very  small training and cross- 
validation sets of 573 and 258 items, respectively. The training and cross-validation 
sets could thus be constructed in a few minutes,  and the resulting system error rate 
was very  low. To determine the system improvement  with more  training data, we 

17 Note that the number of items in the Were Correct column is a subset of those in the Not Labeled 
column. 
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Table 7 
Results of varying size of training and cross-validation sets (19,034 test 
items). 

Training Items Cross-validation Items Training Epochs Error (%) 

573 258 85 1.5% 
622 587 84 1.8% 

1,174 587 135 2.0% 
1,858 1,266 172 1.2% 
2,514 1,266 222 1.1% 
3,179 1,952 316 1.3% 

removed  a port ion of the test data and incrementally added  it to the training and 
cross-validation sets. We found that, after an initial increase in the error rate, which 
can probably be accounted for by  the fact that the new training data came from a 
different part  of the corpus, increasing the size of the training and cross-validation 
sets to 2,514/1,266 reduced the error percentage to 1.1%, as can be seen in Table 7. 
The trade-off for this decreased error rate is a longer training t ime (often more  than 
10 minutes) as well as the extra t ime required to construct the larger sets. 

4.10 Decision Trees 
We next  compared  the Satz system error rate obtained using the neural  ne twork  with 
results using a decision tree. We were able to use some of the previous  results, specifi- 
cally the optimali ty of a 6-context and the effectiveness of a smaller lexicon and binary 
feature vectors, to obtain a direct compar ison wi th  the neural  net  results. We used the 
c4.5 decision tree induct ion p rogram (Quinlan 1993) and a 5,000 word  lexicon to pro- 
duce all decision tree results. 

4.10.1 Size of Training Set. As we showed in Section 4.9, the size of the training set 
used for the neural  ne twork  affected the overall system error rate. The same was true 
with the decision tree induct ion algorithm, as seen in Figure 4. The lowest  error rate 
(1.0%) was obtained wi th  a training set of 6,373 items. 

4.10.2 Mixed-Case Results.  One advantage of decision tree induct ion is that the al- 
gori thm clearly indicates which of the input  attributes are most  important.  While the 
6-context descriptor arrays present  120 input  attributes to the algorithm, c4.5 induced  
a decision tree utilizing only 10 of the attributes, w h en  trained on the same mixed-case 
WSJ text used to train the neural  network.  The 10 attributes for mixed-case English 
texts, as seen in the induced decision tree in Figure 5, are (where t - 1 is the token 
preceding the punctuat ion  mark,  t + 1 is the token following, and so on): 

t - 1 can be an abbreviation 

t + 1 is a comma or semicolon 

t + 1 can be a sentence-ending punctuat ion  mark  

t + 1 can be a p ronoun  

t + 1 is capitalized 

t + 1 can be a conjunction 
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Figure 4 
Results of increasing training set size for decision tree induction (19,034 item test set). 

t + 1 can be a proper  noun  

t + 2 can be a noun  

t - 3 can be a modifier  

t - 3 can be a p roper  noun  

The decision tree created from the small training set of 622 items resulted in an 
error rate of 1.6%. This result was slightly higher  than the lowest error rate (1.5%) 
obtained with the neural  ne twork  trained with a similar training set and a 5,000 word  
lexicon. The lowest  error rate obtained using a larger training set to induce the decision 
tree (1.0%), however,  is better than the lowest error rate (1.1%) for the neural  ne twork  
trained on a larger set. 

4.10.3 Single-Case Results. Running the induction algori thm on upper-case-only and 
lower-case-only texts both p roduced  the same decision tree, shown in Figure 6. An 
interesting feature of this tree is that it reduced the 120 input  attributes to just 4 
impor tant  ones. Note the similarity of this tree to the algori thm used by  the STYLE 
program as discussed in Section 2. 

Trained on 622 items, this tree p roduced  527 errors over  the 27,294 item test set, 
an error rate of 1.9%, for both upper-case-only and lower-case-only texts. This error 
rate is lower than the best result for the neural  ne twork  (3.3%) on single-case texts, 
despite the small size of the training set used. 

5. Adaptation to Other  Languages 

Since the disambiguation component  of the sentence boundary  recognition system, the 
learning algorithm, is language independent ,  the Satz system can be easily adapted  to 
natural  languages with punctuat ion  systems similar to English. Adaptat ion to other 
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t-3 t-2 t-1 . t+l t+2 t+3 

• t-1 can be an abbreviation? 

t+l can be a pronoun? t+l can be a sent-end 
punctuation? 

yes o 

t+l is 0 t+t is 
1 capitalized? , or ;? 

Y ~  yes / " " ~ n  o 

t+l can be a 0 0 1 
conjunction? 

yes / ~ ~ n o  
1 t+l can be a 

proper noun? 

0 t+2 can be a noun? 

yes f / ~ n o  

1 t-3 can be a 
modifier?. 

0 t-3 can be a 
proper noun? 

yes ~ ~ n o  

1 0 
Figure 5 
Decision tree induced for mixed-case English texts. Leaf nodes labeled with 1 indicate that the 
punctuation mark is determined to be a sentence boundary. 

languages involves obtaining (or building) a small lexicon containing the necessary 
part-of-speech data and constructing small training and cross-validation texts. We have 
successfully adapted the Satz system to German and French, and the results are de- 
scribed below. 

5.1 German 
The German lexicon was built from a series of public-domain word lists obtained 
from the Consortium for Lexical Research. In the resulting lexicon of 17,000 German 
adjectives, verbs, prepositions, articles, and 156 abbreviations, each word was assigned 
only the parts of speech for the lists from which it came, with a frequency of I for each 
part of speech. As the lack of actual frequency data in the lexicon made construction 
of a probabilistic descriptor array impossible, we performed all German experiments 
using binary vectors. The part-of-speech tags used were identical to those from the 
English lexicon, and the descriptor array mapping remained unchanged. This lexicon 
was used in testing with two separate corpora. The total development time required to 
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t -3  t -2 t-1 . t+l t+2 t+3 

t -1  can be an abbreviation? 

t+l can be a pronoun? t+l can be a sent -end 
punctuation? 

1 0 0 t+l is 
, or ;? 

0 1 

Figure 6 
Decision tree induced for single-case English texts. 

adapt  Satz to German,  including building the lexicon and constructing training texts, 
was less than one day. We tested the system with two separate German corpora. 

5.1.1 Siiddeutsche Zeitung Corpus.  The Siiddeutsche Zeitung corpus consists of sev- 
eral megabytes  of on-line texts f rom the German  newspaper.  TM We constructed a train- 
ing text of 520 items from the Sfiddeutsche Zeitung corpus, and a cross-validation text 
of 268 items. Training was per formed in less than five minutes  on a Next  workstation. 19 
Testing on a sample of 3,184 separate items from the same corpus resulted in error rates 
less than 1.3%, as summar ized  in Table 8. A direct comparison to the UNIX STYLE 
program is not  possible for German texts, as the STYLE program is only effective for 
English texts. The SZ corpus did have a lower bound  of 79.1%, which was similar to 
the 75.0% lower bound  of the WSJ corpus. 

5.1.2 German News Corpus.  The German  News corpus was constructed from a series 
of public-domain German  articles distr ibuted internationally by  the Universi ty of Ulm. 
We constructed a training text of 268 potential  sentence boundar ies  from the corpus, 
as well as a cross-validation text of 150 potential  sentence boundaries,  and the training 
time was less than one minute  in all cases. A separate port ion of the corpus was used 
for testing the system and contained over  5,037 potential  sentence boundar ies  from 
the months  July-October  1994, with a "baseline system performance of 96.7%. Results 
of testing on the German News corpus are given in Table 8 and show a very  low error 
rate for both mixed-case and single-case texts. Repeating the testing with a smaller 
lexicon containing less than 2,000 words  still p roduced  an error rate lower than 1% 
with a slightly higher  training time. 

5.1.3 Decis ion Tree Induction for German Texts. Using the c4.5 p rogram to induce 
decision trees from a 788 item German  training set (from the SZ corpus) resulted in a 
tree utilizing 11 of the 120 attributes. The error rates over  the SZ test set were 2.3% for 
mixed-case texts and 1.9% for single-case texts, both noticeably higher  than the best 
error rate (1.3%) achieved with the neural  ne twork  on the SZ corpus. The decision tree 

18 All work with the Siiddeutsche Zeitung corpus was performed in collaboration with the University of 
Munich. 

19 The Next workstation is significantly slower than the DEC Alpha workstation used in other tests, 
which accounts for the slower training time. 
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Table 8 
German results (17,000 word lexicon). 

Training Epochs Testing Errors Error (%) 

Siiddeutsche Zeitung mixed case 204 42 1.3% 
Lower case 141 44 1.4% 
Upper case 274 43 1.4% 

Decision tree mixed 72 2.3% 
Single 61 1.9% 

German News mixed case 732 37 0.7% 
Lower case 678 25 0.5% 
Upper case 611 36 0.7% 

Decision tree mixed 36 0.7% 
Single 36 0.7% 

Table 9 
French results (1,000 word lexicon, 3,766 potential sentence boundaries). 

Probabilistic Binary 

Training Testing Error (%) Training Testing Error (%) 
Epochs Errors Epochs Errors 

Mixed case 273 39 1.0% 302 22 0.6% 
Lower case 243 24 0.6% 181 29 0.8% 
Upper case 328 25 0.7% 223 21 0.6% 

Decision tree (all cases) 17 0.4% 

induced for the German  News  corpus  util ized only three attributes (t - 1 can be an 
abbreviation, t - 1 can be a number,  t + 1 can be a noun)  and p roduced  a 0.7% error 
rate in all cases. 

5.2 French  
The French lexicon was compiled from the part-of-speech data obtained by  running 
the Xerox PARC part-of-speech tagger (Cutting et al. 1991) on a por t ion of the French 
half of the Canadian Hansards  corpus. The lexicon consisted of less than 1,000 words  
assigned parts  of speech by  the tagger, including 20 French abbreviations appended  to 
the 206 English abbreviations available f rom the lexicon used in obtaining the results 
described in Section 4. The part-of-speech tags in the lexicon were different f rom 
those used in the English implementat ion,  so the descriptor array mapping  had to 
be adjusted accordingly. The deve lopment  t ime required to adapt  Satz to French was 
two days. A training text of 361 potential  sentence boundar ies  was constructed from 
the Hansards  corpus, and a cross-validation text of 137 potential  sentence boundaries ,  
and the training t ime was less than one minute  in all cases. The results of testing 
the system on a separate set of 3,766 potential  sentence boundar ies  (also from the 
Hansards  corpus) with a baseline algori thm performance of 80.1% are given in Table 
9, including a compar ison of results with both  probabilistic and binary feature inputs. 
These data show a very  low system error  rate on both  mixed and single-case texts. In 
addition, the decision tree induced from 498 French training items by  the c4.5 p rogram 
produced  a lower error rate (0.4%) in all cases. 
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Table 10 
Summary of best results. 

Corpus Size Lower Baseline Satz 
Bound (STYLE) 

Neural Net Decision Tree 

Wall Street Journal 27,294 75.0 8.3% 1.1% 1.0% 
Si~ddeutsche Zeitung 3,184 79.1 1.3% 1.9% 

German News 5,037 96.7 0.7% 0.7% 
Hansards (French) 3,766 80.1 0.6% 0.4% 

6. Improving Performance on the Difficult Cases 

To demonstrate the performance of our system within a large-scale NLP application, 
we integrated the Satz system into an existing information extraction system, the Alem- 
bic system (Aberdeen et al. 1995) described in Section 2.2. On the same WSJ corpus 
used to test Satz in Section 4, the Alembic system alone achieved an error rate of only 
0.9% (the best error rate achieved by Satz was 1.0%). A large percentage of the errors 
made by the Alembic module fell into the second category described in Section 4.3, 
where one of the five abbreviations Co., Corp., Ltd., Inc., or U.S. occurred at the end of 
a sentence. We decided to see if Satz could be applied in such a way that it improved 
the results on the hard cases on which the hand-written rules were unable to perform 
as well as desired. 

We trained Satz on 320 of the problematic examples described above, taken from 
the WSJ training corpus. The remaining 19,034 items were used as test data. The 
Alembic module was used to disambiguate the sentence boundaries in all cases except 
when one of the five problematic abbreviations was encountered; in these cases, Satz 
(in neural network mode) was used to determine the role of the period following the 
abbreviation. The hybrid disambiguation system reduced the total number of sentence 
boundary errors by 46% and the error rate for the whole corpus fell from 0.9% to 0.5%. 

We trained Satz again, this time using the decision tree learning method, in order 
to see what types of rules were acquired for the problematic sentences. The decision 
tree shown in Figure 7 is the result; the performance of Satz with this decision tree 
was nearly identical to the performance with the neural network. From this tree it 
can be seen that context farther away from the punctuation mark is important, and 
extensive use is made of part-of-speech information. 

7. Summary 

This paper has presented Satz, a sentence boundary disambiguation system that pos- 
sesses the following desirable characteristics: 

• It is robust, and does not require a hand-built grammar or specialized 
rules that depend heavily on capitalization, multiple spaces between 
sentences, etc. 

• It adapts easily to new text collections. 

• It adapts easily to new languages. 

• It trains and executes quickly without requiring large resources. 
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t - 3  t - 2  t - 1  . t+l  t+2 t+3 

t+ l  begins with a capital letter?. 

t -3  can be a sent-end punctuation? 

0 t+ l  is a conjunction? 

0 t+2 can be a sent-end punctuation? 

t+ l  is a preposition? 

1 t -3  can be an abbreviation? 

1 t+ l  can be a verb? 

t+ l  is a right paren? 

0 t -2  is a conjunction? 

1 0 

t -2  can be a modifier? 

1 0 

1 t+3 can be a sent-end punctuation? 

0 t+2 is a preposition? 

0 t -2  can be a modifier? 

Figure 7 
Decision tree induced when training on difficult cases exclusively. 

1 0 

• It produces very accurate results. 

• It is efficient enough that it does not noticeably slow down text 
preprocessing. 

• It is able to specify "no opinion" on cases that are too difficult to 
disambiguate, rather than making under-informed guesses. 

The Satz system offers a robust, rapidly trainable alternative to existing systems, 
which usually require extensive manual effort and are tailored to a specific text genre 
or a particular language. By using part-of-speech frequency data to represent the con- 
text in which the punctuation mark appears, the system offers significant savings in 
parameter estimation and training time over word-based methods, while at the same 
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time producing a very low error rate (see Table 10 for a summary of the best results 
for each language). 

The systems of Riley (1989) and Wasson report what seem to be slightly better 
error rates, but these results are not directly comparable since they were evaluated on 
other collections. Furthermore, the Wasson system required nine staff months of devel- 
opment, and the Riley system required 25 million word tokens for training and storage 
of probabilities for all corresponding word types. By comparison, the Satz approach 
has the advantages of flexibility for application to new text genres, small training 
sets (and thereby fast training times), relatively small storage requirements, and little 
manual effort. The training time on a workstation (in our case a DEC Alpha 3000) is 
less than one minute, and the system can perform the sentence boundary disambigua- 
tion at a rate exceeding 10,000 sentences/minute. Because the system is lightweight, it 
can be incorporated into the tokenization stage of many natural language processing 
systems without substantial penalty. For example, combining our system with a fast 
sentence alignment program such as that of Gale and Church (1993), which performs 
alignment at a rate of up to 1,000 sentences/minute, would make it possible to rapidly 
and accurately create a bilingual aligned corpus from raw parallel texts. Because the 
system is adaptive, it can be focused on especially difficult cases and combined with 
existing systems to achieve still better error rates, as shown in Section 6. 

The system was designed to be easily portable to new natural languages, assuming 
the accessibility of lexical part-of-speech information. The lexicon itself need not be 
exhaustive, as shown by the success of adapting Satz to German and French with 
limited lexica, and by the experiments in English lexicon size described in Section 4.4. 
The heuristics used within the system to classify unknown words can compensate for 
inadequacies in the lexicon, and these heuristics can be easily adjusted. 

It is interesting that the system performs so well using only estimates of the parts 
of speech of the tokens surrounding the punctuation mark  and using very rough 
estimates at that. In the future it may be fruitful to apply a technique that uses such 
simple information to more complex problems. 
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