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The computational problem of parsing a sentence in a tree-adjoining language is investigated. An 
interesting relation is studied between this problem and the well-known computational problem of 
Boolean matrix multiplication: it is shown that any algorithm for the solution of the former problem 
can easily be converted into an algorithm for the solution of the latter problem. This result bears 
on at least two important computational issues. First, we realize that a straightforward method 
that improves the known upper bound for tree-adjoining grammar parsing is hard to find. Second, 
we understand which features of the tree-adjoining grammar parsing problem are responsible for 
the claimed difficulty. 

1. Introduct ion 

Among formalisms for the computation of syntactic description of natural language 
sentences, Tree-Adjoining Grammars (TAG) play a major role. The class of TAG's was 
first introduced in Joshi, Levy, and Takahashi (1975) and Joshi (1985); since then, formal 
and computational properties of this class have been extensively investigated, and the 
linguistic relevance of TAGs has been discussed in the literature as well. The reader 
who is interested in these topics is referred to some of the most recent works, for 
example Schabes (1990) and Frank (1992), and to the references therein. 

Both in a theoretical vein and in view of possible natural language processing 
applications, the recognition and parsing problems for TAGs have been extensively 
studied and many algorithms have been proposed for their solution. On the basis of 
tabular techniques, the least time upper bound that has been attested is O(I G II w I 6) for 
the random-access model of computation, I GI being the size of the input grammar and 
I wl the length of the input string. In recent years, improvement of such a worst-case 
running time has been a common goal for many researchers, but up to the present 
time the TAG parsing problem has strongly resisted all such attempts. Because of the 
record of all these efforts, the task of improving the above upper bound is actually 
regarded as a difficult one by many researchers. 

In support of such a common feeling, in this paper we restate the TAG parsing 
problem as a search problem and relate it to the well-known computational prob- 
lem of Boolean matrix multiplication. This is done in such a way that time upper 
bounds for TAG parsing can be transferred to time upper bounds for the latter prob- 
lem. More precisely, we show that any algorithm for TAG parsing that improves the 
O(IGIJwl 6) time upper bound can be converted into an algorithm for Boolean ma- 
trix multiplication running in less than O(m 3) time, m being the order of the input 
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matrices. Crucially, Boolean matrix multiplication has been the object of ~nvestigation 
for many Years: methods that are asymptotically faster than O(m 3) are known, but 
the more considerable the improvement turned out to be, the more complex the in- 
volved computation was found to be. At the present time, the asymptotically fastest 
algorithms for Boolean matrix multiplication are considered to be only of theoretical 
interest, because the huge constants involved in the running time of these methods 
render prohibitive any practical application, given current computer hardware. 

As a matter of fact, the design of practical algorithms for Boolean matrix multi- 
plication that considerably improve the cubic time upper bound is regarded as a very 
difficult enterprise. A consequence of the results presented in this paper is that TAG 
parsing should also be considered as having the status of a problem that is "hard to 
improve," and there is enough evidence to think that methods for TAG parsing that 
are asymptotically faster than O(] G I[w ]6) a r e  unlikely to be of any practical interest, 
i.e., will involve very complex computations. 

The remaining part of this paper is organized as follows. The next section presents 
the definition of tree-adjoining grammar and introduces the two computational prob- 
lems that are to be related. Section 3 establishes the main result. Section 4 draws on 
the computational consequences of such a result and reports some discussion. Finally, 
Section 5 concludes by indicating how similar results can be found for variants of the 
TAG parsing problem that have been recently discussed in the literature. 

2. Preliminaries 

This section introduces the Boolean matrix multiplication problem and the tree-adjoin- 
ing grammar parsing problem, along with the definition of tree-adjoining grammar. 
The notation presented here will be used throughout the paper. 

2.1 Boolean Matrix Multiplication 
Let/3 -- {0, 1} be the set of truth values. The logical symbols V,/x are defined as usual. 
The set of Boolean square matrices Bin, m _> 1, is defined as the set of all m x m square 
matrices whose elements belong to/3. Given a matrix A c Bm, we say that A has order 
m; the element in the ith row and jth column of A is denoted by aij. In Bin, the product 
of A and B, written A x B, is a Boolean matrix C such that: 

m 
CiJ ~- V aik /~ bkj, 1 <_ i , j  <_ m.  (1) 

k~l 

An instance of the Boolean matrix multiplication problem is therefore a pair (A, B) 
and the solution to such an instance consists of the matrix C such that C = A x B. In 
what follows BMM will denote the set of all possible instances of the Boolean matrix 
multiplication problem. 

2.2 Tree-Adjoining Grammars 
The definition of TAG and the associated notion of derivation are briefly introduced 
in the following; the reader is also referred to the standard literature (see, for instance, 
Vijay-Shanker and Joshi [1985] or Joshi, Vijay-Shanker, and Weir [1991]). 

A tree-adjoining grammar is a tree rewriting system denoted by a tuple G = 
(VN, VT, S, I, A), where VN and VT are finite, disjoint sets of nonterminal and terminal 
symbols respectively, S E VN is a distinguished symbol, and I and A are finite sets of 
elementary trees. Trees in ! and A are called initial and auxiliary trees respectively 
and meet the following specifications. Internal (nonleaf) nodes in an elementary tree 
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Figure 1 
Definitions of (a) initial and auxiliary trees and (b) adjunction operation. 

are labeled by symbols in VN. An initial tree has a root labeled by S and leaf nodes 
labeled by symbols in VT U {¢}. An auxiliary tree has leaf nodes labeled by symbols 
in VT U {C} with the addition of one node, called the foot node, having the same 
nonterminal  label as the root node (see Figure la). We define the size of G, written 
I G ], to be the total number  of nodes in all the trees in the set I U A. In what  follows 
we will also denote by TAG the class of all tree-adjoining grammars. 

In TAG, the notion of derivation is based on a composition operation called ad- 
junction, defined in the following way. Let 3' be an auxiliary tree having its root (and 
foot node) labeled by A E VN. Let also 3'' be any tree containing a node ~? labeled by 
A, and let ~- be the subtree of 3'' rooted in 7. The adjunct ion of 3' into 3'' at node ~? 
results in a tree specified as follows (see Figure lb): 

(i) the subtree ~- is excised from 3`'; 

(ii) the auxiliary tree 3' replaces T in 3'', with the root of 3" replacing the 
excised node ~?; 

(iii) the subtree ~- is attached to the resulting tree, with the foot node of 3" 
replacing ~/in T. 

In TAG a derivation is the process of recursive composition of elementary trees using 
the adjunction operation; the resulting trees are called derived trees. Since adjunctions 
at different nodes can be performed in any order, we can adjoin derived trees into 
derived trees without  affecting our arguments. 
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S 

z2 

Figure 2 
Parse tree 3'' is included in a parse tree of string w = ZlXZ2yz3 in L(G). We say that the 
derivation of string pair Ix, Y/is a subderivation of a sentential derivation of w. 

2.3 Tree-Adjoining Grammar Parsing 
In order to introduce the definition of the TAG pars ing  p rob lem on which  our  results 
are based,  we  define in the fol lowing the string language  der ived  f rom a TAG and 
discuss the not ion of parse  forest a long wi th  the impor tan t  issue of its representat ion.  
Given an a lphabet  V, we  denote  b y  V* the set of all finite strings over  V (null string 

c included). 
Al though TAG is a class of tree rewri t ing systems,  a der ivat ion relation can be 

defined on strings in the fol lowing way. Let 3' be  an e lementa ry  tree and  let "7' be 
a tree obtained f rom "7 by  means  of zero or more  adjunction operat ions.  If the yield 
of "7' is a string x E V~, that  is -y E /, we  say that  "7 derives x in G. If the yield of 
3, / is a string xAy E V,~VNV,~, that  is "y E A, we  say that  3, der ives  the pair  (x,y) in 
G. In particular, the set of all strings in V~ that can be der ived in G is denoted  by  
L(G). In this perspect ive  then, an e lementary  or a der ived tree is seen as a structural  
descript ion of a string (a pair  of strings) der ived by  the g rammar ;  such a descript ion 
is called a parse tree. The space of all parse  trees associated with  a given string by  the 
g r a m m a r  is called a parse forest. 

We introduce n o w  the not ion of subderivat ion.  Let w be a sentence in L(G) and 
let ~, E A derive the pair  (xt Y / in  G, x, y E V~, wi th  an associated parse  tree -y'. If 7'  is 
included in a parse  tree of w, we  have  that  w = ZlXZ2yz3 for some zl, z2~ z3 E V~ (see 
Figure 2). Parse tree "7' represents  the contr ibut ion of auxil iary tree 3' to a der ivat ion 
of w; we  say therefore that  the der ivat ion of /x~ Y/ f rom "7 is a subde r iva t i on  of a 
sentential der ivat ion of w. As a consequence of the definition of parse  forest, we  have  
that  all subder ivat ions  of the sentential  der ivat ions of w can be read off f rom the parse  
forest of w. Part  of this informat ion will be used to establish our  result, as precisely 
stated in the next  definition. We need some addit ional  notation. Let w =- dld2""dn, 
n > 0, be a string over  some alphabet;  symbol  pWq denotes  the substr ing dpdp+l ...  dq 
for 1 _< p < q < n and  is undef ined  otherwise.  

Definition 1 
Let G = (VN, VTt St It A) be a tree-adjoining g r a m m a r  and  w E V~ be an input  string, 
I wI = n, n > 0. A parse relation Rp C A x {1..n} 4 associated with  the pair  /G, w / is 
specified as follows. For every  auxiliary tree "y in G and for natural  number s  p, q~ r and  
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s, 1 < p < q < r < s < n, Rp(7,p,q,r ,s)  holds if and only if: 

(i) 

(ii) 

the pair (pWq~ rWs) can be derived by 7 in G, and 

the derivation in (i) is a subderivation of a sentential derivation of w in G. 

The goal of a parsing algorithm for TAG is one of constructing a "suitable" rep- 
resentation for the parse forest of a given string, with respect to a given grammar. 
However, there is no common agreement in the literature on the requirements that 
such a representation should meet; therefore the issue of the representation of a parse 
forest deserves some discussion here. 

There seems to be a trade-off between computational t imeand space in choosing 
among different representations of a parse forest. Note that, from an extreme perspec- 
tive, the input itself can be considered as a highly compressed representation of the 
parse forest--one that needs a time-expensive process for parse tree retrieval. 1 More 
explicit representations offer the advantage of time-efficient retrieval of parse trees, 
at the cost of an increase in storage resources. In practice, most commonly used al- 
gorithms solve the parsing problem for TAGs by computing a superset of a parse 
relation (defined as above) and by representing it in such a way that its instances 
can be tested in constant time; such a condition is satisfied by the methods reported 
in Vijay-Shanker and Joshi (1985), Schabes and Joshi (1988), Palis, Schende, and Wei 
(1990), Schabes (1991), Lavelli and Satta (1991), Lang (1992), and Vijay-Shanker and 
Weir (1993). From such a representation, time-efficient computations can be used later 
to retrieve parse structures of the input string. 

On the basis of the previous observation, we assume in the following that the 
solution of the parsing problem involves (at least) the computation of a representation 
for Rp such that its instances can be tested in constant time: we base our results on 
such an assumption. More precisely, an input instance of the tree-adjoining grammar 
parsing problem is defined to be any pair (G, w), and the unique solution of such an 
instance is provided by an explicit representation of relation (set) Rp associated with 
(G, w) as in Definition 1. In what follows, TGP will represent the set of all instances 
of the tree-adjoining grammar parsing problem. 

3. Technical Part 

In this section the Boolean matrix multiplication problem is related to the tree-adjoining 
grammar parsing problem, establishing the major result of this paper. A precise spec- 
ification of the studied reduction is preceded by an informal discussion of the general 
idea underlying the construction. 

3.1 The Basic Approach 
Two maps ~ and ~ will be studied in this section. Map ~c establishes a correspondence 
between the set BMM and a proper subset of TGP containing, in some sense, its most 
difficult instances. Conversely, map ~ is defined on the set of solutions of all TGP 
problems in the image of Y', and gives values in the set of Boolean square matrices. 
Maps ~ and G are defined in such a way that, given any algorithm for the solution 
of the TGP problem, we can effectively construct an algorithm for the solution of the 
BMM problem using the commutative diagram shown in Figure 3. 

1 I owe this observation to Bernard Lang (personal communication). 

177 



Computational Linguistics Volume 20, Number 2 

multiplication 
<,4, B> in B M M  " C = A × B 

parsing 
<G, w> in TGP , Rp 

Figure 3 
Maps ~- and ~ define a commutative diagram with respect to any algorithm for Boolean 
matrix multiplication and any parsing algorithm for tree-adjoining grammars. 

Both the BMM and the TGP problems are viewed here as search problems whose 
solutions are obtained by exploring a search space of elementary combinations. In 
the case of the BMM problem, the elementary combinations are the combinations 
of elements of the input matrices. If m is the order of these matrices, the solution 
of the problem requires the specification of O(m 2) elements of the product matrix, 
where each element depends upon O(m) elementary combinations (see relation (1)). 
Therefore the problem involves a search in a space of O(m 3) different combinations. 
On the other hand, in the TGP problem the elementary combinations are taken to 
be single applications of the adjunction operation. In parsing a string w of length n 
according to a tree-adjoining grammar G, we have to construct a parse relation of 
size O(I G In 4) (see Definition 1), and there are O(n 2) distinguishable combinations in 
which each element of the relation can be obtained. In the general case then, a number 
O(I G In 6) of distinguishable combinations are involved in the parsing problem, and 
we have to perform a search within an abstract space of this size. 

In order to achieve our result, we then establish a size preserving correspondence 
between the two search spaces above. There is no way of representing matrices A 
and B within string w without blowing up the search space associated with the target 
parsing problem. Our choice will then be to represent the input matrices by means 
of grammar G, which fixes I GI to a quantity O(m2). This forces the choice of n to a 
quantity O(m~), obtaining therefore the desired relation I G In 6 = O(1/'/3). 

The general idea underlying the construction is the following one. Observe that 
non-null elements aik and bk,j in the input matrices force element cij to value 1 in the 
product matrix if and only if k = k t. The check of such a condition can be transferred 
to the computation of an adjunction operation in the target parsing problem using the 
following encoding method. We fix a positive integer b to a (rounded) quantity m~. 
Then we encode each index i of the input matrices by means of positive integers il, 
/2, and i3, such that il is O(b 4) and i2, is are O(b). Condition k = k t above is therefore 
reduced to the three tests kh = k~, 1 < h < 3, which can be performed independently. 
The test kl = k~ is precompiled into some auxiliary tree of G; the tests k2 = k~ and 
k3 = k~ are performed by the parser using the input string, as explained below. 

Map ~- constructs a string w of distinguishable symbols by concatenating six 
"slices" w (h), 1 < h < 6, each slice of length O(b). Map ~- also encodes the input 
matrices A and B within the target grammar G; it does so by transforming each non- 
null element in the input matrices into an auxiliary tree of G in the following way. 
Non-null element aik is mapped into an auxiliary tree "~1 having its root (and foot node) 
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Y2 , 
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J2  

F i g u r e  4 
String w is composed of six slices, and auxiliary trees corresponding to non-null elements aik 
and bk'j derive string pairs (xl, yl} and (x2, y2} matching the slices of w as shown above; 
integers are used to indicate the position within a single slice of the boundary symbols in 
strings xl, yl, x2, and y2. The figure depicts the case k = k', resulting in the exact nesting of the 
two derived trees. 

labeled by a symbol including integers i1 and kl. Moreover, 3'1 will eventually derive 
a string pair (xl, yl) with the following property. String xl is the smallest substring of 
w including the symbol in the /3th position within slice w (1) and the symbol in the 
k3th position within slice w (2). Furthermore, string yl is the smallest substring of w 
including the symbol in the (k2 + 1)-th position within slice w (5) and the symbol in the 
/2th position within slice w (6). This is schematically shown in Figure 4. 

At the same time 5 r maps non-null element bk,j into an auxiliary tree 3'2 having 
its root labeled by a symbol including integers k~ and jl. Crucial to our construction, 
3̀ 2 will derive a pair of strings (x2~y2> with the following property. String x2 is the 
smallest substring of w including the symbol in the (k~ + 1)-th position within slice 
w (2) and the symbol in the j3th position within slice w (3). Furthermore, string y2 is the 
smallest substring of w including the symbol in the j2th position within slice w (4) and 
the symbol in the k~th position within slice w (s). Let us call 3'~ and 3,~ the derived trees 
obtained from 3,1 and 3"2 as above. Observe that k2 = k~ and k3 = k~ if and only if the 
yields of 3"~ and 3̀ ~ are exactly nested within w; see again Figure 4. 

To complete the construction of G, map 5 v provides an auxiliary tree 3,3 with the 
following property. Tree 3,3 can contribute to a sentential derivation of w in G if and 
only if 3"~ and 3"~ can be adjoined to it. This is in turn possible just in case integer kl in 
the root of 3"1 and integer k~ in the root of 3̀ 2 coincide, as specified by the adjunction 
sites in 3'3, and the yields of 3̀~ and 3"~ are exactly nested within w. It follows that, by 
deciding whether 3'3 contributes to a sentential derivation of w, the parser is able to 
perform the required test k = k'. Finally, index k in its coded form is discarded in the 
derivation process above, while indices i and j are preserved in such a way  that map 

can eventually recover non-null element Cq by reading off the parse relation. 
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Table 1 
Values o f f  (b) (i) for b = 3 and 1 < i < 15. 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

f(b)(i) 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 
f(2b)(i) 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 
f(b)(i) 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

The next section presents a detailed specification of maps ~" and G and proves 
the above claimed properties. As we will see, the search space defined by the result- 
ing instance of the TAG parsing problem includes the solution of the source matrix 
multiplication problem. 

3.2 The Two Maps 
The goal of this subsection is to establish a mapping  between comparisons of matrix 
indices in Boolean matrix multiplication and instances of the adjunction operation in 
tree-adjoining grammar parsing. As already ment ioned in the previous subsection, 
this result is achieved by encoding natural numbers  using three positive integers. The 
encoding is then used to chop off matrix indices into smaller numbers  that will be 
processed independently. This is explained in detail in the following. 

For pairs of integers i and b, let qn(i, b) and rm(i, b) be the quotient and the 
remainder respectively of the integer division of i by b. We define qn+(i, b) = qn(i, b )+ l  
whenever  rm(i, b) • 0 and qn+(i, b) = qn(i, b) otherwise; we also define rm+(i, b) = 
rm(i,b) whenever  rm(i,b) ~ 0, and rm+(i,b) = b otherwise. Note that, for i > 1, 
qn+ (i, b) > 1 and 1 < rm+ (i, b) G b. 

Definit ion 2 
Let b > I be an integer. We associate with b a func t ionf  (b) defined on the set of positive 
natural numbers, specified as follows: 

where 

f(b)(i) = (f~b)(i),f(2b)(i),f(3b)(i)} , 

f(lb)(i) = qn+(i, b2), 

f(2 b)(i) = qn+(rm+(i,  b2),b), 

f(3 b) (i) = rm+ (i, b). 

Table 1 shows some values o f f  (b) for the case b = 3. 

Observe that, for i > 1, f(3 b) and f(2 b) give values in the range {1..b}, while f(1 b) 
can give any positive integer. It is not difficult to see that function fib) establishes a 
one-to-one correspondence between the set N of positive natural numbers  and the 

set N x {1..b} x {1..b}. In an informal way, we will often refer to value f(1 b) (i) as the 

most significant digit corresponding to i, and to values f(2 b) (i) and f(3 b) (i) as the least 
significant digits corresponding to i. In the following, the superscript in fib) will be 
omitted whenever  b can be understood from the context. 

We are now in a position to define in detail the maps F and G involved in the 
diagram of Figure 3 discussed in Section 3.1. As a first step, we s tudy map ~- that 
takes as input an instance of BMM and returns an instance of TGP. 
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FI(n) 
<A,u, v> 

dq dr 
<A,u, v> 

F2(n) 
<B, U, V> 

d ~  ~ D  ds 

dq dr 
<B, u, v> 

F3(n). _(n) 
• ~¢n) IS : D 
<C, u, v> t4 : 

I c 
<A, u, t> [ dla D 

<B, t, v> I D 

<C, u, v> D dp 

Figure 5 
Definition of families of auxiliary trees F~ n), n > 1 and 1 < h < 6. Each tree in some class is 
specified by the values of the integer parameters corresponding to that class. 

Let n > 1 be an integer. In the following we will refer to sets of terminal symbols 

VT (" )={dp  I' 1 G p _ < 6 ( n + 1 ) } ,  

and to sets of nonterminal  symbols 

V(N n)= {(A,u,v) ,(B,u,v) ,(C,u,v)  ] l < u < v < n 4 } U { C , D , S } .  

Based on these sets, Figure 5 defines families of auxiliary trees F~ n), 1 ( h _ 6. For 

example,  an auxiliary tree 7(P, q, r, s, u, v) C 1~ ") will be specified by  providing actual 
values for the integer parameters  p, q, r, s, u, and v, consistently with the definitions 

of sets V(T n) and V(N n). In the following we will also use the initial tree % depicted in 
Figure 6. 

The next  definition introduces map ~ ,  which is the core component  of the pro- 
posed reduction. The definition is rather technical: it will be fol lowed by  a more 
intuitive example. 

Def in i t ion  3 
Let (A, B) be an instance of BMM, m the order  of matrices A and B. Let also n = Lm~/+1 
and ~r -- n + 1. A map ~c is specified in such a way  that YZ((A, B)) = (G, w), where 

G =- (w(n)~ V(Tn)~ S~ I1 a (n)) a n d  w = dld2 ... d6~. Set I contains the only initial tree %; set 
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Ys: S 

I 
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I 
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I 
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E 

Figure 6 
Definition of initial tree %. 

A (n) contains all and only the following elementary trees (f(h n) =fh, 1 < h < 3): 

(i) for every aq = 1 in A, the auxiliary tree 

7(p,q,r,s,u,v) E P~ n) 
belongs to A (n), where 

; ---- f3(/), q ---- cr +f3(J), 
r = 4or +f2(j) + 1, s = 5cr +f2(i), 
U =  A(i), V= A(J); 

(ii) for every bq -- 1 in B, the auxiliary tree 

7(p,q,y,s,u,v) E F~ n) 
belongs to A (n), where 

p =  a + f 3 ( i ) + l ,  q =  2cr+f3(j), 
r = 3a+f2( j ) ,  s = 4or +f2(i), 
u =  A(i),  v =  A(J); 

(iii) for every pair (A, u, t), (B, t, v) E V(N n), the auxiliary trees 

7(u,t,v) E C~ "), 

7(u, v) E r~ ") 
belong to A(nJ; 

(iv) for every 1 < p < 6a, the auxiliary trees 
n), 

7(p) E r (n) 
6 

belong to A("). 

In order to have a better unders tanding of map 9 r and of the idea under lying grammar 
G and string w, we discuss in the following a simple example, adding more details to 
the informal discussion presented in Section 3.1. 

Let us define a Boolean matrix by specifying only its non-null elements. Assume 
then that an input instance (A, B / of the BMM problem consists of two matrices of 
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a2,15 

1 

B: 

C: 

i 
b 153 

I multiplication 

c23 

mapping 

Y I :  Y3: <C,l,l> 
<A,1,2> [ 

d 2 ~ d 2 0 + 1  <,4,1,2>1 

d d 4+3 <A,1,2> 16+2+1 <B,2,1> 
I 

<C,1,1> 
Y2: 

<8,2,1> 

d 4 + 3 + 1 " ~ / ~  d16+ 2 

d s + t  <B2,I> d12+3 

Y4" C 

I 
<C,I,I> 

I 
c 

C 
I 

<C,I,I> 

d 2 d8+ 1 C d12+3 d20+ 1 

(a) (b) 

Figure 7 
Part (a) shows how non-null elements a2,15 and b15,7 in matrices A and B combine together, 
forcing element c2,7 in matrix C to value 1; each array element is represented as an arc in a 
directed graph. Correspondingly, trees 3`1, 3`2, 3'3 and 3'4 in (b) are introduced in G by map ~-. 
These trees can be composed, using adjunction, with trees in p~3) and r~ 3), in such a way that 
a derived tree is obtained that matches string w and encodes the indices of c2,7. 

order  m = 64, specified as 

A = {a2,15}~ B :- {b15,7}. 

The multiplication of matrices A and B results in matrix C consisting of the only non- 
null e lement  Ca, 7. As already ment ioned in Section 3.1, the multiplication process can 
be seen as a test for equality per formed on the second index of a2~ls and the first index 
of b15,7; in the following these indices will be called "intermediate"  indices. Element 
c2,7 in the product  matrix is forced to value I if this test succeeds, and the intermediate 
indices are discarded in the process. See Figure 7a for a schematic representat ion of 
such an operation. 

In performing an adjunction operation, two requirements  must  be satisfied. First, 
the nonterminal  label at the adjunction site must  match the nonterminal  label at the 
root (and foot node) of the adjoined tree; and second, adjunction must  compose trees 
in such a way  that the der ived string is compatible with w. In the proposed  reduc- 
tion, each test for equality per formed on some pair of intermediate indices by  matrix 
multiplication is transferred to an adjunction operat ion by  map  ~ ,  using as targets the 
two requirements  just described. This is exemplified in the following. 
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According to Definition 3, we find n = 3 and cr = 4. Map J:  then constructs 
a string w = dld2...d24, which can be thought  of as composed of six slices w (h) = 
4(h-1)+lW4h, 1 _< h _< 6. Each element in a single slice will be used as a placeholder 
to record information about matrix indices. Furthermore, map jv exploits func t ion f  (3) 
(see Table 1) in order to map each non-null element of the input matrices to an auxiliary 

tree in I~ 3) or F~ 3) (steps (i) and (ii) in Definition 3). More specifically, each index of a 
non-null element is converted into three digits: the most  significative one is encoded 
as part  of the nonterminal  symbols, and the two least significative digits are encoded 
by the terminal symbols in the target tree. Trees ")'1 and "/2 obtained in this way  from 
non-null elements a2,15 and b15,7 respectively have been depicted in Figure 7b. Two 

additional trees "Y3 E F~ 3) and "Y4 E 1~ 3) have been reported in the figure, that are also 
added  to G by J: (step (iii) in Definition 3). 

Crucial to our construction, the test on the intermediate indices of elements a2,15 
and b15,7 has been reduced to three independent  tests involving smaller integers. More 
precisely, the equality test on the most significative digits obtained from the intermedi- 
ate indices has been transferred to the requirement on the matching of the nonterminal  
labels of the nodes involved in the adjunction. In fact, "Yl and "Y2 can be adjoined into 
")/3 just in case such a test is satisfied. At the same time, the equality test on the 
least significative digits obtained from the intermediate indices has been transferred 
to the requirement on the matching of the derived string with w. In fact, after the 
adjunction of "/1 and "/2 into ")'3 takes place, no terminal symbol can intervene between 
the internal boundaries of the yield of "Y1 and the external boundaries of the yield 
of "Y2 in slices w (2) and w (s) (see again Figure 7b). Then "Y3 can participate in a sen- 
tential derivation of w just in case all three equality tests above are simultaneously 
satisfied. 

The choice of the order of I wl has been dictated by general considerations on 
the size of the search spaces associated with the two problems at hand,  as already 
discussed in Section 3.1. As a note, we observe that slices w (2) and w (s) are used in the 
above construction to pair together least significative digits obtained from intermediate 
indices. The fact that these indices have range in {1..n} forces the choice of the length 
of these slices to ~r = n + 1; the example in Figure 7 actually uses the (n + 1)-th symbol 
of w (2). For uniformity, this value has then been extended to all other slices, fixing I wl 
to 6or. 

In Lemma 1 below we will state in a more precise way  the above arguments,  and 
we will also show how derivations of the kind outlined above are the only derivations 
in G than can match string w, proving therefore the correctness of the reduction. To 
complete the diagram of Figure 3, we now turn to the specification of map ~. 

Definit ion 4 
Let /G ,  w) be an instance of TGP in the image of map ~-, and let m, n, and cr be as in 
Definition 3. Let also Rp be the parse relation that solves instance /G, w). A map G is 
specified in such a way  that G(Rp) = C, C a Boolean matrix of order m, and element cij 

is non-null if and only if Rp('y, p, q, r, s) holds for an auxiliary tree ~/(u, v) E E~ n), where 

(f(h n) = fh ,  1 < h < 3) 

p = f3 ( i ) ,  q = 2 ¢ + f 3 ( j ) ,  
r = 3 r+f2(j), s = 5 c r + f 2 ( i ) ,  

u = f l ( i ) ,  v = A ( J ) .  

In the above definition, func t ionf  (n) is used to retrieve the indices of non-null  elements 
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il ,k l  kl ,Yl 
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Figure 8 
Non-null elements aik and bkj are mapped into auxiliary trees 3'1 and 3"2 in G, and trees 3"~ and 
3'~ can successively be obtained compatibly with string w. As a convention, symbols 6h, 
6 E {i, k,j} and 1 < h < 3, denote integersfh(6), which indicate either positions within each 
single slice or components of nonterminal symbols labeling tree nodes. 

of matrix C. In this case also, the most  significative digits associated with the retr ieved 
indices are encoded within the nonterminal  symbols of the auxiliary tree -y(u, v), while 
the two least significative digits are encoded by  the position of the yield boundar ies  
of the string der ived from ~/(u, v) consistently with the input  string w. To conclude our  
previous example,  we see that if we apply  the relations in Definition 4 to the der ived 
tree at the bot tom of Figure 7b, we get indices 2 and 7 of the only non-null  e lement  
inC.  

The following result shows that any algori thm for the solution of a generic instance 
of TGP can be conver ted into an algori thm for the solution of the BMM problem, via 
the computat ion of maps  3 v and G. This concludes the present  section. 

L e m m a  1 
Le t / A ,  B / be an instance of BMM and l e t /G ,  w / = ~-(/A, B/). Let also Rp be the parse 
relation that solves/G~ w/. Then we have 

A x B = G(Rp). 

Proof  
Assume that m is the order  of the matrices A and B, n is the natural  number  associated 
with m as in Definition 3, and ¢ = n + 1. Let C = A x B and C / = G(Rp). 

To prove  cij = 1 implies clj = 1, we go through a sentential derivation of w in G 
and then apply  the definition of G. If Cq = 1, then there exists k, 1 < k < m, such that 
aik = bkj = 1. Let "Yl and "y2 be the unique auxiliary trees in G associated by  map 3 v 
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il ,k l  k l  , j l  il ,Jl 

h h 

Figure 9 
Tree 7~ is derived from trees "/~, 7~ and auxiliary trees in G. We use the same conventions as in 
Figure 8. 

with aik and bkj respectively (steps (i) and (ii) in Definition 3). Tree "71 has root (and 
foot node) labeled by nonterminal  (A,fl(i) , f l(k)); furthermore, the terminal symbols 
in the yield of "Yl are (from left to right) d/B(i ), d¢+/B(k ), d4,+/a(k)+l and d5c,+f2(i). The only 
pair of substrings of w that ~'1 can derive, by means of zero or more adjunctions of 

trees in F~ n) and P(')6 , is 

(f3(i)Wo-+f3(k)~ 4a+f2(k)+1W5o-+f2(i)) • 

Call ~ a parse tree associated with such a derivation (see Figure 8). In a similar way, 
auxiliary tree "Y2 has root labeled by nonterminal  (B,fl(k);fl(j)) and derives pair 

{o- +f3(k )+ l W2o" +f3(j) ~ 3cr +f2(j) W4cr +f2(k ) } 

of substrings of w. Call 3~ a parse tree associated with the derivation (see again Fig- 
ure 8). 

According to step (iii) in Definition 3, grammar  G also includes auxiliary trees 

"y3 = 7(f1(i)~fl (k),fl(j)) E p~n) and "/4 = 7 0 C l ( / ) ; A q ) )  C r~n). Note that the yields of trees 
7~ and 7 / 2 are exactly nested within w; moreover, the root (and the foot) nodes of 71 
and 72 have been preserved in the derivation. Therefore 3'I and V~ can be adjoined into 
73 and the resulting tree 7~ can in turn be adjoined into 74. In this way, 74 derives the 
pair of substrings of w 

(f3 (i)W2cr +f3 (j), 3¢ q-f2 (j) W5~r q-f2 (i) } " 

Call 7~ the resulting derived tree (see Figure 9). Since derived tree 71 can be adjoined 
into % in G and a tree can be eventually derived for the input string w, we have 

Re(v4,f3(i), 2e +f3(j), 3or +f2(j), 5~ +f2(i)), 

and from the definition of ~ we get c;j = 1. 

186 



Giorgio Satta Tree-Adjoining Grammar Parsing 

Assuming clj = 1, we  now prove cij = 1; this is done by  arguing that the only 
sentential derivations for w that are al lowed by  G are those of the kind outlined 
above. From the definition of G we have that 

Rp(%,f3( i ) ,  20 +f3 (j), 30 +f2(j), 50 +f2(i)) 

holds for the auxiliary tree 3'4 = 3'0cl (i),fl(j)) E F~ n). Equivalently, there exists at least 
one derivation from '/4 of strings 

(x ,y )  = <f3(i)w2o-+f3(j)~3o.+f2~)w5o.+f2(i)) (2) 

that participates in a sentential derivation of w. Fix such a derivation. 
We first observe that, in order to derive any terminal symbol  from '/4, auxiliary 

trees in F~ n), F~ n) and F~ n) must  be used. Any tree in F~ n) can only derive symbols  

in slices w (h), h E {1,2, 5, 6}, and any tree i n  F~ n) can only derive symbols  in slices 

w (h), h E {2, 3, 4, 5}. Therefore at least one tree in F~ n) and at least one tree in F~ n) 
must  be used in the derivation of (x, y), since (x, y) includes terminal symbols  from 

every slice of w. Furthermore, if more than one tree in F~ ") is used in a derivation in 

G, the resulting string cannot match w. The same argument  applies to trees in F~ n). 

We must  then conclude that exactly one tree in F~ "), one tree in F~ "), and one tree 

in F~ n) have been used in the derivation of (x, y) from 74. Call the above trees 71 = 
q'(p, k3, k2+1, s, u, kl) E F~ n), "/2 ~--" 7(k~+1, q, r, k~, k~, v) E F~ n), and "/3 = "/( u/, t, V') E F~ n). 

As a second step, we  observe that 73 can be adjoined into 74 only if u' = f l ( i )  and 
v' = A q) and 3'3 can host 71 and "/2 just in case u' = u, v' = v, and k I = k~ = t .  W e  

also observe that, after these adjunctions take place, the leftmost terminal symbol  in 
the yield of 3'4 will be the leftmost terminal symbol  in the yield of 71, that is dp. From 
relation (2) we  then conclude that p =f3(i).  Similarly, we can argue that q = 20 +f3(j), 
r = 3o +f2(j) and s = 50 +f2(i). Finally, adjunction of '/1 and "/2 into "/3 can match w 
just in c a s e  k 3 = k~ and k2 = k~. 

From the relations inferred above, we conclude that we  can rewrite 71 as 70c3(i), k3, 

k2 + 1,5o +f2 (i),fl (i), kl) C F~ n) and '/2 as '/(k3 + 1, 20 +f3 (/'), 3o +f2(j), k2, kl,fl (j)) E F~  n) . 

Sincef  is one-to-one and k2, k3 c {1..n}, there exists k such that f (k)  = (kl, k2, k3). From 
steps (i) and (ii) in Definition 3, we  then have that aik and bkj are non-null and then 
cq = l .  [] 

4. Computational Consequences 

The results presented in the previous section are developed here under  a computa-  
tional perspective. Some interesting computational  consequences will then be drawn 
for the tree-adjoining grammar parsing problem. The following analysis assumes the 
random-access machine as the model  of computation. 

4.1 Transferring of Time Upper Bounds 
We show in the following how time upper  bounds  for the TGP problem can be trans- 
ferred to time upper  bounds  for the BMM problem using the commutat ive diagram 
studied in the previous section. 

Let (A, B) be an instance of BMM and let (G, w} = .T((A, B)); m and n are specified 
as in Definition 3. Observe that, since n 6 > m, func t ionf  (n) maps  set {1..m} into product  
set {1..n 4} x {1..n} x {1..n}, in other words  we  have i <_fl(i) <_ n 4 and i <f2( i ) , f3( i )  < n 
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for 1 < i < m. From the definition of ~', we see that G contains O(m 2) auxiliary trees 

p(n) F~n) and p~n). This determines the size of G and we have from each of the classes -1 , 
I(G,w)] = O(/t/2), since ]w] = O(n). Each auxiliary tree introduced in G at steps (i) 
and (ii) of Definition 3 requires the computation of a constant number of instances of 
functionf (n) on some integer i, 1 ( i ( m. Such a computation can be carried out in an 
amount of time O(log2(m)) using standard algorithms for integer division. Summing 
up, the entire computation of ~" on an instance (A, B) takes time O(m 2 log2(m)). 

Let Rp be the parse relation that solves (G, w) = ~'((A, B)). From Definition 1 and 

the above observations we have that ]Rp] = O(m2n4), that is ]Re] = O(m2+~). We can 
compute C = G(Rp) in the following way. For every element cij we compute f(n)(i) 
and f(n)(j) and then check Rp according to Definition 4. (Recall also our assumption 
that an instance of Rp can be tested in constant time.) Again we find that the entire 

computation takes an amount of time O (m 2 log 2 (m)). We observe that the computation 
of ~r and G takes an amount of time (asymptotically) very close to the one needed to 
store (A,B) or C. 

As a consequence of the above discussion and of Lemma 1, we have that any time 
upper bound for the TGP problem can be transferred to an upper bound for the BMM 
problem, down to the time needed for the computation of transformations ~- and ~. 
The following statement gives an example. 

Theorem 1 
Let Ap be an algorithm for the solution of the TGP problem having running time 
O([GlPlwlq). Then any instance of BMM can be solved in time O(max{m 2p+q, 
m 2 log2(m)}), where m is the order of the input matrices. 

Proof 
From Lemma 1 and from the previous discussion we have that two Boolean matrices 
of order m can be multiplied in time O(I G IPl w I q + m 2 log2(m)), where ]G I = O(m 2) 

and Iwl = O(m~). [] 

Observe that, according to our definition, the TGP problem has a trivial time lower 
bound O(IR p I), since this is the amount of time needed in the worst case to store a 
representation for Rp that can be accessed in constant time. In practice this means that 

the upper bound transfer stated by the above result is effective down to O(m 2+2 ). 

4.2 Time Upper Bounds for TGP 
In previous sections we have related the complexity of tree-adjoining grammar pars- 
ing to the complexity of Boolean matrix multiplication. Here we speculate on the 
consequences of the presented result. 

As a computational problem, Boolean matrix multiplication has been an object of 
investigation for many years. Researchers have tried to improve the well-known O(m 3) 
time upper bound, m the order of the input matrices, and methods were found that 
work asymptotically faster than the standard cubic time algorithm. Strassen's divide 
and conquer algorithm that runs in time O(m 2sl) (see for instance Cormen, Leiserson, 
and Rivest [1990]) has been the first one in the series, and the best time upper bound 
known to date is approximately 0(m2"376), a s  reported in Coppersmith and Winograd 
(1990). It is worth noting here that the closer researchers have come to the O(m 2) trivial 
time lower bound, the more complex the computation involved in these methods has 
become. In fact, if Strassen's algorithm outperforms the O(m 3) standard algorithm only 
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for input matrices of order greater than 45 or so (see again Cormen, Leiserson, and 
Rivest [1990]), recently discovered methods that are asymptotically faster are definitely 
prohibitive, given current computer hardware. At present, no straightforward method 
is known for Boolean matrix multiplication that considerably improves the cubic upper 
bound and that can be used in practical cases. Also, there is enough evidence that, if 
such a method exists, its discovery should be a very difficult enterprise. 

Let us now turn to the TAG parsing problem. Many algorithms have been pro- 
posed for its solution and an O(I G III U A I] w 16) time upper bound has been given 
in the literature; see for instance Schabes (1990). We remark here that the depen- 
dency on the grammar size can be further improved using techniques similar to the 
one proposed in Graham, Harrison, and Ruzzo (1980) for the context-free grammar 
recognition/parsing problem: this results in an O(I G II w 16) time upper bound for the 
general case. Theorem 1 can be used to transfer this upper bound to an upper bound 
for Boolean matrix multiplication, finding the already mentioned O(m 3) result. 

More interestingly, Theorem 1 implies that any method for the solution of the 
tree-adjoining grammar parsing problem having running time O(I G II w I s) will give us 
a method for Boolean matrix multiplication having running time O(m2"83). Likewise, 

any O(I G I]wl 4) time method for the former problem will result in an O(m 2'~) time 
method for Boolean matrix multiplication. Even if the involved constants hidden in 
the studied construction are large, the resulting methods will still be competitive with 
known methods for Boolean matrix multiplication that improve the cubic time upper 
bound. We conclude then that the TAG parsing problem should also be considered 
as having the status of a problem that is "difficult" to improve, and we have enough 
evidence to think that methods for TAG parsing that are asymptotically faster than 
O(I G II w I 6) are unlikely to be practical, i.e., will involve rather complex computations. 

5. Remarks and Conclus ion 

Polynomial time reductions between decision/search problems are commonly used 
in providing hardness results for complexity classes not known to be included in P 
(P is the class of all languages decidable in deterministic polynomial time). We have 
studied here a polynomial time reduction between Boolean matrix multiplication and 
TAG parsing, two problems already known to be in P. However, the choice of the 
mapping allows one to transfer upper bounds from the first problem to the other. In 
this way TAG parsing inherits from Boolean matrix multiplication the reputation of 
being a problem tough to improve. We comment in the following on the significance 
of this result. 

As already discussed, the notion of the parse forest is an informal one, and there 
is no common agreement on which specifications such a structure should meet. The 
obtained results are based on the assumption that a parsing algorithm for TAG should 
be able to provide a representation for a parse forest such that instances of the parse 
relation Rp in Definition I can be retrieved in constant time. Whatever the specifications 
of the output parse forest structure will be, it seems quite reasonable to require that an 
explicit representation of relation Rp can be extracted from the output in linear time 
with respect to the size of the output itself, therefore without affecting the overall 
running time of the method. This requirement is satisfied by all TAG parsers that 
have been presented to date in the literature. 

As a second point, the studied construction provides an interesting insight into 
the structure of the TAG parsing problem. We see for instance that the major source of 
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complexity derives from cases of properly nested adjunction operations. Such cases are 
responsible for a bounded amount of nondeterminism in the computation: to detect 
how a string divides into subparts according to the adjunction of a derived tree into 
another, we have to consider many possibilities in general, as much as we do to detect 
a non-null element within a product Boolean matrix. A closer look at the studied 
construction reveals also that the parsing problem for linear TAG does not seem easier 
than the general case, since ~ maps instances of BMM to instances of TGP restricted 
to such a class (a linear TAG is a TAG whose elementary trees allow adjunction only 
into nodes along a single spine). This contrasts with the related case of context-free 
grammar parsing, where the restriction of the problem to linear grammars can be 
solved in time O(I G II w 12) but no method is known for the general case working with 
this bound. As expected from our result, the techniques that are used for linear context- 
free grammar parsing cannot be easily generalized to improve the parsing problem 
for linear TAGs with respect to the general case. 

Finally, we want to discuss here an interesting extension of the studied result. 
The TAG parsing problem can be generalized to cases in which the input is a lattice 
representation of a string of terminal symbols along with a partially specified parse 
relation associated with it. This has many applications for ill-formed input and error- 

correcting parsing. The TAG lattice parsing problem can still be solved in O(I G[I w I 6) 
time: the general parsing method provided in Lang (1992) can be used to this purpose, 
and already known tabular methods for TAG parsing can be easily adapted as well. 

Without giving the technical details of the argument, we sketch here how Boolean 
matrix multiplication can be related to TAG lattice parsing. For order m matrices, one 

can use an encoding function f/(n), where n = [ml/2j + 1, mapping set {1..m} into 
product set {1..n} x {1..n}. This allows a direct encoding of any instance (A, B) of 
the BMM problem into a word lattice wl consisting of 6(n + 1) nodes and O(m 2) arcs, 
where some arcs involve four nodes and represent a derived tree corresponding to 
a non-null element in either A or B. Then we can use a grammar G in the target 
instance of the TAG lattice problem that is defined independently of (A, B) and there- 

fore has constant size. (Such a grammar can be obtained from families F~ n) and F~ n) 
defined in Section 3 by deleting the integer components in each nonterminal sym- 
bol.) The construction obtained in this way relates therefore the BMM problem to the 
fixed grammar parsing problem, and provides a result even stronger than the one 
presented in Theorem 1. We have in fact that any algorithm for TAG lattice parsing 
having running time O(IG IP[w I q) can be converted into an algorithm for Boolean ma- 
trix multiplication running in time O(max{m~, malog2(m)}), independently of p. As 
an example, O(I G IPl w 14) for TAG lattice parsing becomes O(m 2 log2(m)) for matrix 
multiplication, for any p. Since many tabular methods for TAG parsing can be easily 
extended to TAG lattice parsing, this means that the chances of getting an 0(I G IPlw 14) 
time upper bound for the TAG parsing problem itself by means of these techniques 
are really small. 
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