
Natural Language Access to Data Bases"
Interpreting Update Requests 1

James Davidson and S. Jerrold Kaplan 2

Computer Science Department
Stanford University
Stanford, CA 94305

For natural language data base systems to operate effectively in practical domains, they
must have the capabilities required by real applications. One such capability is understand-
ing and performing update requests. The processing of natural language updates raises
problems not encountered in the processing of queries. These difficulties stem from the
fact that the user will naturally phrase requests with respect to his conception of the
domain, which may be a considerable simplification of the actual underlying data base
structure. Updates that are meaningful and unambiguous from the user's standpoint may
not translate into reasonable changes to the underlying data base. Update requests may be
impossible (cannot be performed in any way), ambiguous (can be performed in several
ways), or pathological (can be performed only in ways that cause undesirable side effects).

Drawing on work in linguistics and philosophy of language, we have developed a domain-
transparent approach to identifying and performing "reasonable" changes in response to a
user's update request, using only knowledge sources typically present in existing data base
systems. A simple notion of "user model" and explanation with respect to the user's state
of knowledge are central to the design. This paper describes a prototype system PIQUE
(Program for Interpretation of Query~Update in English), which implements this approach.

1. In t roduc t ion

Natural language is a desirable access mechanism for
data base systems because it frees the user f rom the
task of unders tanding the details of the data base
structure. A number of systems have provided natural
language query capabilities (for example, Hendrix et
al. 1978); however , few of these allow the user to
perform updates (changes) to the data base using nat-
ural language. (For an example of one that does allow
simple updates, see Hen i sz -Dos te r t and Thompson
1974.)

1 This work is part of the Knowledge Base M a n a g e m e n t
project (D A R P A contract # N 0 0 0 3 9 - 8 2 - C - 0 2 5 0) , which is investi-
gating the application of artificial intelligence techniques to issues
in the field of data base managemen t . The views and conclusions
contained in this document are those of the au thors and should not
be interpreted as representat ive of the official policies, either ex-
pressed or implied, of D A R P A or the U.S. Government .

2 Au thors ' current address: Teknowledge Inc., 525 Universi ty
Avenue , Palo Alto, CA 94301

The provision of update capabilities introduces prob-
lems not seen in handling queries. These problems
arise because the user is phras ing his requests with
respect to his view of the data base, which may be a
simplification or t ransformat ion of the actual data base
structure. While a wel l - formed query expressed in
terms of the user 's view of the data base will always
result in the same answer, regardless of how the query
may be mapped into the actual data base structure for
execution, this is not the case for an update expressed
on a view.

Since updates request modificat ion of the content of
the data base, dif ferent mappings of the update re-
quest into the actual data base structure may result in
different effects. Some of these effects may be unde-
sirable or unant icipated. Specifically, the user may
make requests that are impossible (cannot be per-
formed in any way, due to hidden constraints on the
data base) , ambiguous (can be pe r fo rmed in several
ways), or pathological (can be per formed only in ways
that cause unant ic ipated side effects) . While human

Copyright 1983 by the Associat ion for Computa t iona l Linguistics. Permission to copy without fee all or part of this material is granted
provided that the copies are not made for direct commercial advantage and the Journal reference and this copyright notice are included on
the first page. To copy otherwise, or to republish, requires a fee a n d / o r specific permission.

0 3 6 2 - 6 1 3 X / 8 3 / 0 2 0 0 5 7 - 1 2 5 0 3 . 0 0

American Journal of Computational Linguistics, Volume 9, Number 2, April-June 1983 57

James Davidson and S. Jerrold Kaplan Natural Language Access to Data Bases: Interpreting Update Requests

speakers would intuitively reject these unusual read-
ings, a computer program may be unable to distinguish
them from more appropr ia te ones.

For example, a simple request to "Change the teach-
er of CS345 f rom Smith to Jones" might be carried
out by altering the number of a course that Jones al-
ready teaches to be CS345, by changing Smith's name
to be Jones, or by modifying a " t eaches" link in the
data base. While all of these may literally carry out the
update, they may implicitly cause unant ic ipated
changes such as altering Jones ' s salary to be Smith's.

Our approach to this problem is to treat updates as
request ing that the data base be put into a self-
consistent state in which the request is satisfied; the
prob lem is then to select the most desirable of
(potentially) several such states. The most desirable
such state is considered to be the "nea re s t " one to the
current s tate (in the sense that it involves the least
disruption). A set of domain- independent heuristics is
used to rank the potential changes along these dimen-
sions.

This process may be guided by various linguistic
considerations, such as the difference between trans-
parent and opaque readings of the user 's request, the
distinction be tween the sense and reference of refer-
ring expressions, and the interpretat ion of counterfac-
tual conditionals.

This paper describes a system, PIQUE, which imple-
ments this approach by retaining a model of the user 's
view and considering possible methods of performing
the update in light of the model. Given an update
request , the system generates the set of possible
changes to the underlying data base that will literally
fulfill the request. These candidate changes are then
evaluated as to their effects on the user 's view, the
underlying data base, and the data base constraints. If
possible, an appropr ia te one is selected; otherwise an
informative message is presented to the user.

2. The Problem

As a hypothet ical example of the problems that can
arise during updates, consider a relational data base of
employees, salaries, depar tments , and managers , con-
sisting of two relations:

Employees:
EMP SAL DEPT
Adams 30 Invntry
White 35 Mkting
Brown 25 Sales
Smith 25 Sales
Pullum 25 Sales

Departments:
DEPT MGR
Sales Jones
Mkting Baker
Invntry Fisher

C o n s i d e r t h e f o l l o w i n g dialogue:

QI: List the employees
managers.

and their

Rq: EMP MGR
Adams Fisher
White Baker
Brown Jones
Smith Jones
Pullum Jones

Q2: Change Brown's manager from Jones
to Baker.

R2 : Done.

The system has apparent ly fulfilled the user 's request.

Q3: What is the average salary paid
to Jones's employees?

R3: $0.

Q4: List Jones's employees.

R4 : NIL

From these responses, the user realizes that something
has gone wrong.

Q5: List the employees and their

managers.

R5: EMP MGR
Adams Fisher
White Baker
Brown Baker
Smith Baker
Pullum Baker

The user sees that the system has made two unantici-
pated changes - changing Smith's and Pullum's manag-
ers - in addition to the one that was requested.

From the user 's point of view, his request is mean-
ingful and unambiguous. He sees a set of values, and
asks to change one of them. (He might not even
know that employees and managers are linked via their
depar tments .)

The problem lies in the fact that his update request
can be per formed in two ways:
a) by making the manager of the Sales depar tment

be Baker.
b) by moving Brown from the Sales depar tment to

the Market ing depar tment ;

58 American Journal of Computational Linguistics, Volume 9, Number 2, April-June 1983

James Davidson and S. Jerrold Kaplan Natural Language Access to Data Bases: Interpreting Update Requests

Both of these literally fulfill the request. The system,
lacking any means for deciding be tween these, has
apparent ly chosen (a), making Baker the manager of
the Sales depar tment , with the unant ic ipated effect
that two other employees have had their managers
changed.

3. A More Formal Characterization

This problem can be explained more formally. Given
a data base structure, define the user 's view function F
as the t ransformat ion that is applied to the data base
to yield the conceptual iza t ion with which the user
works. For instance, in the example in section 2, the
view function, as defined by Q1, is a t ransformat ion
consisting of a join and a projection, which is applied
to the original two files to yield a single new file with
only two at tr ibutes. Def ine the user ' s view as the
result of applying the view function to a given state of
the data base; in the example, this produces a file with
five entries, as shown in R1.

A user 's update request (call it u) is a request to
update the view. In the example, the request is stated
in Q2. Since the view is only 'vir tual ' (derived f rom
the data) , we cannot modify it directly, but must make
changes to the underlying data base. Call the result of
translating the update request to the data base level
T(u). The object is to find the change to the underly-
ing data base that comes closest to having the desired
effect on the user 's view. That is, we want the trans-
lation T(u) that produces a revised data base such that,
when the view function is applied to that data base,
the result is the view requested by the user.

In graphical terms:

D represents the initial state of the data base,
D t the state that results after applying the trans-
lated update T(u);

U ?

• u (F (D)) = F (D ') F (D)

D ~ D ' = T (u) (D)
T(u)

In mathematical terms, the mapping F f rom the under-
lying data base D to the user 's view F(D) induces a
homomorphism. Loosely defined, a homomorphism is
a function that preserves the structure of its arguments
under given operations. In this case, the operat ions
are changes to the underlying data base, and corre-
sponding changes to the user 's view. The difficulties
with updates expressed on the view, rather than the
underlying data base, arise f rom the characteristics of
the inverse of this homomorph i sm: e lements in the
user 's view (states of the "concep tua l " data base) map
under F 1 into a set of states of the underlying data
base. This set may be empty (if the view update can-

not be accomplished in any way), or have many ele-
ments (in the case of a request that is ambiguous with
respect to D). If the mapping F is invertible, i.e. F n is
also a funct ion, then an i somorphism is induced. In
this case, each requested update will have a single,
unambiguous in terpre ta t ion in the underlying data
base, and the difficulties addressed here do not arise.
However , in general this is not the case.

The ideal update translation will produce a state of
the data base that, when t r ans fo rmed by the user ' s
view function, exactly yields the revised state that he
requested. In actuality, our implementa t ion will con-
sider changes to the data base that literally fulfill the
user 's request but may not yield precisely the intended
view u(F(D)). In the example, there were two transla-
tions of the user 's request; update (b) yielded the ex-
act view, update (a) a different one.

4. Descript ion of the PIQUE System

We have implemented a p ro to type sys tem (PIQUE)
that addresses this problem by processing update re-
quests in four phases.
(1) Decide what the user 's current view of the data

base is.
The system maintains an ongoing model of the

user 's concept ion of the data base, derived f rom
the dialogue.

(2) Use the view to genera te a set of candidate
updates T(u), which per form the update.

When an update comes in, it is assumed to be
an update to the user 's view. That is, the user
requests changes with respect to his conceptuali-
zat ion of the data base. The candidate t ransla-
tions are updates to the data base, each of which
literally accomplishes the user 's request.

(3) Use a set of ordering heuristics to rank these
candidates, in terms of how accurately they fulfill
the user 's request.

These candidates are evaluated according to the
ordering heuristics, to measure how much impact
they have on the user ' s view. For example, a
candidate that causes side effects (unreques ted
changes to the user 's view) is ranked lower than
one that does not cause such side effects.
" P r a g m a t i c " informat ion conta ined in the data
base schema is also used in making the decision.

(4) Take action, depending on the number of candi-
dates and their ranking.

When the candidates have been ranked, action
is taken. This might consist of performing one of
the candidates, offering a choice to the user, or
explaining why the update cannot be per formed at
all.

These phases are considered in turn.

American Journal of Computational Linguistics, Volume 9, Number 2, April-June 1983 59

James Davidson and S. Jerrold Kaplan Natural Language Access to Data Bases: Interpreting Update Requests

4.1 Inferring the user's view

The user of a natural language data base system typi-
cally has a concept ion of the data base that is a subset
of the relations, at t r ibutes, connect ions, and records
actually present. In order to interpret updates correct-
ly, the system must take into account the user 's cur-
rent concept ion of the data base. Our approach is to
build a user model based on the concepts of which the
user has indicated an awareness, those that have oc-
curred in his queries and updates.

This is implemented by making use of the connection
graphs corresponding to the user 's inputs. A system
that processes natural language inputs must find paths
through the data base, defined by operat ions such as
joins, which connec t the concepts ment ioned in the
input. (The LADDER system, for example, provides
this service with the help of navigat ion in format ion
stored in a separate structural schema.) This set of
paths is called the connect ion graph.

The importance of this work is that the connect ion
graph provides a good model for the structure of the
user 's view. That is, each query implicitly induces a
view of the data base that the user holds, at least until
the next input. When an update is received, it can be
checked for compatibi l i ty with the current view, to see
if it could be an a t tempt to update that view. This
compatibi l i ty test basically checks to see whether the
concepts and relationships ment ioned in the update are
completely contained in the view. (The actual match-
ing criterion is more complicated than simple inclusion,
but this will serve for explanatory purposes.) If the
update and view are compatible, the user is assumed to
be continuing an interact ion with that view.

Consider the example of section 2. The user poses a
query that ment ions employees and their managers .
He then makes an update request of a similar form.
Because the update request is compat ib le with the
view induced by the previous query, the user is as-
sumed to be referring to that view and to be asking to
change it. Note that al though departments are needed
in the connect ion graph, they are not ment ioned by
the user, and therefore do not appear in the view.

Views are stacked as the dialogue progresses , and
updates can be checked for compatibil i ty with all pre-
vious views (most recent first). This enables the sys-
tem to correct ly handle a s i tuat ion in which a user
returns to a previous view for further work.

Note that an update also induces a connect ion graph,
just as a query does. If an update request is not com-
patible with any of the views defined previously, the
connect ion graph for the update itself can be used to
define the view. This occurs if the user is making an
update unrelated to any of the informat ion that he has
examined. In this case, the view must be inferred
f rom the update alone. Thus, to return to the example
of section 2, "Ch ange Brown 's manager f rom Jones to

Baker" might be meaningful even if the user has not
previously asked about these things.

This s trategy is conservative, in that the only con-
cepts that will appear in views are those of which the
user has indicated at least some awareness. As a re-
suit, the system will never assume a view that is more
complex than the one actually held by the user, and
thus will never mislead him by introducing a new con-
cept during a response or explanation. The errors that
occur will consist of underest imating the user ' s famili-
arity with the data base; the system will tend to be
pedantic, ra ther than mysterious.

This strategy also provides a notion of focus: as the
user discusses di f ferent par ts of the data base, the
view changes automatical ly . This is impor tan t , be-
cause the notion of side effect changes as the user 's
focus changes. Changes occurring to previous views
are less important than changes occurring to the cur-
rent view.

The concept of user modelling is well known in arti-
ficial intelligence (Mann et al. 1977). A c o m m o n
approach is to record an explicit list of the things the
user knows (for example, Cohen 1978). Our model,
however , is much simpler. Given the role of the view
informat ion in the inferencing heuristics, this model is
adequate for our purposes. Davidson (1982) discusses
the issue of modeling in more detail.

4.2 Generating candidate updates

One of the crucial s teps of the a lgori thm descr ibed
above is the generat ion of candidate updates that can
then be evaluated for plausibility. In most cases, an
infinite number of changes to the data base are possi-
ble that would literally carry out the request (mainly
by creating and inserting " d u m m y " values and links).
However , this process can be simplified by generat ing
only candidate updates that can be direct ly der ived
f rom the user 's phrasing of the request. This limita-
t ion is justified by observing that mos t reasonable
updates cor respond to di f ferent readings of expres-
sions in referentially opaque contexts.

A referential ly opaque context is one in which two
expressions that refer to the same real world concept
cannot be interchanged in the context without chang-
ing the meaning of the ut terance (Quine 1971). Natu-
ral language data base updates of ten contain opaque
contexts.

For example, consider that a particular individual (in
a suitable data base) may be refer red to as "Dr .
Smith" , " the instructor of CS100" , " the younges t
assistant p rofessor" , or " the occupant of Room 424" .
While each of these expressions may identify the same
data base record (that is, they have the same
extension), they suggest different methods for locating
that record (their intensions differ). In the context of a
data base query, where the goal is to unambiguously
specify the response set (extens ion) , the me thod by

60 American Journal of Computational Linguistics, Volume 9, Number 2, April-June 1983

James Davidson and S. Jerrold Kaplan Natural Language Access to Data Bases: Interpreting Update Requests

which they are accessed (the intension) does not nor-
mally affect the response. Updates, on the other
hand, are often sensitive to the substitution of exten-
sionally equivalent referring expressions. "Change the
instructor of CSI00 to Dr. Jones." may not be equiv-
alent to "Change the youngest assistant professor to
Dr. Jones." or "Change Dr. Smith to Dr. Jones."
Each of these may imply different updates to the un-
derlying data base.

For operating with an expression in an opaque con-
text, therefore, we must consider the sense of the ex-
pression, in addition to its referent (Frege 1952). In a
data base system, this sense is embodied in the proce-
dure used to evaluate the referr ing expression; the
referent is the entity obtained via this evaluation. A
request for a change to a referring expression is thus
not specifically a request to perform a substitution on
the referent of the expression, but rather a request to
change the data base so that the sense of the expres-
sion now has a new referent. That is, after the up-
date, evaluating the same procedure should yield the
new (requested) result.

For example, consider a data base of ships, ports,
and docks, where ships are associated with docks, and
docks with ports. Assume that there is currently a
ship named Totor in dock 12 in Naples (and no other
ship in Naples), and consider the following updates:

Change Totor to Pequod.
Change the ship in dock 12 to Pequod.
Change the ship in Naples to Pequod.

The referring expressions (italicized) have the same
referent in all three cases, but the senses differ. The
expression " T o t o r " is resolved by means of a lookup
in the ships relation; " the ship in dock 12" requires a
join between the ships and docks relations; " the ship in
Naples" requires a join between all three relations.

Consider the ways of performing each request, as
indicated by the sense of the referr ing expression.
The first version can be implemented only by making a
direct substitution on the ships relation, corresponding
to renaming the ship. The second admits this possibil-
ity, but also the possibility of moving a new ship into
the dock (if there is already a ship named Pequod).
The third allows the first two, plus the possibility of
moving a different dock into Naples (if there is a dock
somewhere else with the Pequod in it). (This will later
be ruled out for other reasons, as explained in the next
section, but cannot be excluded on purely linguistic
grounds.)

Thus, the particular referring expression selected by
the user motivates a set of possible actions that may
be appropriately taken, but does not directly indicate
which is intended or preferred.

This characteristic of natural language updates sug-
gests that the generation of candidate updates can be
per formed as a language driven inference (Kaplan

1978) without severely limiting the class of updates to
be examined. Language driven inference is a style of
natural language processing in which the inferencing
process is driven (and hence limited) by the phrasing
of the user's request.

In this instance, the candidate updates are generated
by examining the referring expression presented in the
update request. The procedure implied by this expres-
sion follows an "access pa th" through the data base
structure. The candidate updates computed by the
program consist of changing links or pointers along
that path, or substituting values in the final record(s)
identified.

For example, consider the structure of the "ships"
data base:

The candidate translations for the third request
(changing " the ship in Naples") correspond to the
following changes to the data base:
(1) making a change to the Ships file (i.e., renaming

the ship);
(2) changing link (b) (moving a new ship into the

dock);
(3) changing link (a) (moving a new dock into the

port).
If the expression " the ship in dock 12" were used,
only options 1 and 2 would be generated; similarly, if
" T o t o r " were used, only option 1 would be generated.

4.3 The selection of appropriate updates

At first examination, it would seem to be necessary to
incorporate a semantic model of the domain to select
an appropriate update from among the candidate up-
dates. While this approach would surely be effective,
the overhead required to encode, store, and process
this knowledge for each individual data base may be
prohibitive in practical applications. In general, the
required information might not be available. What is
needed is a general set of heuristics that will select an
appropriate update in a reasonable majority of cases,
without specific knowledge of the domain.

The heuristics that are applied to rank the candidate
updates are based on the idea that the most appropri-
ate one is likely to cause the minimum disruption to
the user's conception of the data base. This concept is
developed formally in the work of Lewis, presented in
his 1973 book, Counterfactuals. In this work, Lewis
examines the meaning and formal representa t ion of
such s tatements as " I f kangaroos had no tails, they
would topple over ." (p. 8) He argues that to evaluate
the correctness of this s tatement (and similar counter-
factual conditionals) it is necessary to construct in
one's mind the possible world minimally different from
the real world that could potentially contain the condi-
tional (the "neares t " consistent world). He points out

American Journal of Computational Linguistics, Volume 9, Number 2, Apri l -June 1983 61

James Davidson and S. Jerrold Kaplan Natural Language Access to Data Bases: Interpreting Update Requests

that this hypothet ica l world does not differ only in
that kangaroos don ' t have tails, but also reflects other
changes required to make that world plausible. Thus
he rejects the idea that in the hypothet ical world kan-
garoos might use crutches (as not being minimally
different) , or that they might leave the same tracks is
the sand (as being inconsistent).

The appl icat ion of this work to processing natural
language data base updates is to regard each transac-
tion as present ing a " coun t e r f ac t ua l " state of the
world, and request that the "nea re s t " reasonable world
in which the counterfactual is true be brought about.
For example , the request " C h a n g e the teacher of
CS345 from Smith to Jones ." might correspond to the
counter fac tua l " I f Jones taught CS345 instead of
Smith, how would the data base be di f ferent?" along
with a speech act requesting that the data base be put
in this new state.

To select this nearest world, three sources of infor-
mation are used:
(a) the side effects entai led by the different candi-

dates;
(b) pragmatic information contained in the data base

schema;
(c) semant ic constra ints a t tached to the data base

schema.

(a) Side e f f e c t s
As illustrated in the example of section 2, updates may
have effects on the user 's view and the data base be-
yond those literally requested. Using the rationale of
"minimal disruption", updates that do not have side
effects are preferable to those that do. For each candi-
date, we consider the number and type of side effects
caused, and rank the candidates accordingly. In data
base managemen t terms, the update with the fewest
side effects on the user 's data sub-model is selected as
the most appropriate .

Considering the example f rom section 2, note that
the two candidates have different effects on the user 's
view. The one that was actually per formed - candi-
date (a), changing the name of the manager of the
Sales depar tment - also changes two other values in
the view. The other candidate - (b), moving Brown
to the Marke t ing depa r tmen t - does not have these
effects. Therefore , the latter more exactly fulfills the
user 's request, and would be preferred.

The side effects that actually occur for a particular
candidate are in a sense accidental, in that they de-
pend on the particular state of the data base. For
example, the number of side effects caused by chang-
ing the manager of the Sales depar tment depends upon
how many other employees happen to work in that
depar tment . To avoid this proper ty of contingency, a
more stable approach is to consider what side effects
could result f rom per forming the given candidate in
any state of the data base. This set of potential side

effects can be determined by analyzing the restrictions
in the data base schema concerning the cardinality and
dependency of relat ionships be tween entities. The
significance of this concept is that the constraints on
cardinality and dependency may be strong enough to
ensure that the set of potential side effects (and hence
the set of actual ones) is empty - indicating that the
given candidate does not have any side effects in the
current state, and more important , could not have side
effects in any state.

Consider once again the example of section 2. Of
the two updates , (a) causes actual side effects , (b)
doesn ' t . A stronger reason for preferr ing (b) is that it
cannot cause side effects to the user 's view, regardless
of the state of the data base. To see this, note that
the cardinality of the relationship be tween employees
and depa r tmen t s is typical ly N : I - each employee
works for only one depar tment . Thus, an employee
can have only one manager , and moving the employee
to a new depar tment cannot cause any changes to this
aspect of the view beyond the one requested. The
potential side effects of (a) consist of changes to the
managers of employees other than Brown; the two
actual side effects are an example of this.

This calculation can be generalized, by considering a
graphical representa t ion of the view, in which nodes
represent relations, and arcs s tand for the joins
(relat ionships) be tween relations. For relat ionships
that are N : I as in the example, the arc is labeled to
indicate the direction of the functional determinat ion.
Thus, the graph for the example would be:

The view graph can be used to evaluate the side ef-
fects for each translation, with the following rule:

Consider the value or link being changed by the
translation in question, and the relat ion of which
it is a part. If that relation is a root of the view
graph, that is, if there exist paths following the
arrows, f rom the relation in question to all the
other relations of the graph, then the translat ion
will not have any side effects.

For the example in question, t ranslat ion (a) consisted
of a change to Departments, while (b) entai led a
change to Employees (to move Brown to another de-
par tment) . In the graph, Employees is a root , but
Departments is not - the link f rom Departments to
Employees runs the " w r o n g " way. Thus, the transla-
tion (b) cannot entail side effects, a l though (a) may;
this is consistent with the previous observat ion.

In Davidson (1983), this analysis is carried further
and developed more formally. We identify a number
of different types of side effects and establish graphi-
cal conditions for the presence and absence of each.
Further, theorems are introdueed concerning compar i -

62 American Journal of Computational Linguistics, Volume 9, Number 2, Apr i l -June 1983

James Davidson and S. Jerrold Kaplan Natural Language Access to Data Bases: Interpreting Update Requests

son of side effects for different translations, and the
optimality of certain translations is proved.

In the ranking of candidates for appropr ia teness ,
only potential side effects are considered. Explana-
tions, when needed, are phrased with respect to actual
side effects, if any exist, otherwise to potential ones.

(b) Pragmatic information
There may be information in the data base schema to
help the selection among candidate updates. For ex-
ample, certain attr ibutes and links in the schema may
be designated at design time as static, indicating that
they rarely change, or dynamic, indicating that they
f requent ly change. This informat ion is used during
implementa t ion to select methods for accessing the
information. It may also be of use when ranking can-
didate updates.

Consider ing the last example f rom section 4.2, we
note that one of the candidates changes the ship by
moving a new dock into Naples. This is consis tent
within the data base and fulfills the update request;
but, the data base schema would indicate that such a
change is unlikely (because the location of a dock is a
static attr ibute), and this candidate 's desirability would
be downgraded Similarly, there may be general rules
that names change less of ten than other attributes.

Note that this information is merely heuristic; if the
only candidate is one that involves such a change, it
will be performed.

(c) S e m a n t i c c o n s t r a i n t s

The schema will often contain semantic constraints that
restrict the allowable states of the data base. Exam-
ples of these are functional dependencies (for example,
" T w o employees cannot have the same employee num-
ber . ") , range constraints (" N o employee can make
more than $45,000.") , and existence constraints (" I f an
employee works in a particular depar tment , there must
be a record for that depa r tmen t in the departments
relat ion.") .

These figure in the process of update interpretat ion,
in the el imination of candidates that are otherwise
acceptable. In the example of section 4.2, if there is
already a ship named Pequod in the data base, the
renaming change could cause a name conflict, resulting
in the rejection of this candidate.

Whereas the pragmatic information discussed above
was heuristic, the semant ic constraints are absolute.
Candidates that violate semantic constraints will never
be per formed. However , it is still advantageous to
generate and consider these candidates, since it is of-
ten possible to formulate a meaningful explanation for
the user about the nonfulfil lment of the request.

Our current ordering heuristics incorpora te these
sources of information. In increasing order of prefer-
ence, they are:

- updates that violate semantic constraints associated
with the deta base;

- updates that violate pragmatic guidelines;
- updates with side effects on the user 's current

view;
- updates with no side effects.

While this approach can certainly fail in cases where
complex domain semantics rule out the " s imp les t "
change, in most cases it is sufficient to select a reason-
able update f rom among the various possibilities.

Consider again Lewis ' "Coun te r f ac tua l " f ramework.
We see that the method of generating candidates dis-
cussed in section 4.2 defines the accessibility of differ-
ent s tates of the world (data base) ; the semant ic
constraints define consistency," pragmat ic constraints
and side effect information are measures of distance
between states of the data base.

4.4 Action taken

If one candidate is be t ter than the others, it is per-
formed. If there are a number of candidates that can-
not be distinguished by the heuristic ranking, the user
is told about them and offered a choice. If no candi-
date is admissible (because, for instance, all candidates
violate semantic constraints on the data base) , the user
is so informed.

In a number of cases, c i rcumstances must be ex-
plained to the user. For instance, if the candidate
actually per formed has side effects, the user must be
notified. If a semantic constraint is violated, the user
must be told how.

Our approach to explanation assumes that the user is
familiar only with his own view of the data base, and
so all explanat ions must be phrased with respect to
this unders tanding (following McKeown 1979).
Therefore , options are presented in terms of their ef-
fects on the user ' s view (ra ther than the actual
changes proposed) , and violat ions of semant ic con-
straints are discussed with respect to a t t r ibutes that
the user has already seen. In this way, we ensure that
explanations are always comprehensible.

5. Examples of the System in Operation

PIQUE runs in INTERLISP (Tei te lman 1978) on the
DEC Sys tem-20 at SRI In terna t ional as part of the
KBMS system (Wiederhold et al. 1981). The natural
language parser is writ ten in LIFER, a semantic gram-
mar system designed by Gary Hendrix (1977). The
data base access uses SODA, a LISP-compatible variant
of the relational calculus developed by Bob Moore
(1979); the SODA interpreter used was written by Bil
Lewis, and has been modif ied and extended by Jim
Davidson to handle updates.

Note that some of the informat ion printed by the
current sys tem is presented merely for pedagogical
purposes, to show the intermediate stages of the com-
putation. In the course of a real run, such information
(shown indented in the t ranscr ipts below) would be
suppressed. The user 's input is preceded by >.

American Journal of Computational Linguistics, Volume 9, Number 2, Apri l -June 1983 63

James Davidson and S. Jerrold Kaplan Natural Language Access to Data Bases: Interpreting Update Requests

Assume a sample data base containing the following
information:

Individual employees, with salary, department, and
employee number (employee number and name are
assumed to be unique):

ESD: EMP SAL DEPT

Adams 30 Invntry

White 35 Mkting

Brown 25 Sales

Smith 30 Sales

Pullum 25 Sales

EE: EMP EMPNO

Adams 103

White 431

Brown 554

Smith 222

Pullum 181

Departments have managers and location, and are
grouped into divisions (department names are assumed
to be unique):

DMLD: DEPT MGR LOC DIV

Sales Jones SF I

Mkting Baker LA II

Invntry Fisher SD I

Advert Larkin NY II

Div i s ionsareass igned vice presidents:

DV: DIV VP

I Lasker

II Kline

II Hannan

III Burgess

1. Example of an update performed using side effect

heurist ics.

Consider once again the example shown in section 2,
this time with the real system:

THE EMPLOYEES AND THEIR MAN- >(LIST

AGERS)

EMP

ADAMS

WHITE

BROWN

SMITH

PULLUM

MGR

FISHER

BAKER

JONES

JONES

JONES

Next, the u s e r e n t e r s a r e q u e s t t o update hisv iew.

Enter next command:

>(CHANGE BROWN'S MANAGER FROM JONES

TO BAKER)

The program now generates thecandidate updates. As
indicated, there a re two o f these .

The possible ways of performing

the update:

I. In the relation DMLD change the

MGR attr of the tuple

DEPT MGR LOC DIV

SALES JONES SF I

to the value BAKER

2. In the relation ESD change the

DEPT attr of the tuple

EMP SAL DEPT

BROWN 25 SALES

to the value MKTING

Note that the update of changing the DEPT attribute
of the tuple (MKTING BAKER) to Sales would make
Baker one of the managers of Brown. But, it would
also leave Jones as a manager of Brown, and thus does
not fulfill the user's request, even literally. For this
reason, it has not even been considered by the system.

These candidates are then evaluated, in terms of the
accuracy with which they fulfill the user's request. In
the absence of any strong preference for either one,
the decision is made on the basis of potential side
effects to the user's view.

These translations have the fol-

lowing effects-

I. Effects are:

In the view: potentially changing

the MGR of other EMPS.

2. Effects are:

None.

The program concludes that update (2) is superior to
(1) , since (1) has the possibility of changing the man-
ager of other employees. (In actuality, (1) would
change the managers of both Smith and Pullum.)

Desired translation is: 2.

Revised view is:

EMP MGR

ADAMS FISHER

WHITE BAKER

BROWN BAKER

SMITH JONES

PULLUM JONES

The result accords with the user's wishes; only the
requested change has been made to his view.

2. Example of an update per fo rmed using pragmat ic

in format ion

Consider the same data base, with a slightly different
dialogue:

>(WHAT ARE THE LOCATIONS OF THE EM-

PLOYEES)

64 American Journal of Computational Linguistics, Volume 9, Number 2, April-June 1983

James Davidson and S. Jerrold Kaplan Natural Language Access to Data Bases: Interpreting Update Requests

EMP LOC

ADAMS SD

WHITE LA

BROWN SF

SMITH SF

PULLUM SF

Enter next command:

>(MOVE ADAMS FROM SD TO LA)

The system interprets this as a request to change
Adams' locat ion.

The possible ways of performing

the update:

I. In the relation DMLD change the

LOC attr of the tuple

DEPT MGR LOC DIV

INVNTRY FISHER SD I

to the value LA

2. In the relation ESD change the

DEPT attr of the tuple

EMP SAL DEPT

ADAMS 30 INVNTRY

to the value MKTING

Two candidates are identified, corresponding to (1)
physically moving the department to a different loca-
tion, or (2) reassigning the employee.

Now, the candidates are evaluated.

These translations have the fol-

lowing side effects on the view:

I. Effects are:

Violation of pragmatic const-

raints.

2. Effects are:

None.

The "location" attribute of the DMDL relation, repre-
senting the location of the department, is marked in
the data base schema as "static", indicating that it
rarely changes. Thus, update (1) is unlikely. The
system detects this. Note that update (1) also has
potential side effects on the user's view, but the viola-
tion of the pragmatic constraint is a stronger reason
for rejection.

Desired translation is: 2.

Revised view is:

EMP LOC

ADAMS LA

WHITE LA

BROWN SF

SMITH SF

PULLUM SF

Once again, the user's request has been fulfilled ex-
actly.

3. Example of a request b locked by a s e m a n t i c
constra int :

Assume a semant ic constraint - a functional dependen-
cy stating that each employee number may be assigned
to only one employee.

> (LIST THE NAMES AND EMPLOYEE NUM-

BERS FOR ALL EMPLOYEES IN THE SALES

DEPARTMENT)

EMP EMPNO

BROWN 554

SMITH 222

PULLUM 181

> (CHANGE SMITH' S EMPLOYEE NUMBER TO

103)

The program generates the ways of performing the
update. There is only one of these.

The possible ways of performing

the update:

I. In the relation EN change the

EMPNO attr of the tuple

EMP EMPNO

SMITH 222

to the value 103.

[The effects engendered by this candidate are now
listed; the candidate would violate a semantic data
base constraint.]

These translations have the fol-

lowing effects:

I. Effects are:

Violation of semantic constraints.

The system now tells the user what has happened,
explaining why the update couldn't be performed, and
how the semantic constraint would be violated.

This update could not be performed,

because of semantic constraints:

The EMPNO value of 103 has already

been assigned to the tuple

EMP EMPNO

ADAMS I 03

which has the DEPT value of INVNTRY.

This update would violate the func-

tional dependency EMPNO --> EMP.

Note that, without the DEPT value printed out, the
user may not realize why he cannot see the (ADAMS
1 0 3) tuple. The explanation is thus phrased with
respect to the user view.

4. Example of a genu ine ly ambiguous update.

Now, a dialogue concerning a different part of the
data base:

>(WHICH VP'S ARE IN CHARGE OF WHICH
DEPARTMENTS ?)

American Journal of Computational Linguistics, Volume 9, Number 2, April-June 1983 65

James Davidson and S. Jerrold Kaplan Natural Language Access to Data Bases: Interpreting Update Requests

VP DEPT
LASKER SALES

LASKER INVNTRY
KLINE MKTING
KLINE ADVERT
HANNAN MKTING
HANNAN ADVERT

Enter nextcommand:

>(REPLACE LASKER WITH KLINE AS VP IN
CHARGE OF THE SALES DEPT)

The sys tem now generates the list of candidate up-
dates. There a r e t w o o f t h e s e .

The possible ways of performing
the update:

I. In the relation DV change the

VP attr of the tuple

DIV VP
I LASKER

to the value KLINE

2. In the relation DMLD change the
DIV attr of the tuple

DEPT MGR LOC DIV
SALES JONES SF I

to the value II

Again, the effects o f e a c h on the user 's view are com-
puted.

These translations have the fol-
lowing effects:

I. Effects are:
In the view: potentially changing
the VP of other DEPTs.

2. Effects are:
In the view: potentially inserting
or deleting other VPs for this
DEPT.

Thus, both candidates have side effects on the view.
Since the system cannot decide a priori that one of
these is superior to the other, no decision can be made
here. The only solution is to ask the user. Note that,
since the user is presumed to know nothing about the
structure of the underlying data base, the only mean-
ingful way to distinguish be tween the updates is to
describe them in terms of their (actual) side effects on
his view. This is ano ther example of explanat ion
phrased with respect to a view.

There are 2 methods of performing
this update.

Update (I) will have the side effect
of
replacing the tuple (LASKER INVNTRY)
with (KLINE INVNTRY)

Update (2) will have the side effect
of

inserting the tuple ((HANNAN SALES))

Whi¢h would you prefer?
>

If the user cannot make a choice, the update is aban-
doned.

[Note that the actual side effects are in fact examples
of the classes described by the potential ones.]

6. Discussion and Eva luat ion

We discuss the effect iveness of PIQUE as a mechanism
for performing natural language updates. Four aspects
are considered: coverage, portabi l i ty , eff iciency, and
correctness.

Coverage concerns the range of inputs accepted by
the system. We distinguish linguistic coverage - the
range of linguistic phenomena handled by the system -
f rom logical coverage - the range of domain capabili-
ties that can be per formed using the natural language
front end.

Linguistic capabil i t ies have not been s t ressed in
PIQUE, and linguistic coverage is therefore quite limit-
ed. Many phenomena - ellipsis, relative clauses, con-
junctions, passive voice - are handled only in simple
cases, if at all. Extension of the system to fully handle
these could be accomplished through expansion of the
grammar.

Logical coverage concerns the classes of requests
that can be expressed by means of the interface lan-
guage. Da ta base interfaces, unlike many artificial
intelligence applications, have a task space that is well-
defined - specifically, by the capabilit ies of the under-
lying data manipulat ion language. The class of queries
accepted by PIQUE is a natural (and common) subset
of the relational calculus expressions: chain-structured,
conjunctive queries. These are queries where the set of
predicates to be satisfied is a simple conjunction, and
where the set of joins defines a chain; this corresponds
to a form of select-project- join expression. The up-
dates are deletions and replacements , again with con-
junctive qualifications.

Portability deals with the ease of adapta t ion for new
data bases or domains. The phi losophy adopted in the
design of PIQUE is somewhat different f rom that of
typical AI systems. Rather than try to capture, repre-
sent, and encode the domain- and wor ld -knowledge
required to per form a thorough semantic analysis of
the problem, we a t tempt to exploit whatever knowl-
edge is already implicitly or explicitly present in the
application (in this case, the content and structure of
the data base and the user 's phrasing of the update
request) . Consequent ly , the implementa t ion is simpli-
fied and the techniques are more easily t ranspor ted to
new domains.

The sys tem uses five major modules: parser and
grammar; user modeler; candidate generator ; ranking
heuristics; and data base schema. For t ranspor t to a

66 American Journal of Computational Linguistics, Volume 9, Number 2, April-June 1983

James Davidson and S. Jerrold Kaplan Natural Language Access to Data Bases: Interpreting Update Requests

new application, only the first and last (natural lan-
guage grammar, and data base schema) would require
modif icat ion. These are both modules that would
need revision or replacement anyway, independent of
the update capability.

Efficiency concerns the time and space requirements
of the system, and how these increase as the data base
becomes larger. The algori thms of PIQUE are de-
signed to avoid potentially expensive data base refer-
ences, by using the data base schema where possible.
Thus, the candidate generat ion and ranking are per-
formed on an intensional (structural) basis, and the set
of heuristics used do not refer to the data base state.
As a result, the system is relatively insensitive to in-
creases in the size of the data base.

Correctness is used here to indicate the degree to
which the system's actions match the intended results;
any "intel l igent" system has the possibility of error.
We consider now the correctness of the PIQUE ap-
proach. Note first that one class of errors is unavoida-
ble - these are the "pathologica l" cases in which the
user 's intent is beyond the discovery of the program.
For example, the user ' s real meaning in " C h a n g e
Brown's manager f rom Jones to Baker ." may have
been to have Brown fired, and a new employee named
Brown hired for Baker. In such situations, it is unlike-
ly that any program will behave correctly; the best
result achievable is p robably to provide enough feed-
back to enable the user to discover the error.

Many of the remaining difficulties are associated
with the ranking of candidate translations. The empha-
sis here has been placed on consistency of behavior.
The consideration of side effects, and the emphasis on
exactness of translations, are designed to ensure that
the sys tem's actions will be visible to the user, and
unexpected effects will not occur. Side effect consid-
erations have also been favored because of applicabili-
ty (they are useful in a broad class of situations), per-
spicuity (they can be unders tood by the user) , and
richness (they operate at multiple levels, and provide
results more complex than a simple yes-no response).

Of course, the pe r fo rmance of the sys tem suffers
when limited information is available. In part because
of its generality, there is a definite risk that the system
will take inappropriate actions or fail to notice prefer-
able options. A more knowledge-based approach
would likely yield more accurate and sophist icated
results. The process of responding appropr ia te ly to
updates could be improved by taking advantage of
domain specific knowledge external to the data base,
using partial case-structure semantics, or tracking dia-
logue focus, to name a few possible extensions. To
mitigate these shortcomings, the system is engineered
to fail "sof t ly" , by presenting options to the user or
request ing clarif ications by re-phras ing the request .
As data bases encode richer semantic knowledge, as
suggested by Wiederhold and E1-Masri (1979) and

H a m m e r and McLeod (1978) , the ranking heuristics
can be easily extended to take advantage of these
additional knowledge sources.

7. Conclusion

We have studied the subjective problem of interpreting
natural language updates to a data base system. In
particular, we have examined the problems associated
with vague requests, which lack sufficient detail to
enable a unique interpretat ion.

Drawing on work in artificial intelligence, the philos-
ophy of language, and data base theory, we have de-
veloped and implemented a domain - t r anspa ren t ap-
proach to this problem. This method is character ized
by the main tenance of a fo rm of "use r mo d e l " for
interpret ing requests, and the use of a collection of
heuristics to rank alternative translations. Particular
a t ten t ion has been paid to the requi rements of
efficiency and portability.

8. Bibliography

Cohen, Philip. 1978 On Knowing What to Say: Planning Speech
Acts. Technical Report #118, Computer Science Department,
University of Toronto.

Davidson, James. 1982 Natural Language Access to Databases:
User Modeling and Focus. Proceedings of the Fourth Biennial
Conference of the Canadian Society for Computational Studies of
Intelligence. Saskatoon, Saskatchewan, pp. 204-211.

Davidson, James. 1983 Interpreting Natural Language Database
Updates. Ph.D. thesis, Computer Science Department, Stanford
University, Stanford, California.

Dayal, Umeshwar. 1979 Schema-Mapping Problems in Database
Systems. Technical Report TR-11-79, Center for Research in
Computing Technology, Harvard University, Cambridge, Mas-
sachusetts.

Frege, Gottlob. 1952 On Sense and Reference. In Geach, P. and
Black, M., Eds. (Black, M. (Tr.)), Translations from the Philo-
sophical Writings of Gottlob Frege. Blackwell, Oxford, England.

Hammer, Michael and McLeod, Dennis. 1978 The Semantic Data
Model: A Modelling Mechanism for Data Base Applications.
A CM SIGMOD Conference Proceedings: 26-36.

Hendrix, Gary. 1977 Human Engineering for Applied Natural
Language Processing. Proceedings of the Fifth International Joint
Conference on Artificial Intelligence. Cambridge, Massachusetts:
183-191.

Hendrix, Gary et al. 1978 Developing a Natural Language Inter-
face to a Complex System. ACM Transactions on Database
Systems 3: 105-147.

Henisz-Dostert, Bozena and Thompson, Frederick. 1974 The REL
System and REL English. In Zampolli, A. and Calzolari, Eds.,
Computational and Mathematical English. Casa Editrice Olschki,
Firenze, Italy.

Kaplan, S. Jerrold and Davidson, James. 1981 Interpreting Natu-
ral Language Database Updates. In Proceedings of the 19th
Annual Meeting of the Association for Computational Linguistics.
Stanford, California: 139-141.

Kaplan, S. Jerrold. 1979 Cooperative Responses from a Portable
Natural Language Data Base Query System. Technical Report
HPP-79-19, Computer Science Department, Stanford Universi-
ty, Stanford, California.

American Journal of Computat ional Linguistics, Volume 9, Number 2, Apri l -June 1983 67

James Davidson and S. Jerrold Kaplan Natural Language Access to Data Bases: Interpreting Update Requests

Kaplan, S. Jerrold. 1978 Indirect Responses to Loaded Questions.
Proceedings of the Second Workshop on Theoretical Issues in Natu-
ral Language Processing. Urbana-Champaign, Illinois.

Keller, Arthur M. 1982 Updates to Relational Databases Through
Views Involving Joins. In Scheuermann, Peter, Ed., Improving
Database Usability and Responsiveness. Academic, New York:
363-384.

Lewis, D. 1973 Counterfactuals. Harvard University Press, Cam-
bridge, Massachusetts.

Mann, William; Moore, James; and Levin, James. 1977 A Com-
prehension Model for Human Dialogue. Proceedings of the Fifth
International Joint Conference on Artificial Intelligence. Cam-
bridge, Massachusetts: 77-87.

McKeown, Kathleen. 1979 Paraphrasing Using Given and New
Information in a Question-Answer System. Proceedings of the
17th Annual Meeting of the Association for Computational
Linguistics. LaJolla, California: 67-72.

Moore, Robert. 1979 Handling Complex Queries in a Distributed
Data Base. Technical Note 170 (October), Artificial Intelli-
gence Center, SRI International, Menlo Park, California.

Quine, Willard. 1971 Reference and Modality. In Linsky, Leo-
nard, Ed., Reference and Modality. Oxford University Press,
Oxford, England.

Teitelman, Warren. 1978 lnterlisp Reference Manual. Xerox
PARC, Palo Alto, California.

Wiederhold, Gio and EI-Masri, Ramez. 1979 The Structural Mod-
el for Database Design. Proceedings of the International Confer-
ence on Entity-Relationship Approach to Systems Analysis and
Design. North Holand Press, Amsterdam, Holland: 247-267.

Wiederhold, Gio; Kaplan, S. Jerrold; and Sagalowicz, Daniel. 1981
Research in Knowledge Base Management Systems. ACM
S1GMOD Record 11 (3).

68 American Journal of Computational Linguistics, Volume 9, Number 2, April-June 1983

