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Abstract

Accurate identification of protein-protein
interaction (PPI) helps biomedical re-
searchers to quickly capture crucial in-
formation in literatures. This work pro-
poses a recurrent neural network (RNN)
model to identify PPIs. Experiments on
two largest public benchmark datasets,
AIMed and BioInfer, demonstrate that
RNN outperforms state-of-the-art meth-
ods with relative improvements of 10%
and 18%, respectively. Cross-corpus eval-
uation also indicates that RNN is robust
even when trained on data from different
domains. These results suggest that RNN
effectively captures semantic relationships
among proteins without any feature engi-
neering.

1 Introduction

In systematic biology, protein-protein interaction
(PPI) is an important subject that aims at explor-
ing the role of intermolecular interactions, which
is crucial for reconstructing molecular networks
in cells (Mori, 2004). A widely-used information
source regarding PPI is PubMed, which contains
over 27 million research papers and continues to
grow at a rate of 1.5 million per year. Given the
vast amount of papers published, collecting PPI
information manually is time-consuming. Thus, a
major research question in biomedical text-mining
is to efficiently identify the sentences that con-
tain PPIs. Although certain PPI may span across
multiple sentences, existing work mostly focus on
those PPIs existing within a single sentence (Tikk
et al., 2010). For instance, given the sentence
“STAT3 selectively interacts with Smad3 to antag-
onize TGF-β signaling,” a model should correctly
identify that proteins STAT3, Smad3, and TGF-β

have interactions with one another. More specif-
ically, there are (32) = 3 pairs of proteins in the
sentence, and there are PPIs in all three pairs. Note
that the exact type of interaction is not in the scope
of this task.

Recent breakthrough in neural network (NN)
led to increasing amount of work that apply NN
on various text-mining tasks. Specifically, con-
volutional neural networks (CNN) (Lecun et al.,
1998) have been most commonly adapted for PPI.
Compared with traditional machine learning (ML)
methods such as SVM (Cortes and Vapnik, 1995),
CNN models do not require tedious feature engi-
neering and domain knowledge. However, how
to best incorporate linguistic and semantic infor-
mation into the CNN model remains an active re-
search topic, since previous CNN-based methods
have not achieved state-of-the-art performance in
PPI identification task (Peng and Lu, 2017).

This paper proposes a novel approach based on
recurrent neural networks (RNNs) to capture the
long-term relationships among words in order to
identify PPIs. The proposed model is evaluated
on two largest PPI corpora, i.e., AIMed (Bunescu
et al., 2005) and BioInfer (Pyysalo et al., 2007) us-
ing cross-validation (CV) and cross-corpus (CC)
settings. Experimental results from CV show that
RNN outperforms state-of-the-art methods by rel-
ative improvements of 10% and 18% on AIMed
and BioInfer, respectively. Furthermore, RNN re-
mains effective even when trained on a different
domain in the CC setting.

The rest of this paper is organized as follows.
Sec. 2 provides important previous work related
to PPI and NN. Sec. 3 describes the architecture
of the proposed model. Sec. 4 details the experi-
mental procedure and Sec. 5 presents experimental
results and findings. Finally, Sec. 6 concludes this
paper and points to the directions for future work.
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Figure 1: Overview of the proposed model. The first layer transforms words into corresponding embed-
dings and feeds them sequentially to the bi-directional RNN. The forward and backward output vectors
are concatenated as the new “feature vector” and sent to the fully connected layer for final classification.
For simplicity w/o losing details, dropout layers are omitted.

2 Related work

PPI identification can be cast as a binary classi-
fication problem where discriminative classifiers
are trained with a set of positive and negative in-
stances. Two major categories of approaches are
proposed, i.e., manual rule-based systems and ML
approaches (Bunescu et al., 2005). The former
approach is intuitive but time-consuming and re-
quires intensive labor, while the latter are more
common and primarily “kernel-based”. Kernel-
based methods usually take advantage of the syn-
tactic or semantic structure of a sentence. For
example, Qian and Zhou (2012) includes short-
est dependency path (sdp) with tree-kernel classi-
fier, and Chang et al. (2016) integrate knowledge
base with a tree kernel to strengthen PPI identi-
fication. Other approaches include shortest path
kernels (Bunescu and Mooney, 2005), graph ker-
nel (Airola et al., 2008), composite kernel (Miwa
et al., 2009), subsequence kernels (Kim et al.,
2010), and tree kernels (Eom et al., 2006; Qian and
Zhou, 2012). However, engineering features from
different sources may not lead to optimal results.

Recent advances in NN research have been ap-
plied to PPI identification as well. Zhao et al.
(2016) used an auto-encoder for feature extrac-
tion from words and a logistic regression for clas-
sification. Li et al. (2015) proposed a hybrid of
kernel- and NN-based model and examined the
strength of integrating NN-extracted features into
kernels. They conclude that NNs can automati-

cally extract discriminative features and aid ker-
nels in PPI identification. Furthermore, Peng and
Lu (2017) integrated dependency graph informa-
tion into a CNN and improved performances on
AIMed and BioInfer over kernel-based methods,
with F-scores 63.5% and 65.3%, respectively. Hua
and Quan (2016) used shortest dependency path
feature to simplify the input and avoid bias from
feature selection. Their method achieved 66.6%
F-score on AIMed and 75.3% on BioInfer dataset.
Alternatively, RNN with Long Short-Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
have been shown to possess outstanding abilities
when modeling sequential data with long-term de-
pendency (Greff et al., 2017). Majority of previous
work that use LSTM focused on machine transla-
tion (Sutskever et al., 2014), named-entity recog-
nition (Lample et al., 2016), or classification of a
sequence, e.g., the sentiment of a piece of movie
review (Tai et al., 2015). Recently, LSTMs have
been utilized to perform relation extraction and
classification on general texts (Miwa and Bansal,
2016).

3 Method

We propose a novel approach for identifying PPI
using bi-directional RNN with LSTM. Figure 1 il-
lustrates the overview of our model, which takes a
sentence containing protein entities as input and
outputs a probability distribution (Bernoulli dis-
tribution) corresponding to whether there exists a
PPI or not. There are three types of layers: an em-
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bedding layer, a recurrent layer, and a fully con-
nected layer, which are described as follows.

Embedding Layer transforms words into em-
beddings (Mikolov et al., 2013), which are dense,
low-dimensional, and real-valued vectors. They
capture syntactic and semantic information pro-
vided by its neighboring words. In this work,
we examine the effect of pre-training embeddings
by comparing randomly initialized and pre-trained
ones from Chiu et al. (2016), which was trained on
over 25 million PubMed records.

Recurrent Layer is constructed using LSTM
cells, as illustrated in Fig. 2. An LSTM cell con-
tains a “memory” cell and three “gates”, i.e., in-
put, forget, and output. The input gate modulates
the current input and previous output. The forget
gate tunes the content from previous memory to
the current. Finally, the output gate regulates the
output from the memory.

Previous 
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●●●

●●●

Input Gate

xt 

ct 
ct-1 

Forget Gate●●●

●●●

Output Gate

ht 

Current 
Input

Current 
Output
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Figure 2: Simplified illustration of an LSTM cell.
The input gate and forget gate jointly control the
content of the memory ct, and the output gate reg-
ulates output from ct.

Specifically, let xt be the input at time t, and
it, ft,ot correspond to input, forget, and output
gates, respectively. ct denotes the memory cell
and ht is the output. The learnable parameters in-
clude Wi,f,o,c and Ui,f,o,c. They are defined as:

it = σ(Wixt + Uiht−1)
ft = σ(Wfxt + Ufht−1)
ot = σ(Woxt + Uoht−1)
c̃t = tanh(Wcxt + Ucht−1)
ct = ft ◦ ct−1 + it ◦ c̃t

ht = ot ◦ tanh(ct)

where “◦” denotes the element-wise product of
vectors and σ represents the sigmoid function.

We use a bi-directional RNN to encode a se-
quence in forward and backward directions, which
has been proven effective in sequence modeling
tasks (Dyer et al., 2015). In essence, it uses two
cells, one to encode the input sequence in its orig-
inal order and the other in reverse. Subsequently,
the two outputs are concatenated and fed to the
Fully Connected Layer. It serves as a classifier
where the output represents class probabilities.

4 Experiments

We evaluate the proposed method with two largest
publicly available PPI corpora: AIMed and BioIn-
fer. Distribution of the corpora is shown in Ta-
ble 1. We adopt 10-fold cross-validation (CV)

Table 1: Statistics of AIMed and BioInfer.

Corpus Total # of # of Positive/Negative
Sentences Protein Pairs

AIMed 1,955 1,000/4,834
BioInfer 1,100 2,534/7,132

and cross-corpus (CC) testing scheme. The eval-
uation metrics are the precision, recall, and F1-
score for both schemes. Compared methods in-
clude the shortest dependency path-directed con-
stituent parse tree (SDP-CPT) method (Qian and
Zhou, 2012), in which the tree representation gen-
erated from a syntactic parser is refined by us-
ing the shortest dependency path between two en-
tity mentions derived from a dependency parser;
A knowledge-based approach PIPE (Chang et al.,
2016) that extracts linguistic interaction patterns
and learned by a convolution tree kernel; A com-
posite kernel approach (CK) (Miwa et al., 2009)
which combines several different layers of infor-
mation from a sentence with its syntactic struc-
ture by using several parsers; and a graph ker-
nel method (GK) (Airola et al., 2008) that inte-
grates parse structure sub-graph and a linear order
sub-graph. We further compare with recent NN-
based approaches: sdpCNN (Hua and Quan, 2016)
which combines CNN with shortest dependency
path features; McDepCNN (Peng and Lu, 2017)
that uses positional embeddings along with word
embeddings as the input, and a tree kernel using
various word embeddings labeled as TK+WE (Li
et al., 2015). We also evaluate the effect of pre-
training of word embeddings by comparing ran-
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Table 2: Results (in %) from 10-fold cross-validation on AIMed and BioInfer corpora. Bold font indi-
cates the best performance in a column. Standard deviations are enclosed in parentheses.

Method AIMed BioInfer
Precision Recall F-score Precision Recall F-score

GK 52.9 61.8 56.4 56.7 67.2 61.3
SDP-CPT 59.1 57.6 58.1 - - 62.4

CK 55.0 68.8 60.8 65.7 71.1 68.1
PIPE 57.2 64.5 60.6 68.6 70.3 69.4

McDepCNN 67.3 60.1 63.5 62.7 68.2 65.3
sdpCNN 64.8 67.8 66.0 73.4 77.0 75.2
TK+WE - - 69.7 - - 74.0

LSTMrand 70.1 (6.5) 70.4 (6.4) 70.1 (5.5) 83.6 (2.4) 83.3 (2.7) 83.4 (2.3)
LSTMpre 78.8 (5.6) 75.2 (5.0) 76.9 (4.9) 87.0 (2.3) 87.4 (2.3) 87.2 (1.9)

domly initialized and pre-trained embeddings, la-
beled as LSTMrand and LSTMpre, respectively.

4.1 Experimental Setup

To ensure the generalization of the learned model,
the protein names recognized in the text are
replaced with “PROTEIN1”, “PROTEIN2”, or
“PROTEIN”, where “PROTEIN1” and “PRO-
TEIN2” are the pair of interest, and other non-
participating proteins are marked as “PROTEIN”.
An example is given as follows. The sentence
“Thymocyte activation induces the association
of phosphatidylinositol 3-kinase and pp120 with
CD5” contains three proteins, namely, “phos-
phatidylinositol 3-kinase”, “pp120”, and “CD5”.
In the three possible pairs of proteins, two of them
are in interaction relations. Therefore, there are
three variants of this sentence with proteins be-
ing replaced by the special labels in the data, and
two of them are marked as “positive” while the
other one as “negative”. During testing, all the
variants will be scored. The maximum sentence
length is set to 100, where longer sentences are
truncated and shorter sentences padded with ze-
ros. We use 200-dimension embeddings and 400-
dimension LSTM cells. The dropout rate is set
to 0.5. RMSProp optimizer (Tieleman and Hin-
ton, 2012) with default learning rate settings are
applied1. With a batch size of 16, training one
epoch on one Titan X GPU takes approximately
one minute. The throughput of the inference stage
is around 130KB of text per second.

1We implement the model using Keras with tensor-
flow (Abadi et al., 2015) backend. Code can be down-
loaded from https://github.com/ylhsieh/ppi_
lstm_rnn_keras

5 Results and Discussion

Ten-fold cross-validation results on AIMed and
BioInfer are listed in Table 2. Kernel-based meth-
ods can achieve decent F-scores of 61% and 69%.
All NN-based methods outperform kernel-based
ones by up to 10% on AIMed and 5% on BioIn-
fer. When using randomly initialized embed-
dings, RNN exhibits similar performance as other
NN models. However, by taking advantage of
pre-trained embeddings, RNN further advances F-
scores by 7% and 13% on AIMed and BioInfer, re-
spectively. In other words, pre-training contribute
to relative improvements of 10% and 18%. These
results demonstrate that, even though kernel-based
methods all include syntactic or semantic struc-
tures and carefully crafted features, neural net-
works are capable of automatically capturing con-
textual information that is crucial for identifying
PPIs. Moreover, we can see that the standard de-
viations of the performance by RNN on the larger
corpus, i.e., BioInfer, is much lower than that of
the smaller corpus (5 vs. 2). Besides, the relative
improvement of RNN over compared methods on
BioInfer is greater as well (10% and 18%). This
suggests that richer context information in a larger
corpus may be difficult to be manually modeled
via feature engineering or rule creation, but is a
well-suited learning source for neural networks.

Table 3 shows the cross-corpus results, in which
different methods are trained on one corpus and
tested on the other. We observe that, although
RNN performs slightly better than McDepCNN,
CK and PIPE methods are much more robust when
learning on different corpora. We postulate that
knowledge may play an important role in this sce-
nario, and effective incorporation of such informa-
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tion into RNN can be a promising direction for fu-
ture research.

Table 3: Cross-corpus results (in %) of two cor-
pora. Bold font indicates the best performance in
a column.

Method Train Test Train Test
AIMed BioInfer BioInfer AIMed

GK 47.1 47.2
CK 53.1 49.6

PIPE 58.2 52.1
McDepCNN 48.0 49.9

Proposed 49.3 50.7

6 Conclusion

We propose an end-to-end RNN-based model to
identify PPIs in biological literature. Cross-
validation results demonstrate that it outperforms
existing methods in the two largest corpora, BioIn-
fer and AIMed. Potential directions for future
work include integrating features that have been
proven useful in identifying PPIs, and conduct
extensive experiments under the cross-learning
scheme. Also, we will explore networks with dif-
ferent architectures in order to further advance the
current model.
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