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Abstract

In this paper, we propose a factored pars-
ing model consisting of a lexical and a
constituent model. The discriminative lex-
ical model allows the parser to utilize rich
contextual features beyond those encoded
in the context-free grammar (CFG) in use.
Experiment results reveal that our parser
achieves statistically significant improve-
ment in both parsing and tagging accuracy
on both English and Chinese.

1 Introduction

Part-of-speech (POS) tagging, or tagging for short,
is usually considered a front-end preparation for
parsing. Folk wisdom holds that accurate tagging
result is helpful to alleviate the syntactic ambigu-
ity problem in parsing, motivating a huge amount
of research on perfecting tagging techniques.

In the past two decades, most POS tagging
systems were based on a sequential classifica-
tion approach, decomposing a sequence label-
ing task into a series of classification subtasks.
The state of the art of tagging was achieved by
virtue of well-developed machine learning meth-
ods, e.g. the Maximum Entropy model as in Rat-
naparkhi (1996) and the Support Vector Machine
as in Gimenez and Marquez (2003). All these
techniques boosted the performance of POS tag-
ging significantly. The error rate of the best En-
glish POS tagger is less than 3% (Ratnaparkhi,
1996; Toutanova et al., 2003; Shen et al., 2007),
very close to the inter-annotator discrepancy of the
Penn Treebank (Marcus et al., 1993).

For a long time, however, parsing seems to
have been evolving in parallel to tagging with-
out much interaction with each other. Generative
parsers (Collins, 1997; Charniak, 2000; Charniak
and Johnson, 2005; Petrov and Klein, 2007), ow-
ing to their generative nature, all include a lexi-

cal probability model in the form P (w|t). The in-
formation used to predict the POS tag of a word
mainly comes from the word itself and/or the an-
cestors that derive this word in a tree. Local con-
text, which is proved to be the most useful in-
formation source for tagging (Ratnaparkhi, 1996;
Toutanova and Manning, 2000), is not efficiently
utilized by these parsers. Another noticable fact
is that these high-performance parsers cannot do a
better job of POS tagging than most of the state-
of-the-art taggers (see Section 4 for a comparison).
This is quite against our intuition that a parser hav-
ing access to syntactic and contextual information
from all over an input sentence should outperform
a tagger that is limited to utilizing only local con-
text and sequential dependency. This is an obser-
vation in Charniak et al. (1996). But their explana-
tion is that a parser is built to find phrase markers,
not tags. Then an interesting question arises: if a
parser cannot tag words better, how can we expect
it to do better on phrases?

Driven by this question, our research is in-
tended to explore an approach to integrating pars-
ing with the strength of successful tagging, in the
hope of improving both. Firstly, we factor the
conventional PCFG-based parsing into a lexical
and a constituent model. Then, two candidate
lexical models are formulated to incorporate en-
riched contextual features and sequential depen-
dency into the parsing, with an averaged percep-
tron algorithm for parameter estimation. Our ex-
periments on English and Chinese treebanks show
that this approach achieves a significant perfor-
mance enhancement in both parsing and tagging
over the baseline Berkeley parser.

2 A Factored Parsing Model

2.1 POS Tagging in Parsing

For PCFG-based parsing, the joint probability
P(T, S) for a parse tree T of a sentence S is usu-
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ally defined as the product of the probability of
every CFG ruleR involved in T :

P(T, S) =
∏

R∈T
P(R)|R| (1)

where |R| is the number of occurrences ofR in T .
In a CFG, such as the one induced from the Penn
Treebank, there are usually two types of grammar
rules: lexical rule, e.g. NN→ consumer, to indi-
cate a possible POS-tag for a word, and constituent
rule, e.g. PP → IN NP, to indicate the composi-
tion of a constituent.

Let r denote a lexical rule and R a constituent
rule, the probability defined in (1) can be rewritten
as

P(T, S) =
∏

R∈T
P(R)|R|

∏

r∈T
P(r)|r| (2)

Accordingly, the parsing model can be decom-
posed into two factors:

P(T, S) = P(C, S)P(L, S) (3)

where P(C, S) = ∏
R∈T P(R)|R| is a constituent

model and P(L, S) =
∏
r∈T P(r)|r| a lexical

model. The best parse is then selected by the
joint inference with these two submodels. This
factored-out lexical model provides the flexibility
of integrating various well-developed POS tagging
techniques into parsing, and it is also easier for op-
timization, in contrast to a complex joint model.
It is reasonable that a better lexical model is ex-
pected to have better effects on parsing.

2.2 Product of Experts
The two separated models may score in different
magnitudes, even if they are all properly normal-
ized. Usually, when combining two heterogeneous
models, a weighting scheme is needed to balance
their unequal effect. For this, we introduce another
parameter λ to our factorized parsing model as

P(T, S) = P(L, S)λP(C, S) (4)

This is known as a product-of-experts (Hinton,
2002; Cohen and Smith, 2007), where a combined
distribution is defined by multiplying several com-
ponent distributions and renormalizing them. The
parameter λ can be tuned with the Gold Section
Search algorithm (Press et al., 2007) on a devel-
opment set, using the F-measure of PARSEVAL
(Black et al., 1991) as objective function for train-
ing.

3 Lexical Model

3.1 Model I

Sequential dependency and local context have
shown their strength in tagging disambiguation
(Ratnaparkhi, 1996; Toutanova and Manning,
2000; Toutanova et al., 2003). However, in the
high-performance PCFG-based parsers (Collins,
1997; Charniak, 2000; Petrov and Klein, 2007),
none of these features can be used due to the gen-
erative nature of these parsing models.

To address this problem and incorporate the ad-
vantages of POS tagging technique into parsing,
we propose a discriminative lexicon model follow-
ing the global linear model (Collins, 2002). Let
τ = {t0, t1, t2...tn} be a tag sequence for a sen-
tence S = {w0, w1, w2...wn}, we define the score
of a tagged sequence to be

SCORE(τ, S) = θ · f(τ, S) =
n∑

i=1

θ · f(τi, S) (5)

where f(τ, S) is a global feature vector and θ a
vector of associated weights. A global feature
is defined through a collection of local features
f(τi, S). We train θ on a treebank using an aver-
aged perceptron algorithm similar to the one pre-
sented in Collins and Duffy (2002) and Collins
(2002). The number of iterations needed is opti-
mized on the development set.

However, introducing sequential dependency
into this lexical model would cause a severe ef-
ficiency problem with the joint inference for pars-
ing. When the Viterbi algorithm is used to search
for the best parse tree, its efficiency relies heav-
ily on tree structure. The interdependency of adja-
cent POS tags actually changes the structure of the
parse under operation. For example, to determine
the best sub-tree for a non-terminal XP covering a
span of words [wi...wj ], we need to calculate the
score for wi’s tag, which may largely depend on
wi−1’s tag. Unfortunately, such information is not
available from the current word span under pro-
cessing. The inference algorithm thus has to keep
all possible sub-trees in memory, resulting in an
intractable inference problem.

To deal with this joint inference problem, we
approximate the lexical model in a unigram-
factored form:

P(L, S) = P(L|S)P(S) ∝
∏

i∈[0,n]
P(ti|S) (6)
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where P(S) is the probability of a given input sen-
tence, a constant that can be dropped if search only
for the best parse, and ti a candidate tag for wi.
The conditional distribution P(ti|S) can be esti-
mated by

P(ti|S) =
∑

τ∈T(ti) exp (SCORE(τ, S))
∑

τ ′∈T exp (SCORE(τ ′ , S))
(7)

where T is the set of all possible tag sequences for
S, and T(ti) a subset of T, consisting of all tag
sequences that contain ti. The numerator is the
sum of scores for all possible tag sequences with
ti for wi. The denominator is the total score of all
possible tag sequences of the input sentence. For
efficient calculation, we also adopt variants of the
forward and backward algorithm, which are sim-
ilar to those for HMM (Baum and Eagon, 1967;
Baum and Sell, 1968). Different from the conven-
tional tagging systems, our lexical model does not
generate the best tag sequence for the whole sen-
tence, but a lattice of tags, on which the joint infer-
ence with the constituent model can be performed.

In our model, feature functions fm(τi, S) are
primarily binary, each of which maps the local
context to 1 if its feature exists, or to 0 other-
wise. The only exception is the first one. Using a
similar design as in discriminative re-scoring pars-
ing models (Collins, 2000; Charniak and Johnson,
2005; Huang, 2008), we have the first feature f0 to
be the logarithm of the probability of ti being wi’s
tag in S, as proposed in Petrov and Klein (2007),
which is f0(τi, S) = log q(ti, S).1

Beside f0(τi, S), all other features are similar
to those in the previous works (Ratnaparkhi, 1996;
Toutanova et al., 2003; Shen et al., 2007), as listed
in Table 1.

The signature features prefix and suffix, as used
in Toutanova et al. (2003), each return a sub-
string of certain length from the current word.
In our experiments, this length ranges from 1
to 8. Since these prefix and suffix features are
blindly extracted with templates that can be ap-
plied to any language, our lexical model is more

1In the lexical model, for ti = A (a non-terminal symbol),
the score q(ti, S) is calculated by:

q(ti, S) =

∑
xO(Ax, i, i+ 1)P(Ax → wi)

I(ROOT, 0, |S|) (8)

where x is the latent variable (Petrov et al., 2006), and I(·)
and O(·) are inside and outside scores. For more details of
q(ti, S), please refer to Figure 3 in Petrov and Klein (2007).

Type Feature Template

Word

[wi] (i = −2,−1, 0, 1, 2) &[t0]
[wi−2, wi−1] (i = 0, 1, 2) &[t0]
[w−1, w1] &[t0]
[wi−2, wi−1, wi] (i = 0, 1, 2) &[t0]

Tag
[ti] (i = −2,−1, 1, 2) &[t0]
[ti−2, ti−1] (i = 0, 3) &[t0]

Signature

punctuator &[t0]
digit &[t0]
prefix &[t0]
suffix &[t0]

Table 1: Feature templates of lexical model

language-independent than those using a prede-
fined language-specific affix list.

For feature selection, we also follow other re-
searchers’ previous works to use a simply cut-off
threshold. During the process to generate features
for each word in the training treebank, a feature is
not included in the final model if its count falls be-
low a predefined threshold. We set the threshold to
2 for word and tag features, and to 35 for signature
features.

3.2 Model II

The lexical model I enables the parsing to utilize a
large variety of features other than those encoded
in the CFG in use. However, the computation of
forward/backward variables is expensive in both
time and space. This inefficiency is practically
more severe in training, which requires repetitive
computation of these values for many times. Lex-
ical model II is proposed as an aggressive approx-
imation of model I, aimed at improving its effi-
ciency at the least cost of performance.

The inefficiency of model I is primarily due
to the complexity of the forward/backward proce-
dure. For model II, we propose a lazy procedure
as a simple approximation, which calculates the
conditional probability P ′(ti|S) deterministically
from left to right. As the procedure proceeds, all
features that contain a preceding tag are instanti-
ated with the best predicted tags for those previ-
ously processed words. For the features that con-
tain a succeeding tag, we use the tag with the high-
est score by f0(τi, S). This lazy procedure traces
only one arbitrary best tag sequence. Its time com-
plexity is linear in the length of input sentence.

Accordingly, for lexical model II, the distribu-
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tion P ′(ti|S) is estimated as

P ′(ti|S) ∝
exp (θ · f(τ∗i , S))∑

j∈[0,n−1],
tj∈E(S)

exp (θ · f(τ∗j , S))
(9)

where τ∗i is the arbitrary best tag sequence and
E(S) the collection of all possible POS tags for
every word in S. The denominator is introduced
for two reasons. Firstly, it is used to map the score
of every ti to the interval [0, 1], so as to make the
lexical model to have the similar magnitude as the
constituent model. Secondly, we deliberately let
it not to be a local normalizer. This allows some
confident tags to vote stronger than others in the
joint inference.

4 Experiments

We implement a parser for experiments with nec-
essary support from the open source Berkeley
parser. To evaluate the performance of this pars-
ing model across languages, we conduct a number
of experiments on both English and Chinese tree-
banks, using the WSJ section of Penn Treebank
3.0 (LDC99T42) and the Chinese Treebank 5.1
(LDC2005T01U01). Since both the constituent
and lexical models use the PCFG-LA trained with
the Berkeley parser,2 we take it as the baseline
for our evaluation. For comparison purpose, we
use exactly the same splits of the treebanks as in
Petrov and Klein (2007), as listed in Table 2.

English Chinese
Train. Section 2-21 Art. 1-270,400-1151
Dev. Section 22 Art. 301-325
Test. Section 23 Art. 271-300

Table 2: Experiment Setup

As mentioned in Section 3, the parameter es-
timation for the lexical model requires reparsing
the training treebank in use for calculating q(ti, S)
with the PCFG-LA trained with the Berkeley
parser. In order to obtain a representative set of
training examples, the PCFG-LA is expected to
create as much noise as it does in testing. For this,
the training set for each language is divided into 20

2The version released in September, 2009. The option
“-Chinese” is not used for parsing Chinese, for it does not
give the best parsing performance. All the PCFG-LA men-
tioned in this paper are trained with this version of the Berke-
ley parser with default settings.

folds as in Collins (2000) and Charniak and John-
son (2005). Each fold is reparsed with the PCFG-
LA trained on the other 19 folds. The number of
split-and-merger iterations is set to 6 for the train-
ing of all these grammars on the treebanks of both
languages.

To examine how much the rich contextual fea-
tures introduced into the lexical model improve
parsing performance, the tagging accuracy of our
parser is compared with the state-of-the-art tag-
gers, e.g. the open source Stanford tagger. Al-
though this tagger was developed several years
ago, its performance on English is still in the lead
according to Spoustová et al. (2009). We train and
test this tagger on the same datasets as for pars-
ing, using the default parameter settings for each
language.

All parsing results are evaluated with the stan-
dard evalb. It is noteworthy that the tags are
not counted as part of parsing output. The tag-
ging accuracy has to be evaluated with our own
program, for evalb eliminates some DELETE
LABELs when evaluating tagging.

4.1 Tagging Helps Parsing

Table 3 compares the performance of our parser
and other baseline systems. When trained on the
same data set, the Stanford tagger indeed out-
performs the Berkeley parser and the re-scoring
parser3 on POS tagging for both languages. Then,
we impose various tagging results into parsing to
see how they affect parsing performance. Both the
gold POS tags and the output of the Stanford tag-
ger are submitted to the Berkeley parser, using the
“-goldPOS” option. The results are presented in
Table 3, denoted as Berkeley+GoldTag and Berke-
ley+Stanford respectively.4 Surprisingly, however
a significant loss of parsing performance is caused
by imposing the better yet non-perfect tagging
output of the Stanford tagger onto the Berkeley
parser. We can see that better tagging does not
necessarily improve parsing if the two separate
systems work in the conventional “tag then parse”
order.

The two lexical models are tested in the other
experiments. We use all features as listed in Table

3C&J Parser: the open source re-scoring parser of Char-
niak and Johnson (2005)

4Note that the tagging accuracy of Berkeley+GoldTag is
not 100%. When some of the gold tags could cause parsing
failure, the Berkeley parser will skip them and use its own
tagging output.
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English Chinese
Parsing Tagging Lex. Parsing Tagging Lex.
F1 (%) Accuracy (%) F1 (%) Accuracy (%)

Stanford - 97.47 - - 95.44 -
C&J Parser 91.40 94.50 - - - -

Berkeley 89.87 97.30 - 83.22 95.33 -
Berkeley+Stanford 89.13 97.44 - 81.35 95.44 -
Berkeley+GoldTag 89.88 99.82 - 88.35 99.75 -

LM I

Word 89.95 97.43 97.18 84.37 96.38 95.82
Word+Tag 90.02 97.46 97.41 84.48 96.57 96.27

Word+Tag+λ 89.99 97.52 97.41 84.59 96.64 96.27
Word+Tag w/o f0 89.98 97.51 97.18 84.09 95.95 94.48

LM II
Word 89.92 97.41 97.28 84.18 96.09 95.79

Word+Tag 90.01 97.49 97.39 84.27 96.34 96.04
Word+Tag+λ 89.99 97.59 97.39 84.44 96.34 96.04

Table 3: Results on English and Chinese testing sets (all sentences).

1 for English. For Chinese, however, we select a
smaller subset of it by removing word trigram tem-
plates and all tag templates that contain any tag to
the right of the current word.5 We find that using
such tags as features cause a loss of performance,
which is consistent with the default setting of the
Stanford tagger for Chinese. Another difference in
feature design for these two languages is the length
of prefix and suffix. The max length of affix is set
to 6 for English and 3 for Chinese. This is because
the average word length is different in the two lan-
guages. And we use no specific Chinese characters
for the feature templates of punctuator and digit,
in order to maintain the language independency of
our models as much as possible.

As presented in Table 3, our parser with both
candidate lexical models performs significantly
better than the baseline Berkeley parser.6 For Chi-
nese, the best labelled F-score 84.59% is 1.3% be-
yond the baseline 83.22%. For English, our best
result 90.02% is even better than 89.88% using
gold POS tags. It is evident that our enhanced lex-
ical model can effectively help parsing. With its
help, our parser also outperforms both the Berke-
ley parser and the Stanford tagger on tagging.
The observation that the improvement on English
looks not as much as that on Chinese could be ex-
plained by the fact that the tagging accuracy of En-
glish is very close to the inter-annotator discrep-
ancy of the Penn Treebank, leaving a too tiny room
for further improvement. According to Dalrymple

5Specifically, tag templates with i > 0 are removed for
experiments on Chinese.

6All results are tested with Dan Bikel’s Randomized
Parsing Evaluation Comparator (http://www.cis.upenn.edu/
∼dbikel/download/compare.pl), resulting in p < 0.05.

(2006), parsing ambiguity in about 30% sentences
cannot be reduced even by a perfect tagger, imply-
ing that improving tagging may only have a lim-
ited influence on parsing.

We also examine the effect of different feature
set in both lexical models. With only word fea-
tures, the parser already achieves some improve-
ment on both parsing and tagging, in consistence
with the findings in Toutanova et al. (2003). The
surrounding words provide most information for
the disambiguation for tagging. However, the
weight parameter λ seems not as effective as ex-
pected for English. This might be caused by the
overfitting when it is tuned it on the development
set. We also try to remove the feature f0 from
the model (w/o f0). Then, the performance is still
higher than the baseline Berkeley parser, indicat-
ing that the effectiveness of our lexical model does
not rely on this feature too much. More interest-
ingly, the approximate deterministic lexical model
II achieves a similar performance as the complex
lexical model I. In practice, model II is a better
choice with a lower computational complexity.

Before the joint inference with the constituent
model, a lexical model calculates a score for every
candidate tag of each word. A choice is to collect
the tags with the highest scores as a baseline out-
put of tagging. The tagging accuracy of a lexical
model can be compared with this output, as shown
in the last column “Lex.” for each language in Ta-
ble 3. Comparing this column with the tagging ac-
curacy of our parser in the second column for each
language, we can observe an increase by 0.1-0.3%,
indicating that syntactic knowledge as used in our
parser does help the disambiguation for tagging.
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System F1 (%)
Berkeley 89.87
Charniak (2000) 89.70
Collins (2000) 89.70
Bod (2003) 90.70
Henderson (2004) 90.10
Charniak and Johnson (updated 2006) 91.40
Huang (2008) 91.69
Attia et al. (2010) 89.88
This work 90.02

Table 4: Comparison with other parsers on English
testing set

System F1 (%)
Berkeley 83.22
Burkett and Klein (2008) 84.24
This work 84.59

Table 5: Comparison with other parsers on Chi-
nese testing set

4.2 Comparison with Previous Work
Table 4 and 5 compare the performance of
our parser with other high-performance parsers.
Those parsers using self-training or parser com-
bination methods are not included in this compari-
son, because they use extra resources or more than
one parsing model.

For English, our parser outperforms all genera-
tive parsers (Collins, 1997; Charniak, 2000). But
there is still a gap to the discriminative re-scoring
methods (Charniak and Johnson, 2005; Huang,
2008). Given that our parser only improves the
lexical model, the re-scoring method using a va-
riety of subtree features indeed has some advan-
tages. For Chinese, our parser has achieved the
best performance so far on this data set. It is even
better than the one that employs additional knowl-
edge from the Chinese-English Parallel Treebank
(Burkett and Klein, 2008).

5 Analysis

The experiments reported in the previous section
seems to give a positive answer to the question:
whether tagging can help parsing. However, sev-
eral other questions follow: How does tagging af-
fect paring? Why can this independently opti-
mized lexical model improve parsing? We will
look into these issuess in this section.

5.1 Profiling the Improvement of Tagging
We firstly divide the word/tag pairs in the testing
data into to two groups: known v.s. unknown, ac-

English Chinese
Known Unk. Known Unk.

Stanford 98.09 77.33 96.47 72.02
Berkeley 97.93 76.13 96.91 59.23

This work 98.09 80.04 97.59 73.81

Table 6: Tagging accuracy (%) for known and un-
known word/tag pairs

cording to the definition in Jin and Chen (2009).
The tagging performance of our parser and the two
baseline systems are compared in Table 6.

It is evident that our parser outperforms the
Berkeley parser on both groups. The contrast on
unknown tags is more significant, especially for
Chinese. Since our parser uses the same con-
stituent model as the Berkeley parser, this differ-
ence has to be explained by a better lexical model.
A similar case can also be observed when our
parser is compared against the Stanford tagger.
Since our lexical model uses a very similar feature
set as the Stanford tagger, the difference in per-
formance should be attributed to the constituent
model, which provides more detailed contextual
information from the whole sentence to facilitate
guessing unknown POS tags.

5.2 Profiling the Improvement of Parsing
In order to profile the parsing errors that can be
fixed by better tagging, we count the number of
correct constituents in the output of our parser and
the other systems for a comparison under a variety
of partition schemes, as shown in Table 7 and 8.
The span length of a constituent is the number of
words in it. Usually, a longer span correlates with
a higher position near the root in a parse tree.

Table 7 shows that correct constituents increase
in number in almost all types. Without any feature
designed for a specific POS tag (such as IN), our
lexical model brings about a general improvement
to the parsing of both languages. Interestingly,
however, the comparison in Table 8 presents a dif-
ferent view. The improvement mainly takes place
in the constituents of span length ≤ 4, especially
those base-level ones of length 1, which are par-
ents of tags, e.g. NP→ NNS and VP→ VBG. The
recognition of these constituents is greatly influ-
enced by a lexical model. This influence tapers off
on higher constituents, for the constituent model
becomes more dominant when working on larger
subtrees. This is also observed on the Chinese
side. But the Chinese treebank has many differ-
ent characteristics from English. According to our
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English Chinese
Label Berk. E-LMII Diff. Label Berk. C-LMI Diff.
NP 17049 17077 28 VP 1593 1638 45
VP 7953 7964 11 NP 3049 3073 24
ADJP 612 619 7 ADVP 301 313 12
PP 4748 4754 6 IP 780 795 15
S 5103 5109 6 PP 294 301 7
SBAR 1511 1514 3 CP 172 178 6
PRT 131 133 2 QP 181 185 4

Table 7: Correct constituents by constituent label

English Chinese
Span Gold C&J. Berk. E-LMII Diff. Span Gold Berk. C-LMI Diff.

1 6543 6034 5995 6015 20 1 2951 2594 2645 51
2 7645 7186 7159 7173 14 2 1385 1210 1221 11
3 5633 5237 5181 5188 7 3 844 679 699 20
4 3509 3183 3172 3175 3 4 528 433 452 19
≥ 5 20852 18385 17947 17970 23 ≥ 5 2819 2234 2257 23

Table 8: Correct constituents by span length

statistics, about 34% of the constituents in the Chi-
nese testing data are base-level ones. This explains
why the impact of tagging to parsing for Chinese
is much stronger than that for English. Since there
are other languages that share similar characteris-
tics with Chinese, our method should be also help-
ful in parsing these languages.

Currently, tagging and parsing are treated
equally in a unified framework of parsing. How-
ever, our experiments show that our independently
defined and optimized lexical model performs bet-
ter than the one integrated into the Berkeley parser,
especially for the recognition of the base-level
constituents mentioned above. This is mostly at-
tributable to the nature of a generative parsing
model, for its lexical model can only use the fea-
tures encoded in the grammar in use, which is
never enough for accurate parsing. In fact, the
research on POS tagging and chunking shows
that the most important information for disam-
biguation at this level comes from local context
(Toutanova et al., 2003), especially the surround-
ing words. Our current work is an attempt to fill
this gap between tagging and parsing, by the way
of enabling a parser to use rich contextual features
in its lexical model.

6 Related Work

Most successful parsing models are generative
models. Therefore, a large portion of previous re-
lated work did not change the generative nature
of the lexical models involved (Goldberg et al.,

2009; Huang and Harper, 2009; Attia et al., 2010).
The key idea of these approaches is basically to
advance smoothing techniques for the distribution
P(w|t). Goldberg et al. (2009) adopt a trigram
HMM tagging model trained on unannotated data
to help prediting tags of rare words, but only the
emission probabilities are used in parsing. Huang
and Harper (2009) propose a better way to smooth
the lexical model in a PCFG-LA parser similar to
the Berkeley parser. Some morphological features
are also used to handle unknown words in Chi-
nese. In their evaluation, however, they exclude all
unary rules that cause one of the major difficulties
in parsing this language, according to our exper-
iments. Their experiment settings obstruct com-
paring their results with others’. Attia et al. (2010)
head in the same direction extending this method
to other languages. Their experiment results are
compared with ours in Table 4. The comparison
shows that our method is more sophisticated in uti-
lizing the sequential dependency between tags.

A motivation of our current work is that
a discriminative lexical model can incorporate
rich contextual features. In this respect, Co-
hen and Smith (2007) combine the strengths of
a generative parsing model and a discriminative
segmentation-tagging model under the notion of
product-of-experts. Here we apply a similar idea
to combine parsing and tagging. The discrimi-
native re-scoring method (Charniak and Johnson,
2005; Huang, 2008) is also very successful. It
enables a parser to use a large variety of local
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and non-local features, so as to boost the perfor-
mance. Interestingly, however, the comparison
in Table 3 shows that the parser of Charniak and
Johnson (2005) achieves the highest parsing per-
formance with the lowest tagging accuracy. This
parser seems to select the parse trees that contain
correct constituents with relatively poor POS tags.
This controversial result raises at least two ques-
tions: (a) Why correct constituent structures can
be built on incorrect POS tags? (b) Does tag-
ging have any effect on parsing? The first ques-
tion points to the too strong generative capacity
of the CFG in use. Note that without seman-
tic and/or pragmatic knowledge as constraints, a
CFG induced from a treebank usually can gener-
ate many possible but implausible structures for an
input sentence. For the second question, the con-
troversial result indeed gives us an impression that
tagging has no effect on parsing, strongly against
our intuition. Since tagging and parsing are uni-
fied into the same framework as a parser, it is rea-
sonable to expect the correct tag sequence for a
sentence to appear in the theoretically best parse
tree. If a parser has to sacrifice tagging for pars-
ing, it is suspectable that the re-scoring does not
help the parser to reach its maximum capacity yet.
Besides, the re-scoring method should have sub-
sumed our current work. In fact, incorporating the
sequential dependency between adjacent tags into
the forest re-scoring model will also cause the ef-
ficiency problem in the inference as mentioned in
Section 3. Given that no feature for tagging has
been adopted in the forest re-scoring method so
far, our current work is certainly a complement to
this part.

The recent work of Rush et al. (2010) inte-
grates parsing and tagging under the framework of
dual-decomposition. This approach has the advan-
tage to combine heterogeneous models, and solves
the complex combinatory optimization problem
via Lagrangian relaxation. However, it has a in-
evitable defect of inefficiency, since it requires to
parse and tag the input sentence repetitively (usu-
ally 10 times for each sentence). Comparatively,
our approach is more efficient. Note that lexical
model II takes only a linear time in the length of
input sentence. Without systematic comparison,
however, it is difficult to tell which approach can
provide a better performance. We will keep this
for our future research.

7 Conclusion

In this work, we have proposed a parsing model
which is factored into a lexical and a constituent
model, in the hope of enabling the beneficial in-
teraction between tagging and parsing. The rel-
atively independent discriminative lexical model
allows our parser to incorporate rich contextual
features and even sequential dependency. Our ex-
periments show that our lexical models can help
parsing. With access to the syntactic knowledge
from all over an input sentence, this parser out-
performs the state-of-the-art POS tagging system
in terms of tagging accuracy. Moreover, tagging
should be an organic part of a parsing model to
bring in a mutual positive effect for both parsing
and tagging through joint inference. The conven-
tional notion of tagging-parsing pipeline seems to
leave no room for this possibility of enhancement.

Finally, individual words in an input sentence
are found to be very useful in the disambiguation
for POS tagging and even for recognizing base-
level constituents. However, the structural param-
eterization of conventional parsing models cannot
incorporate and utilize them effectively. Neverthe-
less, how to make use of all sorts of information
available to enhance parsing is still a challenging
research topic.
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and Miroslav Spousta. 2009. Semi-supervised
training for the averaged perceptron POS tagger. In
EACL 2009, pages 763–771.

Kristina Toutanova and Christopher D. Manning.
2000. Enriching the knowledge sources used in a
maximum entropy part-of-speech tagger. In SIG-
DAT EMNLP 2000, pages 63–70.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In NAACL 2003, pages 173–180.

1268


