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Abstract

This paper explores new approaches to ac-
tive learning (AL) for semantic role label-
ing (SRL), focusing in particular on com-
bining typical informativity-based sam-
pling strategies with a novel measure of
representativeness based on compressed
dependency trees (CDTs). In essence,
the compressed representation encodes the
target predicate and the key dependents of
the verb complex in the sentence. We first
present our method for producing CDTs
from the output of an existing dependency
parser. The compressed trees are used as
features for training a supervised SRL sys-
tem. Second, we present a study of AL
for SRL. We investigate a number of dif-
ferent sample selection strategies, and the
best results are achieved by incorporating
CDTs for example selection based on both
informativity and representativeness. We
show that our approach can reduce by up
to 50% the amount of training data needed
to attain a given level of performance.

1 Introduction

The focus of this paper is active learning for se-
mantic role labeling, a little-studied intersection of
two rather substantial bodies of work.

One aim of active learning (AL) is to reduce
the number of labeled training instances required
to reach a given performance level using super-
vised machine learning techniques. This is accom-
plished by allowing the learner to guide the selec-
tion of examples to be annotated and added to the
training set; at each iteration the learner queries for
the example (or set of examples) that will be most
informative to its present state. AL is an attrac-
tive idea for natural language processing (NLP)
because of its potential to dramatically reduce the

need for expensive expert annotation, and it has
been successfully applied in various areas of natu-
ral language processing (Tang et al., 2002; Settles
and Craven, 2008), including named entity recog-
nition (Shen et al., 2004),text classification (Yang
et al., 2009), image retrieval (Zhou, 2006), part-
of-speech tagging (Ringger et al., 2007), mor-
pheme glossing (Baldridge and Palmer, 2009),
and syntactic parsing (Hwa, 2004; Osborne and
Baldridge, 2004).

The problems of scarce annotated data and the
expense of annotating new data are at least as rel-
evant for semantic role labeling (SRL) as for the
above-mentioned areas of NLP. Existing work on
automatic SRL usually explores supervised ma-
chine learning approaches to mark the semantic
roles of predicates automatically by training clas-
sifiers using large annotated corpora.1 Although
such approaches can achieve reasonably good per-
formance, annotating a large corpus is still ex-
pensive and time consuming. Moreover, the per-
formance of trained classifiers may degrade re-
markably when they are applied to out-of-domain
data (Johansson and Nugues, 2008a). There is
very little work on AL for SRL (e.g. Roth and
Small (2006)), although much interesting work
has been done with semi-supervised and unsu-
pervised approaches to the problem (Grenager
and Manning, 2006; Fürstenau and Lapata, 2009;
Lang and Lapata, 2010; Titov and Klementiev,
2011, among others).

In this paper we explore the use of compressed
dependency trees (CDTs) as features for super-
vised semantic role labeling and, most impor-
tantly, as a way of measuring how representative
an individual instance is of the input data. We then
incorporate representativeness as part of the metric
used for sample selection in active learning. The

1For recent work on SRL, see, among others: (Das et al.,
2010; Hajič et al., 2009; Surdeanu et al., 2008; Carreras and
Màrquez, 2005; Baker et al., 2007).
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compressed dependency trees encode the target
predicate and the key dependents of the verb com-
plex in a sentence. As illustrated in Section 3, the
structural relationships defined by the compressed
dependency trees well encapsulate key features
used in automatic SRL.

For a more complete picture of the potential for
AL with respect to SRL, we investigate a set of
strategies designed to select the most informative
training examples. We further develop a more ef-
fective approach to select training examples con-
cerning both their informativity and representa-
tiveness. We use the compressed dependency
trees to measure the similarity of two sentences,
and select the training examples with a higher pri-
ority which are more informative and representa-
tive among the unlabeled sentences in the pool.
The experimental results show that our approaches
can reduce up to 50% of training examples com-
pared to traditional supervised learning solutions.

We begin with a brief description of the seman-
tic role labeling task and our supervised learn-
ing model. Section 3 presents our method for
compressing dependency tree representations, fol-
lowed by the active learning model, including def-
initions of all sampling strategies investigated in
this work (Section 4). Experiments and results
are presented and discussed in Section 5 and Sec-
tion 6. We end with related work (Section 7) and
brief conclusions.

2 Semantic Role Labeling

Parsing the semantic argument structure of a sen-
tence involves identification and disambiguation
of target predicates as well as identification and la-
beling of their arguments. Because our focus is on
the active learning more so than on the semantic
role labeling itself, we address only the argument
labeling stage of the process, assuming that predi-
cates and argument spans alike have already been
identified and correctly labeled.

Broadly speaking, there are two different styles
of semantic parsing and semantic role labeling
(SRL): those based on FrameNet-style analy-
sis (Ruppenhofer et al., 2006) and those using
PropBank-style analysis (Palmer et al., 2005).
This work takes the PropBank approach, which
considers only verbal predicates and is strongly
tied to syntactic structure. In (1), for example, the
two arguments of the predicate idolize are labeled
as Arg0 and Arg1.

(1) [John]Arg0 idolizes [his sister]Arg1.

In this text, we refer to each argument to be la-
beled, together with its target predicate, as an in-
stance; the sentence in (1) contains two instances.

2.1 Supervised Learning Model

The aim of the current work is not to surpass state-
of-the-art performance on semantic role labeling.
Therefore, although state-of-the-art semantic role
labelers are freely available, we chose to imple-
ment our own labeler in order to have more con-
trol over the underlying machinery. This allows
straightforward access to the predicted probability
of outputs, which is crucial for the informativity-
based selection strategies in Section 4. In addition,
compressed dependency trees (Section 3) serve as
features for our labeler as well as guiding sample
selection in the active learning experiments.

In our study, we applied an L1-regularized2 lo-
gistic regression model (Lee et al., 2006) for label-
ing instances, using the liblinear package (Lin et
al., 2007) to build one classifier per label. There
are 6 core and 13 non-core argument labels in
PropBank annotations. Thus our SRL system is
a suite of binary classifiers, and we then use the
one-versus-all method (Duda et al., 2001) to as-
sign labels to each instance.

2.2 Data and Features

We used the version of PropBank provided for the
CoNLL-2008 SRL shared task (Surdeanu et al.,
2008). A test set of 500 randomly selected sen-
tences was constructed at the outset of the project;
this was used only for evaluation of both super-
vised and active learning models. In all AL exper-
iments, we simulate the oracle by hiding and then
uncovering gold-standard labels.

The CoNLL-2008 data set includes both gold-
standard dependency parses and automatic depen-
dency parses from the Malt parser (Nivre and Hall,
2005). We use a combination of features taken
directly from the gold-standard parses,3 features
derived from the Malt parses, and features from
the output of the Stanford dependency parser (de

2Note that logistic regression is used together with a regu-
larized term to avoid the overfitting problem by penalizing the
complexity of the trained model. Generally, the regularized
term is defined as a function of the learned parameters over
the weights. The L1 regularization, also called lasso penalty,
is used to penalize both large and small weights.

3In ongoing work, we replace gold-standard parses with
more realistic automatic parses.

184



Table 1: Three feature groups: CoNLL basic,
CoNLL derived, and from additional parser

FEATURE TYPE EXPLANATION/EXAMPLE
Part of Speech JJR, JJS, LS, CD, etc.
Head word Head words of predicate and argument
isNEG Instance includes NOT or NEVER
Argument position Before or after predicate
Argument chunk position Beginning or end of corresponding chunk
Lemma of argument Lemma of argument whose dependency role is

PRD or DIR
Lemma context Two words before and after argument

Cue words DIR (’up’, ’toward’, ’forward’, ’along’)
REC (’self’ as suffix)
PRD (’as’, ’as if’)
CAU (’because’, ’why’, ’as a result of’)

Voice of predicate Active or passive
Dependency relation of
predicate and argument

LOC, TMP, etc.
1) Sbj*, obj* are defined as:
Sbj*← Obj Passive
Sbj*← LGS passive
Sbj*← Active vt sbj

Obj*← Sbj Passive
Obj*← Sbj VI (intransitive verb)
Obj*← Obj Active

Predicate Properties VT = 1; transitive
VI = 2; intransitive
TO IM=3; begins with ’to’
V Adj = 4; verb followed by adjective words (e.g.
’sounds good’, ’looks pretty’)
PV = 5; phrasal verb (e.g. ’pick up’)

Verb Complex e.g. ”has not been set” in figure 1

Acomp adjectival complement
Advmod adverbial modifier
Infmod infinitival modifier
Rcmod relative clause modifier
Rel relative (word introducing an rcmod)
Xsbj controlling subject
Iobj indirect object
Advcl adverbial clause modifier
Prep to,Prep in, Prep for,
Prep with

Prepositional phrases with ’to’, ’in’, ’for’, ’with’

Marneffe et al., 2006). To apply the logistic re-
gression model, the features are represented in a
binary fashion. The features are described in Ta-
ble 1, in three groups separated by double lines.
The derived features, including a heuristically-
identified verb complex and altered dependency
labels, are described in more detail in Section 3.

We use cross-validation on the training data to
select for each individual classifier the subset of
features most relevant for that label. In feature se-
lection, features are ranked based on their Fisher
score calculated using the training data set (as in
Duda et al. (2001)).

3 Dependency Tree Compression

Given a sentence, the task of dependency parsing
is to identify the head word and its correspond-
ing dependents and to classify their functional re-
lationships according to a set of dependency rela-
tions (e.g., subject, modifier). Thus, a dependency
tree of a sentence encodes the dependency rela-
tion between the head words and their dependents.
It has been reported that SRL can benefit from
phrase-structure and dependency-based syntactic
parsing (Hacioglu, 2004; Johansson and Nugues,

 

Index 1          2       3       4         5          6        7      8

NMOD
SBJ

P

NMOD ADV
VC

VC

ROOT

ADV

OBJ*

        A    record    date  has   not   been  set   . 

 date    not               set    .
      3            5                 7     8

SBJ
P

Transfer

 date    not               set    .
        3                  5                 7      8

PADV

Compressed Dependency Tree
Alternation if applicable

Figure 1: Producing compressed dependency tree

2008b; Pradhan et al., 2005). At the same time,
much of the structural and relational information
represented in a dependency tree is not relevant for
the SRL task.

We use a compressed dependency tree (CDT)
to encode just the relationships between a target
predicate and the key dependents of the verb com-
plex. The new tree is always rooted in the tar-
get predicate, which often means resetting the root
from an auxiliary or other finite main verb. We
generate the CDT from the output of an existing
dependency parser through the process described
in a simplified form below, using the example sen-
tence in Fig. 1.

1. Fix target predicate (e.g. set) as root of CDT.
2. Identify the verb chain to which the target

predicate belongs; this group of tokens will
now be treated as the verb complex. The
verb chain is produced by collecting elements
connected by relevant dependency relations
(VC, IM, CONJ), stopping when a ROOT node,
a subordinate clause (SUB), or a verbal OBJ

node is encountered.
3. Collect direct dependents of each word in the

new verb complex; set these as dependents of
the target predicate in the CDT, transferring
the dependency relation to the target predi-
cate. (e.g. date is a dependent of have).

4. Negation, modal verbs, and other main verbs
in the verb complex also become dependents
of the root predicate in the CDT. In some
cases of ‘new’ dependency relations intro-
duced by the tree compression process, we
use output from the Stanford parser to com-
plement the dependency relations found in
the gold-standard data.
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5. Heuristically determine voice of clause and
alter some CDT dependency labels(e.g.
SBJ PASSIVE becomes OBJ*); these are the
asterisk-marked relations in Table. 1.

For example, in (2):

(2) At the same time, the government did not
want to appear to favor GM by allowing
a minority stake that might preclude a full
bid by Ford.

the verb complex is {did, n’t, want, appear, fa-
vor}. The subject phrase the government, orig-
inally a dependent of did, becomes a dependent
of the new three-verb predicate {want, appear, fa-
vor}; the negation word n’t is a dependent of the
target predicate want.

4 Active Learning

This section provides some background on the ac-
tive learning process, as well as detailing the vari-
ous sampling strategies we investigate.

4.1 The basic model

In this study we apply a standard active learning
model (Settles, 2010; Lewis and Gale, 1994) to
the task of semantic role labeling. Algorithm 1
illustrates this model as we use it.4

Algorithm 1 Active learning for SRL.
1: Randomly select initial seed of labeled instances;
2: Add initial seed to the training data;
3: Apply logistic regression model to train system of classi-

fiers, one for each label;
4: while number of instances in training data is less than X

do
5: Randomly select pool of Y unlabeled sentences;
6: Select a sentence or sentences from the unlabeled pool

according to a given selection strategy;
7: Ask oracle to label the selected unlabeled sentence;
8: Add instances from selected sentence to training data;
9: Re-train system using the updated training data;

10: Use system to label test data, record accuracy;
11: end while

Much recent work in AL has to do with Step
6 of Algorithm 1, designing and refining selec-
tion strategies. The main selection criterion used
to date has been informativity, measuring how
much a training example can help to reduce the un-
certainty of a statistical model. A less-frequently
considered criterion, especially in AL for NLP, is

4Recall that each sentence contains one or more instances.

representativeness, or how well a training exam-
ple represents the overall input patterns of the un-
labeled data.

While some results from AL are robust across
different datasets and even different tasks, it is
clear that there is no single approach to AL that
is suitable for all situations (Tomanek and Olsson,
2009). Because there is very little previous work
on AL for the task of semantic role labeling, we
do not assume previous solutions but rather inves-
tigate a number of different strategies.

4.2 Informativity

Informativity is exploited in our approaches in
terms of uncertainty, which is measured based on
how confidently the system labels instances and,
by extension, sentences. The lower the confidence
on labeling a particular sentence, the more uncer-
tainty is assigned to the sentence. At each itera-
tion, then, we select from the unlabeled pool the
single sentence with the greatest uncertainty. We
compare 4 different scoring functions for measur-
ing the system’s certainty (CER) regarding an un-
labeled sentence. These are presented below as
INF1-INF4.

Let s represent an unlabeled sentence with in-
stances i = 1 to n. Given a set of binary classi-
fiers, one each for labels y = 1 to m, let pi,y be
the probability of i being labeled as y. Finally, P
is a pool of unlabeled sentences. At each iteration,
we select the single s ∈ P with the lowest value
for CER.

RAND: Random selection. Random selection
(randomly select an unlabeled sentence s ∈ P )
serves as a strong baseline in active learning.

INF1: Average uncertainty. After labeling each
instance in a sentence with the most-likely pre-
dicted label, we calculate uncertainty for the sen-
tence as the average of the classifiers’ confidence
in assigning the predicted labels. Let Top(i) =
pi,yk , where ∀h 6= k, pi,yk > pi,yh ; CER(s) =
(
∑n

j=1 Top(ij))/n.

INF2: Average uncertainty variance. Our sec-
ond informativity-based strategy evaluates the un-
certainty of the labeling for an instance using the
variance of the confidence for each instance. A
smaller variance implies that it is more difficult for
the system to differentiate between possible label
assignments for the instance. We then calculate
sentence uncertainty as the average variance for
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all instances. Let AV G(i) = (
∑m

k=1 pi,yk)/m,
V AR(i) =

∑m
k=1(pi,yk − AV G(i))2/(m − 1);

CER(s) =
∑n

j=1 V AR(ij)/n.

INF3: Average top-2 Margin. The intuition be-
hind this approach is that the top 2 most confi-
dent labels are likely to be more informative than
other labels. Therefore, we only select the two
most likely labels to calculate uncertainty.5 Let
Margin(i) = pi,yk1 − pi,yk2 , where pi,yk1 >
pi,yk2 ∧ ∀h 6= k1, k2, pi,yk2 > pi,kh ; CER(s) =
(
∑n

j=1Margin(ij))/n.

INF4: Most top-2 Margin Instances. Finally,
we further extend the approach of INF3 by select-
ing the sentence which has the greatest number of
instances with a small margin between the top 2
labels (which means that the sentence is more un-
certain than other sentences). Let Q be a set of
instances with the top-2 margin less than a small
threshold (i.e., Margin(i) ≤ 0.1). CER(s) is
defined as the inverse of the number of instances
of s that are in Q (i.e. 1/# qualifying instances).
Ties are resolved by random selection.

4.3 Representativeness

A disadvantage of selecting examples based only
on informativity is the tendency of the learner to
query outliers (Settles, 2010). It has therefore been
proposed (Dredze and Crammer, 2008; Settles and
Craven, 2008) to temper such selection strategies
with a notion of relevance or representativeness.
Ours is the first work to use such a combined strat-
egy for SRL. We measure the representativeness of
unlabeled sentences based on sentence similarity,
taking two different approaches: cosine similarity,
and a measure based on CDTs.

COS: Cosine Similarity. Given two sentences s
and s′, let i1, i2, . . . , im, and i′1, i′2,. . . ,i′n be their
instances, respectively. The similarity of the two
sentences, denoted as similarity(s, s′), is defined
as

∑m
j=1

∑n
k=1 sim(ij , i

′
k), where sim(ij , i

′
k) is

the similarity between the instances ij and i′k, de-
fined as the cosine of the two feature vectors.6 For
purposes of comparison, we use the same formu-
lation of COS as Settles and Craven (2008).

5Note that in the binary classification case, INF3 is equiv-
alent to INF1.

6Features are extracted from CDTs rather than full sen-
tences, reducing to some extent the appearance of noisy in-
formation (e.g. stop words). Whether this can be further re-
duced by a modified implementation of COS is a question for
future work.

Given a pool P of unlabeled sentences, for ev-
ery unlabeled sentence s ∈ P , the representative-
ness of the sentence, denoted as rep(s), is mea-
sured as the sum of the similarity between the sen-
tence and all the other sentences in the pool, that
is, rep(s) =

∑
sim(s, s′), where s′ ∈ P ∧s′ 6= s.

COS evaluates the similarity of two sentences
based on the cosine of their instances. This may
not be accurate enough because the instances in-
clude more information than the relationships be-
tween the target predicate and the key dependents
of the verb complex in the sentence. Therefore,
we exploit the compressed dependency trees as a
metric to evaluate the similarity between two sen-
tences, as illustrated below:

CDT: Compressed Dependency Trees. For tar-
get predicate p, let (p, ri, ai) be the edges of the
CDT rooted in p, where ai is an argument and ri
is the dependency relationship between p and ai.
We call two edges similar if all of p, r, and a meet
their respective similarity criteria. Two predicates
are considered to be similar if they have the same
value for the PREDICATE PROPERTIES feature as
defined in Table 1 (e.g. both are transitive verbs).
Two relations are considered to be similar if they
have the same dependency relation label (e.g. SBJ,
TMP, MOD, etc.). Finally, two arguments are con-
sidered to be similar if they share the same coarse-
grained part-of-speech tag.

Given a pool P of unlabeled sentences, for ev-
ery unlabeled sentence s ∈ P , the representative-
ness of the sentence, denoted as rep(s), is defined
as nsimilar, representing the number of edges in
the pool that are similar to the edges of the CDT
for s. Intuitively, the larger the number of similar
CDT edges in the unlabeled pool, the more repre-
sentative the sentence is overall of the input data.

4.4 Combining Informativity and
Representativeness

The final step in our model is to define a selection
strategy that incorporates both selection criteria.
We define the priority of selecting a sentence as
priority(s) = α× rep(s)− (1− α)× CER(s).
Given a pool P , we select the single s ∈ P with
the highest value for priority(s). This approach
is very similar to the information density (ID) ap-
proach of Settles and Craven (2008); the key dif-
ference is in the balance between the two criteria.
Ours is a linear combination; ID instead multi-
plies informativity by a weighted measure of rep-
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Figure 2: Combining informativity and representativeness.

resentativeness.

5 Experimental Setup

To evaluate our approach to AL for SRL, we inves-
tigate three different questions. First, which infor-
mativity strategy is most appropriate for the task?
Second, which representativeness measure works
best? And third, how shall we weight the trade-off
between the two selection criteria?

All of our active learning experiments share
some characteristics. First, we randomly select a
seed of 50 instances from the labeled training data.
The seed set, as well as the test data, are kept con-
sistent across all experimental conditions. In each
iteration of the training-selection cycle (see Algo-
rithm 1), a new unlabeled pool (n=500) is selected,
and from that pool a single example is labeled by
the oracle and added to the training set. We stop
once 500 examples have been labeled.

To evaluate the effectiveness of each strategy,
we tested the classifier in each interaction, and
measured the accuracy of the predicted labels. The
accuracy measure is defined as the number of cor-
rect labelings divided by the total number of label-
ings in the test data. Results are presented as the
average over 20 runs.

To investigate the influence of representative-
ness, we run the same experiment with all
cross-combinations of {INF1,INF2,INF3,INF4}
and {COS,CDT}. For weighting the two criteria,
we use both information density (ID) as defined
in Settles and Craven (2008) and our priority met-
ric (Section 4.4) with α set at 0.3, 0.5, and 0.7.

6 Results and Discussion

In this section, we analyze and discuss the exper-
imental results. The gains achieved by AL can be
measured in a number of different ways; first, we
plot number of labeled training examples against

system accuracy (Figure 2 and Figure 3). The fig-
ures presented here stop at 500 training examples,
with averaged accuracies in the range of 80%.
For comparison, the fully-supervised system when
trained on 20000 instances performed at 89.71%.
Second, we calculate the percent reduction in er-
ror of each strategy compared to the random se-
lection baseline (Table 2), following Melville and
Mooney (2004). Because most gains from AL
happen early in the learning curve, we consider
performance at two different points.

6.1 Informativity-based Strategies

Fig. 2a shows the expected result that the four
informativity-based strategies outperform the ran-
dom selection baseline. INF3 performs best
early in the learning curve, but is overtaken by
INF2 at the end of our curve. To reach the ac-
curacy achieved by the four informativity strate-
gies at the halfway point (250 training instances),
RAND needs 100-150 additional instances.

6.2 Informativity plus Representativeness

Fig. 2b shows the result of combining the informa-
tivity (INF3) and representativeness (both COS and
CDT). As illustrated in Section 6.1, INF3 out-
performs the other informativity-based strategies.
However, we see that Fig. 2b shows combining
CDT with INF3 achieves a better performance than
using INF3 only (α = 0.3); representativeness im-
proves performance, outperforming RAND by ap-
proximately 250 training instances. For INF3,
COS is a less effective measure of representative-
ness. This may be because the feature vectors
for the training instances share too much informa-
tion, including stop words and a large number of
0-valued features, to make them easily differenti-
ated. As a result, the most representative sentence
selected using COS may not reflect the real simi-
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Figure 3: Trade-off between informativity and representativeness.

larity of the sentences. In CDT, we choose only
the structural relation between the predicate and
its arguments to measure the similarity between
sentences. As a result, the sentences selected us-
ing CDT are more representative than that of using
COS, as confirmed by the result in Fig. 2b.

We also applied the solution of combining in-
formativity and representativeness (4.3) to other
informativity-based strategies. However, the ad-
vantage the combined solution for other strategies
is less obvious than for INF3. For example, Fig. 2c
shows the result of combining INF2 (α = 0.3) with
both COS and CDT. The result shows that the com-
bined solution with CDT performs slightly better
than using INF2 only when the number of train-
ing instances is less than 200. However, when the
number of instances is larger than 350, the solu-
tion of using INF2 only achieves a higher accuracy
than the combined solution. This may be due to a
conflict between the two selection criteria. In any
event, there is clearly a trade-off between informa-
tivity and representativeness, and results are influ-
enced by the details of the manner of combining
the two.

The results of other INF/REP combinations are
presented in Table 2, in terms of their reduction in
error compared to random selection.

6.3 Weighting the two criteria

Finally, we set α with different values (i.e., 0.3,
0.5 and 0.7) to investigate how the trade-off be-
tween informativity and representativeness may
affect the SRL performance. We also compare our
solution to the information density solution pro-
posed by et al. (Settles and Craven, 2008) (denoted
as ID) multiplies the informativity and represen-
tativeness instead of summing them. Here we dis-
play only the results of INF2 and INF4 combin-
ing with CDT in Fig. 3. Other combinations share

a similar pattern with these results and their er-
ror reduction percentage can be found in Table. 2.
Fig. 3a and Fig. 3b compare the two representa-
tivity measures for INF3, as the best overall re-
sult was achieved by INF3 in combination with
CDT. We see that parameter tuning seems to be
more influential for the CDT measure than for the
COS measure.

Fig. 3c shows how parameter tuning affects
INF2; α = 0.3 has a higher accuracy than that of
0.5 and 0.7. We can observe that when α = 0.3,
our solution (INF2) has a better performance than
that of ID. However, regarding the combination
of INF4 and CDT, ID performs better (no graph;
see 2. Note that the INF4 selects the sentences
which has greatest number of instances with a
small margin. Then representativeness of the sen-
tences within the margin was calculated. In other
word, the combination was done step by step not
in parallel as the other combination. Therefore, the
combination of INF4 and CDT accounts for infor-
mativity prior to representativeness; this may be
why ID is more successful.

In general, the balance and trade-offs between
the two criteria deserve further investigation.

7 Related Work

Much research efforts have been devoted to
statistical machine learning methodologies for
SRL (Bjkelund et al., 2009; Gildea and Jurafsky,
2002; Shi et al., 2009; Johansson and Nugues,
2008a; Lang and Lapata, 2010; Pradhan et al.,
2008; Fürstenau and Lapata, 2009; Titov and
Klementiev, 2011, among others). For exam-
ple, Johansson et al. (Johansson and Nugues,
2008a) applied logistic regression with L2 norm to
dependency-based SRL. Similarly, we also use lo-
gistic regression to train the classifier with a prob-
abilistic explanation. However, we use L1 normed
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Table 2: Percentage error reduction over RAND(200 / 500 examples)

NOREP COS CDT COS-ID CDT-ID

INF1 6.56 / 5.18 3.68 / -0.86 2.60 / -0.74 7.43 / 6.45 6.44 / 6.60
INF2 5.12 / 8.31 5.51 / 5.37 7.74 / 8.19 7.21 / 5.67 3.49 / 2.24
INF3 5.07 / 5.54 6.13 / 5.52 8.15 / 9.54 5.94 / 5.72 5.65 / 7.18
INF4 7.37 / 5.79 1.41 / 2.01 -0.01 / -5.08 2.29 / 2.85 3.31 / 3.29

logistic regression due to its desirable property
that can result in few nonzero feature weights.
This allows us to select the most important fea-
tures from an otherwise very large feature set.

Roth et al. (Roth and Small, 2006) proposed a
margin based active learning framework for struc-
tured output and experiment on SRL task. They
defined structured output by constraining the rela-
tions among class labels, e.g., one predicate only
has one of the labels. The classification prob-
lem is defined via constraints among output labels.
The most uncertain instances are selected to sat-
isfy predefined constraints. Rather than a struc-
tured relation between output labels, our work ex-
ploits the structure of the sentences themselves via
compressed dependency trees.

In the area of sentence similarity measurement,
most current work focuses on semantic similar-
ity (Haghighi et al., 2005; Tang et al., 2002; Shen
and Lapata, 2007). We define similarity between
sentences in terms of the nodes and edges in the
dependency tree instead of semantic/lexical sim-
ilarity of the sentences. We are interested in the
structure of a sentence and how it is constructed
due to the need of SRL tasks. Wang and Neumann
(2007) use a similar sort of compressed depen-
dency tree comprised of keywords and collapsed
dependency relations to calculate the semantic
similarity of sentences for the textual entailment
task. Under their approach, dependency relations
themselves are collapsed; we keep the specific de-
pendency relations and collapse the trees, aiming
for structural rather than semantic similarity.

In addition, Filippova et al. (Filippova and
Strube, 2008) proposed to compress a sentence
using dependency trees and take the importance
of words as weight. They found compressed de-
pendency tree can better ensure the grammatical-
ity of the sentences to preserve the same lexical
meaning as much as possible. In our work, we
are more interested in the explicit dependency re-
lation of predicate-argument pairs. Our goal is
to apply compressed dependency tree to extract

explicit relation between predicate and argument
as precise as possible for SRL purpose. There-
fore, we construct the compressed tree by identi-
fying predicate-argument units and then re-linking
them if there exist dependency relation among
them. Consequently, most of the nodes in our
compressed tree are predicates and arguments.

8 Conclusions

This paper investigates the use of active learn-
ing for semantic role labeling. To improve the
learning accuracy and reduce the size of training
set, compressed dependency trees are exploited
as features. Strategies to select informative un-
labeled sentences are proposed. Moreover, the
compressed dependency trees are also utilized as
a criterion to measure the representativeness of
unlabeled sentences. A solution to select unla-
beled sentences combining both informativeness
and representativeness is developed. The experi-
mental results show that our solution can save up
to 50% on a small training data set compared to
the supervised learning solution.

Possibilities for future work include exploring
the use of constraints on label outputs, implemen-
tation of entropy-based informativity metrics, and
perhaps combining COS andCDT for measuring
representativeness. Another potentially promising
direction is to employ multi-kernel based methods
as a structure-oriented similarity measurement.
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