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Abstract 

In this paper, we propose a novel approach 
to optimally employing the MCL (Markov 

Cluster Algorithm) by “neutralizing” the 

trivial disadvantages acknowledged by its 

original proposer.  Our BMCL (Branching 

Markov Clustering) algorithm makes it 

possible to subdivide a large core cluster 

into appropriately resized sub-graphs.  Util-

izing three corpora, we examine the effects 

of the BMCL which varies according to the 

curvature (clustering coefficient) of a hub 

in a network. 

1 MCL limitations? 

1.1 MCL and modularity Q 

The Markov Cluster Algorithm (MCL) (Van Don-

gen, 2000) is well-recognized as an effective 

method of graph clustering.  It involves changing 

the values of a transition matrix toward either 0 or 

1 at each step in a random walk until the stochastic 

condition is satisfied.  When the hadamard power 

for each transition probability value is divided by 

the sum of each column, the rescaling process 

yields a transition matrix for the next stage.  After 

repeatedly alternating for about 20 times between 

two steps—random walk (expansion) and probabil-

ity modification (inflation)—the process will fi-

nally reach a convergence stage in which the whole 

graph is subdivided into a set of ‘hard’ clusters that 

have no overlap.  Although this method has been 

generally applied in various domains with notable 

successes (such as Tribe-MCL clustering of pro-

teins (Enright et al., 2002); Synonymy Network, 

created by the addition of noise data (Gfeller, 

2005); and Lexical Acquisition (Dorow et al., 

2005)), Van Dongen et al. (2001) frankly acknowl-

edge that there are limitations or weaknesses.  For 

instance, the readme file, which is included with 

the free MCL software available via the Internet 

from Van Dongen’s group, remarks that “MCL is 

probably not suited for clustering tree graphs”. 

It should also be noted, however, that the group 

has provided no mathematical evidence for their 

claim of the MCL’s unsuitability for hierarchical 

applications.  What prompts this subtle caveat in 

the first place?  Is this a limitation on the type of 

graph clustering that can employ random walks for 

spectral analysis?  Or, is it difficult for this tech-

nique to (re-)form or adjust graph clusters that 

have already been clustered into a kind of multi-

layered organization?  Such questions are very im-

portant when comparing the MCL with other graph 

clustering methods that employ (greedy) algo-

rithms developed step by step in a tree form. 

A tree graph is essentially a kind of dendrogram, 

which means clustering results can be generated 

solely by making a cross cut at some height be-

tween the root and the leaves.  In other words, as 

there is no horizontal connection at the same level, 

it is not possible to create triangle circulation paths 

in a single stroke.  However, the graph coefficient 

known as “curvature” (Dorow, 2005) is appropri-

ate for defining such structures.  The curvature, or 

the cluster coefficient, of a vertex is defined as a 

fraction of existing links among a node’s neighbors 

out of all possible links between neighbors.  Thus, 

a tree graph may be regarded as a chain of star 

graphs where all the vertices have a curvature val-

ue of 0. 
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It is certainly true that when a hub has a low 

curvature value, the corresponding cluster will be 

less cohesive and more sparse than usual.  The 

modularity Q value is very low in such cases when 

we try to measure the accuracy of results from 

MCL clustering.  Modularity Q indicates differ-

ences in edge distributions between a graph with 

meaningful partitions and a random graph for iden-

tical vertices conditions.  According to Newman 

and Girvan, ∑ −=
i

iii aeQ )( 2
, where i is the clus-

ter number of cluster ic , iie is the proportion of 

internal links in the whole graph and ia  is the ex-

pected proportion of ic ’s edges calculated as the 

total number of degrees in ic divided by the total of 

all degrees (2*the number of all edges) in the 

whole graph.  This value has been widely used as 

an index to evaluate the accuracy of clustering re-

sults. 

1.2 Karate club simulation 

However, it would be an exaggeration to regard 

Modularity Q is an almighty tool for accurately 

determining the attribution value of each vertex in 

a graph cluster.  That is only true for modularity-

based greedy algorithms that select vertices pair-

ings be merged into a cluster at each step of the 

tree-form integration process based on modularity 

optimization criterion.  However, such methods 

suffer from the problem that once a merger is exe-

cuted based on a discrimination error, there is no 

chance of subsequently splitting pairings that be-

long to different subgroups. 

This fatal error can be illustrated as follows.  

Zachary’s famous “Karate Club” is often used as 

supervised data for graph clustering, because the 

complex relationships among the club members are 

presented as a graph composed of edges represent-

ing acquaintances and vertices coded indicating 

final attachments to factions.  If the results of 

graph clustering were to match with the actual 

composition of sects within the club, one could 

claim that the tested method was capable of simu-

lating the social relationships. 

However, the real difficulties lie at boundary 

positions.  It is worth pointing out that the degree 

of ambiguity is the same (0.5) for both vertices 3 

and 10 in Figure I, indicating that they occupy neu-

tral positions while in reality they belong to differ-

ent subgroups.  All modularity-based greedy algo-

rithms would inevitably bind the two nodes at an 

earlier step in the dendrogram construction (at the 

first merging step in experiments conducted by 

Newman and Danon and at the second in Pujol’s 

experiment).  In contrast, MCL is one of the rare 

clustering methods that avoids this type of mis-

judgment (accurate results for the karate club net-

work were also obtained with the Ward method), 

even though the modularity Q value for MCL is a 

little lower (0.371) than values for greedy algo-

rithms (for example, 0.3807 for Newman et al.’s 

fast algorithm and 0.418 for Danon et al.’s modi-

fied algorithm). 

 
Figure I Karate club  

 

The karate club case suggests the possibility of 

using both graph clustering and modularity Q from 

different perspectives.  MCL allows us to regard 

both clustering and discrimination on the same 

plan if we do not treat modularity Q as an optimi-

zation index but rather as an index of structuring 

dynamics balancing assembly and division.  To the 

extent that a graph clustering method is evaluated 

in terms of its effectiveness in a variety of dis-

crimination analyses with learning data extracted 

from real situations, it should be useful as a simu-

lation tool.  For example, it is possible to test with 

the karate club network the effects of supplement-

ing the network by adding to the original graph 

another hub with the highest degree value.  As the 

curvature value of this new hub varies according to 

the selection of vertices which become adjacent to 

it, we can re-execute MCL for the overall graph to 

see how curvature is closely related with how it 

influences clustering results.  In general cases, the 

hub of a whole graph also tends to be the represen-

tative node for the large-sized Markov cluster 

called the “core cluster” (Jung, 2006). 
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Let us imagine that a highly influential new-

comer joins the karate club and tries to contact 

with half (17) of all the members, functioning as a 

hub within the network.  Even though this is a 

purely hypothetical situation, it is possible to pre-

dict the impact on the network with MCL.   

 
 

 
 

Figures II, III Hub to high or low degree nodes 

 

For example, one could classify the 34 vertices 

into higher and lower degree subgroups, and set a 

hub that is adjacent to all vertices for one subgroup 

but is far from the other subgroup.  MCL results 

would indicate that even when adding a hub with 

the highest curvature value, it would be ineffectual 

in preventing a split (Figure II). However, if the 

newcomer were to be a friend with less sociable 

members, the club would be saved from being torn 

apart.  A hub connected with the lower degree sub-

group, and thus having the lowest curvature value, 

would become part of the largest core cluster, be-

cause the MCL would not subdivide the graph 

(Figure III).  In short, the results of MCL computa-

tion hinge on the curvature value of the hub with 

the highest degree value. 

2 The basic concept of BMCL 

This connection-sensitive feature of MCL brings 

us back to the limitations that Van Dogen et al. 

inform their software users of.  Do these limita-

tions really render the MCL unsuitable for tree 

graphs?  Should we not regard a low modularity Q 

value for a graph as a positive attribute if it is due 

to the low curvature value for a hub?  In a very real 

sense, these questions are actually asking about the 

same thing.  The point can be clearer if conceived 

of in relation to a non-directed and cascading type 

of three-layer graph, as depicted in Figure IV. 

Figure IV Three-layer tree-form network 

 

The root node at the top (the hub) is linked to all 

the vertices in the intermediate layer but to none at 

the bottom layer, even though there are moderate 

levels of connectivity between the layers.  Connec-

tions within a layer are extremely rare or absent.  

Clearly, the curvature of the hub would be influ-

enced by the very low connectivity within layer 2. 

 
 0.01 0.02 0.03 

0.1 

1core 
cluster & 

singleton 

clusters 

1core cluster & 
singleton clus-

ters 

1cluster 
(not divided) 

0.15 
1cluster or 2 

core 
clusters 

1cluster 

(not divided) 

1cluster 

(not divided) 

0.2 
2core 
clusters 

2core 
clusters 

1cluster 
(not divided) 

Table I. MCL results for the structured Random Graph 
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We have executed computations at least 10 

times under the same condition in order to generate 

this type of structured random graph with 500 ver-

tices in the two layers respectively.  A random 

graph was produced by using a binominal distribu-

tion.  Although between connection rates were var-

ied from 0.1 to 0.2 and within connection rates for 

the intermediate layer from 0.01 to 0.03, no edges 

were inserted into the lower layer.  MCL results 

obtained for this architecture are almost constant, 

as shown in Table I. 

In this experiment, all singleton clusters con-

sisted of vertices belonging to layer 2.  In cases 

where the whole graph was split into 2 core clus-

ters, one cluster would correspond to the hub plus 

layer 3 while the other would correspond to layer 2.  

There was no exception when the between connec-

tion rate was 0.2.  This means that, quite curiously, 

the hub formed a core cluster around itself with 

vertices that were not all adjacent to it, so that ones 

that were connected with it in the raw data were all 

segregated into the other cluster.  In this case, the 

Modularity Q value for each core cluster was zero 

or extremely low. 

Nevertheless, in spite of this inaccuracy, this 

type of network can easily be by modified by the 

BMCL method that we discuss later.  It can be 
indirectly subdivided by graph clustering, if inside 

the same cluster, a latent shortcut is set between 

one vertex and another.  Such a latent connection 

can be counted in place of a path of length 2 that is 

traced in the original adjacency as a detour via a 

vertex of another cluster.  If all latent adjacency 

relationships are enumerated in this way, except 

for those for the hub, the core cluster will be re-

clustered by a second application of the MCL to 

realize a sort of hierarchical clustering (in this case 

for a quasi-tree graph), which has been regarded as 

being a limitation with the MCL. 

This principle can be called Branching Markov 

Clustering (BMCL) in the sense that it makes it 

possible to correct for unbalances in cluster-sizes 

by dividing large Markov clusters into appropriate 

branches.  In other words, BMCL is a way of re-

building adjacency relationships "inside" MCL 

clusters, by making reference to "outside" path in-

formation.  It then becomes natural to realize that 

the lower the curvature value of the hub is—

reflecting sparse connectivity inside the hub’s clus-

ter—the more effective BMCL will be in subdivid-

ing the core cluster, which will augment the modu-

larity Q value for the clustering results. 

3 Applying BMCL corpora data 

3.1 The BMCL algorithm 

In this section, we apply our BMCL method to a 

semantic network that is almost exhaustively ex-

tracted from typical documents of a specific struc-

ture.  It is supposed that if the MCL is applied to 

word association or co-occurrence data it will yield 

concept clusters where words are classified accord-

ing to similar topics or similar meanings as para-

digms.  However, because the word distribution of 

a corpus approximately follows Zipf’s law and 

produces a small-world scale-free network (Stey-

vers et al., 2005), the MCL will result in a biased 

distribution of cluster sizes, with a few extraordi-

narily large core clusters that lack any particular 

features. 

In order to overcome such difficulties in build-

ing appropriate lexical graphs for corpus data, we 

propose an original way of appropriately subdivid-

ing core clusters by taking into account graph coef-

ficients, especially the curvature of a hub word.  

As mentioned above, BMCL is most effective for 

clusters that, containing a high-degree and low-

curvature vertex, display a local part of a network 

with highly sparse connectivity when a hub is 

eliminated.  This feature increases the efficiency of 

the BMCL by making it possible to introduce 

moderate connection rates for latent adjacencies. 

In contrast to a ‘real’ adjacency between the ver-

tices ki, represented here by 1),( =kid , the ‘latent’ 

adjacency 1),( =jid v  will subsequently be defined 

to closely adapt to the connection state for the 

dataset, which we will utilize in testing the BMCL.  

The hub 
hM of each Markov cluster M is supposed 

to be the vertex with the largest degree for M .  

Here, we set a sufficiently large core cluster C , a 

set of hubs H and the hub of C as 
hC .Under such 

conditions, we can formulize the set of external 

hubs bypassing the intra-core connections
jiK ,
 as; 

}1),(),(,,|{ ,,, ==∈⊂ kjdkidKkHKK jijiji
, 

where C
hh CjCiji

ji
≠≠≠

∈
,,

, , HCh ∉ . We also propose an 

additional function called 
n

ArgTopn , which identi-

fies the set of n nodes that have the highest connec-
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tion values.  This is to produce a moderate connec-

tion rate which allows us to execute appropriate 

MCL operations by appropriately setting two prun-

ing thresholds, θp and θq.  These are applied in the 

row direction by fixing i  in the intra-core connec-
tion matrix to the number of the shortest paths be-

tween ji, -- || , jiK -- to make the following prun-

ing rule: 

1),(

|)|&&|(| ,,

=>−

∈≥
=

jid

KArgTopnjKif

v

ji
n

pji

qθ

θ
 

This rule extracts from the intra-core connec-

tion matrix a latent adjacency matrix to which the 

MCL is applied once again in order to obtain ap-

propriately resized sub-clusters from a huge core 

cluster. 

3.2 A range of corpus data 

In this section, three documents were selected tak-

ing into consideration the curvature value of a hub 

with the highest degree and the density of connec-

tions with or without this hub among the vertices 

of a core cluster at the level of a raw data graph. 

I. Associative Concept Dictionary of Japanese 

Words (Ishizaki et al., 2001), hereafter abbreviated 

as ACDJ, which consists of 33,018 words and 

240,093 word pairing collected in an association 

task involving 10 participants.  Of these, 9,373 

critical words were selected to create well-arranged 

semantic network by removing the rarest 1-degree 

dangling words and rarer words with a degree of 2 

but curvature values of 0. 

II. Gakken’s Large Dictionary of Japanese (Kin-

daichi & Ikeda, 1988), hereafter abbreviated as 

GLDJ, which is an authoritative Japanese diction-

ary with some features of an encyclopedia in terms 

of its rich explanatory texts and copious examples.  

We selected 98,083 words after removing noise 

words, functional words, and 1,321 isolated words 

to extract word pairs by combining every head-

word with every other headword included within 

an entry text. 

III. WordNet. We used only the "data.noun" file 

where the lexical information for each noun is de-

fined by a set of index numbers corresponding not 

with words themselves but with their senses. The 

co-occurrence relationships for 98,794 meanings 

were extracted from every data block that contains 

a series of indexes, which also covers other parts-

of-speech. 

The principle for building a semantic network 

for each of these documents was to select relevant 

‘word pairs’ or ‘index pairs’ indicating the lexical 

relationships of adjacency, association or co-

occurrence, respectively.  Table II presents graph 

information for the three data sets and the results 

of applying both the MCL and the BMCL to them. 

 

 

Table II Data about the three corpora 

 

Although the first data (ACDJ) is much smaller, 

it is worthwhile executing because it represents a 

concrete example of the network type discussed 

earlier, namely, a three-layer architecture around a 

hub (quasi-tree graph).  The connection rate in the 

core cluster is very low (0.002 with and 0 without 

the hub), as is the modularity Q value for the MCL 

(0.094).  However, subdivision of the core cluster 

in the BMCL results yielded a high modularity Q 

value (0.606) when latent adjacencies derived from 

bypassing connections with a threshold of qθ =3 

were used. 

The last two data (GLDJ and WordNet) are di-

rectly comparable because they are quite similar in 

size and provide sharp contrast, particularly in 

terms of curvature values (GLDJ: 8.51106E-05 << 

WordNet: 0.0405), and modularity Q values for the 

MCL (GLDJ: 0.176 << WordNet: 0.841).  For 

WordNet, the high connection rate in the core clus-

ter (0.03) makes it difficult for it to be subdivided 

by any clustering method, even if the hub is elimi-

nated.  In terms of the GLDJ, the core cluster was 

repeatedly divided by the BMCL and the modular-

ity for the subdivision turned out to be 0.2214 with 

a threshold of 
pθ  = 1. 

However, there is another way to split the core 

cluster into sub graphs, which does not require the 

use of the latent adjacency information which is 

crucial for the BMCL.  That other method, which 

can be called the ‘Simply-Repeated MCL (SR-

MCL)’, involves applying the MCL once again to 

ACDJ GLDJ WordNet
Num of Vertices 9373 98083 98794
Degree Mean 19.963 13.8939 63.7155
Hub Word House Archaic Words Individual
Degree of Hub 563 12959 2773
Curvature of Hub 0.0398 8.51106E-05 0.0405
Core Cluster Size 158 8962 2597
Connection Rate of Core Cluster 0.0022 0.000328782 0.030539
Ibid (Without Hub) 0 0.000153119 0.03005
Q for the First MCL 0.0946409 0.176 0.841275
Q for the BMCL 0.606284 0.221 -0.094
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the part of the original adjacency matrix that corre-

sponds to the vertices apart from the hub, and 

which become members of the core cluster as a 

result of the first MCL.  In the case of ACDJ, it is 

impossible to execute the SR-MCL, because there 

is no edge that is not connected to the hub within 

the core cluster, and so all the vertices apart from 

the hub would be isolated if the hub were removed. 

A similar problem is also encountered with the 

core cluster of the GLDJ, even though the SR-

MCL increases the modularity Q value (0.769) 

much more than the BMCL.  Vertices that dangle 

from the hub—37% of the core members—would 

be dropped from the second MCL computation if 

the latent adjacency is not used, which, on the 

other hand, assures a high recall rate (0.88).  Thus, 

we have adopted an eclectic way to maintain both 

relatively high recall (the proportion of non-

isolated nodes) and relatively high precision (the 

modularity Q of the intra-core clustering).  This is 

what we may call a ‘Mixed BMCL’ which in-

volves combining the latent adjacency matrix ex-

clusively for the vertices dangling to the hub and 

the raw adjacency part matrix for the remaining 

ones that are connected among them.  As Figure V 

highlights, the F-measure 
RP

PR

αα +− )1(

(R: recall; P: 

precision) underscores the effectiveness of the 

Mixed BMCL for the GLDJ. 

 

Figure V Comparison of the methods (α =0.4) 

 

4 Conclusion 

This paper has examined MCL outputs obtained 

for some rather problematic conditions, such as the 

clustering of a tree graph and clustering for a net-

work that contains a hub that has a very low curva-

ture value.  In such cases, many of the vertices ad-

jacent to the hub are removed from the cluster that 

it represents.  However, compensating for that, the 

hub cluster will absorb many other vertices—some 

of which are not directly connected to the hub it-

self—to form a large-sized core cluster.  That is 

when our proposed method of Branching MCL 

(BMCL) is most effective in adjusting cluster sizes 

by utilizing latent adjacency.  Subdivision of the 

core cluster can facilitate the interpretation of the 

classified concepts. 

When the curvature of the hub is a little higher 

than in such extreme conditions, the combination 

of the ordinary MCL and the BMCL (a Mixed 

BMCL) can work well in increasing the F-Measure 

score.  However, it is not possible to reapply the 

MCL to a dense core cluster that is organized 

around a hub with a very high curvature value.  A 

direction for further research will be to automati-

cally select from between the BMCL and the 

Mixed-BMCL.  The SR-MCL or similar modifica-

tions may yield the optimal approach to dividing 

massive Markov clusters into appropriate subsets. 
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