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1. Introduction 
Explanation-based learning (EBL) is a machine-learning 

technique, closely connected to other techniques like macro- 
operator learning, chunking, and partial evaluation; a phrase 
we have found useful for describing the method to logic 
programmers is example-guided partial evaluation. The basic 
ideas of the method are well-described in an overview article 
which recently appeared in Artificial Intelligence [1], to 
which we refer the reader who wants to understand the 
theoretical principles; here, we will only summarize briefly 
what EBL means in the context of  natural-language 
processing. A detailed presentation can be found in [3] and 
[4]. 

What EBL tries to do in the context of  NLP is exploit 
the well-known observation that users of an NL interface 
tend to ask the same types of question most of the time; 
lacking exact figures, it seems reasonable to guess that at 
least 80% of all questions posed to a given specific NL 
application will be accounted for by the 100 most common 
question-types.  If one had some simple way of  
automatically identifying these "common" question-types, it 
would be possible to win a great deal of efficiency by by- 
passing the normal parsing mechanism in all but the hard 
case s ,  

Unfortunately, it is not feasible simply to add 100 extra 
rules to the grammar, since the common question-types vary 
depending on the application: a construction which occurs 
constantly in one domain may hardly exist in another. 
Something more sophisticated is required, which is capable 
of taking examples of common types of query and 
synthesizing the corresponding special rules. This is exactly 
what the EBL method offers. The normal route through the 
parser is extended with an EBL bypass, which contains 
special rules for efficient processing of common queries; 
these rules are not coded by the programmer, but rather are 
produced automatically by inspecting the solutions to 
previously posed queries of the same type. EBL can thus 
best be thought of as a way of automatically tuning an NL 
system to produce increased performance in a particular 
domain. 

The EBL module can consequently be divided into its 
compile-time and run-time parts. The compile-time part 
extracts the learned rules from sample queries: the central 
component is the generalizer, which in our version is 
essentially a type of  Prolog interpreter. The run-time part 
then applies the rules to input queries, the compile-time 

system having previously indexed them so as to make them 
readily accessible to some kind of table look-up facility. In 
[4], we demonstrated, using examples taken from an 
application of the EBL method to CHAT-80 [2], that table 
look-up methods of this kind can be implemented quite 
simply in Prolog with a minimal overhead. 

In the current paper, we describe the results of 
experiments carried out at IBM Nordic Laboratories, where 
the EBL method was used on a large-scale NL query 
interface prototype. The EBL module learns a "two-lever' 
set of special grammar rules; the top-level rules for S's treat 
NP's as primitive, and these are supplemented by a second 
set of rules for common NP's. Both types of rules are 
learned automatically in the way described above. In the 
remainder of the paper, we first give a brief overview of the 
IBM system, concentrating on the features that presented 
problems for the implementation of the EBL process; we 
then describe the architecture of the EBL module's compile- 
time and run-time components. In section 4, we present our 
experimental results, which indicate fairly unambiguously 
that the EBL method gives a real, and quite substantial, 
speed-up of the system as a whole; the final section contains 
our conclusions together with suggested directions for 

• further research. 

2. Relevant characteristics of the 
target NL system 

The system used for our experiments was a large-scale 
NL query prototype, implemented in Prolog, which is 
intended to provide good coverage of a fairly large portion of 
English. The main components perform the tasks of 
parsing, semantic interpretation, paraphrasing and database 
query generation; since the first of these is both the 
"cleanest" and by far the most time-consuming, we decided 
only to attempt to apply EBL to this phase of the process. 
We will thus concentrate exclusively in the following 
description on the grammar formalism, grammar and parser. 
As explained in [4], the main difficulties derive from the fact 
that our implementation of the EBL method requires the 
grammar to be reduced to a set of  Horn-clauses: in our 
earlier experiments with CHAT-80, this was fairly simple, 
and only involved some minor editing of the code. Here, 
however, the gap between the grammar and an equivalent 
"clean" version was non-trivial. This was much more 
important than the mere increase in its size (~1000 rules, as 
opposed to 150 for CHAT-80), which in fact caused no 
problems at all. 
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The two major hurdles with regard to the grammar 
formalism were its non-standard treatment of features and 
movement. The basic feature operation is not unification, 
but priority merge: movement is handled not by gap 
features, but rather by "non-restrictive" rules, in which more 
than one non-terminal can occur on the left-hand side of the 
rule as well as the right. Partly due to this, an unusual 
parsing mechanism is used, in which extra-logical predicates 
(especially "assert") play an integral part. To give the 
flavour of the formalism, the following is a slightly 
modified version of a typical non-restrictive rule, in this 
case intended to cover free relatives like the one in "John 
mentioned a book yesterday which you should read": 

s (2,prm=l, fpe (2)) & 
temp_advp (i, trm=l, fpe (i)) -> 
temp_advp (dng=0) & s (rel=l) 

The rule reverses the sequence of temporal adverbial and 
relative clause, in effect transforming the sentence into 
"John mentioned a book which you should read yesterday". 
The "2" in the first argument position in the left-hand "s" 
indicates that its features are to be inherited from those in 
the second constituent on the right-hand side; " p r r a = l "  
means that the "13 rra" feature in the inherited set will if 
necessary be overridden and set to 1. 

As we shall see in section 3.3, the parsing mechanism 
turns out to be irrelevant for our purposes; all that is 
significant is the grammar, viewed as a declarative 
description. We shall accordingly conclude our description of 
the target system at this point. 

3. Design of  the EBL module  

3.1 Overall architecture 
As explained above, the EBL module can naturally be 

divided into its compile-time and run-time components, 
which we will further describe in the following sections. 
For convenience, we will sub-divide the compile-time 
system into three smaller components. These are the 
grammar pre-processor, which converts the grammar into a 
suitable pure Horn-clause representation; the generalizer, 
which performs the actual extraction of learned rules; and the 
simplifier, which attempts to reduce them in size by 
removing unnecessary calls. We now examine each of these 
in turn. 

3.2 The grammar pre-processor 
This component performs the job of converting the 

original grammar into a pure DCG form, in which the first 
argument of each non-terminal contains a term encoding its 
derivation history; the motivation for this additional 
condition will be apparent in the next section. The only 
non-trivial part of the process, from our viewpoint, was 
dealing with unrestricted rules, since the other problems had 

already been taken care of by the normal grammar compiler. 
However, it turned out that this problem could also be 
solved simply, by first representing the unrestricted rules in 
Pereira's Extraposition Grammar (XG) format; using the XG 
compiler from [2], it is then straight-forward to turn the 
grammar into pure Horn-clauses. Conceptually, the XG 
compiler turns the ~mrestricted grammar into a DCG, where 
each non-terminal is given an extra pair of arguments (the 
"extraposition list"), to pass around the additional left-hand 
constituents. To give an example, the rule quoted at the end 
of section 2 is represented (again in a slightly edited form) 
as follows: 

s(s(rulell2,S,T),Feats l,Sem i, 
X_in, x (nogap, nonterm~nal, 

t emp_advp (T, Feat s_2, Sere_2 ), 
X out) ) -> 

temp_advp (T, Feat s_3, X in, Xnext), 
{get_feature (Feats_3, dng, 0) }, 
s (S, Feats_4, X_next, X out), 
{get_feature (Feat s_4, rel, 1 ), 
put_feature (Feat s_3, prm, i, Feat s_l ), 
put feature (Feat s_4, trm, I, Feat s_2) }. 

The DCG produced can potentially contain left-recursive 
rules. However, we shall see in the next section that this 
causes no problems, since it is not used for normal, 
unrestricted parsing; the non-terminating branches in the 
search space can thus never be entered. 

3.3 The generalizer 
Since a detailed description of the generalizer can be found 

in [4], we will restrict ourselves here to an example and a 
brief overview. The basic idea is first to define the class of 
operational goals; by this, we mean the goals which will be 
allowed to appear on the right-hand-side of learned rules. 
Having done this, a successfully processed example is 
generalized by (notionally) constructing a derivation tree for 
it, and then chopping off  all the branches rooted in 
operational goals; the leaves in the new, "generalized" 
derivation will be the conditions in the learned rule (and thus 
by construction operational), and the root will be a more 
general version of the goal corresponding to that in the 
example. In the simplest (one-level) version of the scheme, 
operational goals will coincide with lexical ones: thus 
generalization will be at the word level. An illustrative 
example is shown in diagram 1. 

A slight refinement is to allow non-lexical operational 
goals, in particular ones corresponding to NP's. The basic 
method can now be applied recursively, first to the proof 
tree corresponding to the entire example, and then to each 
tree rooted in an operational NP goal; in the latter case, the 
operationality criterion is once again lexical. This results in 
the acquisition of two sets of rules, corresponding to the 
two different operationality criteria: the top-level rules 
construct S's from NP's and lexical items, and the second- 
level ones construct NP's from lexical items alone. 
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s (S) --> np(Agr,VP^S), vp(Agr,VP). (i) 
np (3-s, NP) --> pn(NP) . (2) 
np (Agr,NP) --> det (Agr,Ni^NP), n (Agr, Nl) . (3) 
vp (Agr,X^S) --> tv(Agr, X^VP), np (_,VP^S). (4) 
pn((PN^VP)^VP) --> [PN], {lex(PN, pn)}. (5) 
det (Agr, (X^Si) ̂  (X^S2) ̂ quant (Det,X, Si, S2) ) --> 

[Det], {lex(Det,det(Agr))}. (6) 
n(Agr,X^[N,X]) --> [N], {lex(N,n(Agr))}. (7) 
tv(Agr,X^yA[TV, X,Y]) --> [TV], {lex(TV, tv(Agr))}. (8) 

lex (john, pn) . 
lex (cat, n (3-s)) . 

lex (a, det) . 
lex (loves, tv (3-s)) . 

Grammar and lexicon 

lex ( john, pn) 

(5) 

pn ( (john^VP) ̂ VP, 
[ johnlR],R) 

lex (loves, tv (3-s)) 

(8) 
tv (3-S, 

X^Y ̂  [loves, X, Y], 

lex (a, det (3-s)) lex (cat, n (3-s)) 

det(3-s, (Y^Sl) ̂ (Y^S2) ^ n(3-s,Y ̂ [cat,Y], 
quant (a, Y, Sl, S2), [cat }R] ,R) 

[loves I R], R) [al R], R ~ ~  

np (3-s, (Y^S) ̂ quant (a,Y, [cat,Y],S), 
(2) ~ [a, cat I R] ,R) 

np (3-s, (john^VP) ̂ VP, ~ / 
[ johnl R], R) 

vp (3-s,X^quant (a,Y, [cat,Y], [loves,X, Y] ), 
[ loves, a, cat I R], R) 

s (quant (a,Y, [cat, Y], [loves, john, Y] ), 
[ john, loves, a, cat], [ ] ) 

Derivation of"John loves a cat" 

lex (A, pn) lex (B, tv (3-s)) 

I(5) 1(8) 
tv (3-S, pn ((A^VP) ̂ VP, 

[AIR] ,R) X^Y^ [B'X' Y] ' 
[BIR] ,R) 

np (Agr, (Y^S) ̂ quant (C,Y, [D,Y],S), 
(2) ~ [C,DIR] ,R) 

np (3-s, (A^VP) ̂ VP, ~ / 
[AIR] ,R) 

vp (3-s, X^quant (C,Y, [D,Y], , [B,X,Y] ) 
[B, C,D IR], R) 

s (quant  (C,Y, [D,Y], [B,A,Y] ) ,  
[A,B,C,D], []) 

Generalized derivation tree 

s (quant (C,Y, [D,Y], [B,A,Y] ), [A,B,C,D], [] ) "- 
lex(A, pn), lex(B,tv(3-s)), lex(C, det), lex(D,n(Agr)) . 

Generalized derived rule 

Diagram 1. Example application of EBL to a toy logic grammar. 

lex (C, det (Agr)) lex (D, n (Agr)) 

I (6) I(7) 
det (Agr, (X^SI) ̂  (X^S2) ̂  n (Agr,Y^ [D,Y], 

quant (C, X, SI, $2), [DIR],R) 
[CIR] ,R) 
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The generalizer is basically a Prolog meta-interpreter, 
which means that generalization is from a computational 
perspective essentially the parsing of a query with a DCG; 
this means that care has to be taken to ensure that parsing 
efficiency is acceptably high, and even more importantly 
that infinite recursions are not caused by left-recursive 
grammar rules. Luckily, there is a simple and uniform way 
to solve this problem, by exploiting the fact that the first 
argument in each rule has been set up to hold the derivation 
history. The query is first run through the normal, "dirty" 
grammar, to find the intended instantiation of the derivation 
argument; this is then used to guide DCG parser used by the 
generalizer, effectively making the "parsing" deterministic. 
The top-level is thus schematically: 

extract rule (Query,Rule) "- 
dirty_parse (s (Tree, , ) ,Query), 
generalize (clean_parse (s (Tree, , ), 

Query) , 
Rule) . 

where the predicate names have their obvious meanings. 

3.4  T h e  s i m p l i f i e r  
The purpose of  this module is to attempt to reduce the 

size of learned rules, in particular calls to feature- 
manipulation primitives; these make up most of the body of 
typical rules with on average about 50 calls per rule. The 
basic mechanism is to take each feature-value, and trace its 
update history backwards through successive updates. 
Dividing feature-manipulation into "gets" and "puts", we 
can optimize in at least the following ways: 

- Removing "gets" which can already be seen at compile- 
time to succeed. Since learned rules are compositions of 
normal ones, this case occurs when one component rule 
"gets" a feature that an earlier component has "put". 

- Removing duplicate copies, when the same "get" occurs 
more than once in the rule. 

- Reordering the rule body so that all structure-building 
takes place at the end: this ensures that structure will 
only be built if the rule succeeds. 

If features were only used for syntax, it would also be 
possible to perform a further kind of optimization for S- 
level rules; having traced each "get" back through the chain 
of "puts" ending in the feature set it accesses, we could then 
remove the "puts" altogether. This would represent a very 
considerable reduction in average rule-size. Semantic 
processing in the target system is unfortunately not 
structured so as to allow this, but we think it likely that the 
method could be applicable in other, similar, contexts. 

The following pseudo-code characterizes the simplifica- 
tion algorithm: 

Phase 1 
1. Combine "gets" and "puts" accessing the same feature 

set into groups. Replace each group with a 
corresponding call to get_group or put_group. 

2. Collect all calls to structure-building routines. 

Phase 2 
Go through the body of the rule, passing an alist of 
annotations; this is used to replace or simplify calls to 
"get_group". The alist associates with each feature set a 
history of its derivation. This is one of 
• primitive (Constituent) - the feature setis the 

one associated with Constituent. 

• update_from (Old_features, Update_set) - 
the feature set was derived from 01 d_ f e at u r e s by 
the chain of updates Update_set. 

For each literal L in the rule body, do one of the following. 

i) If L is of the form put group (Old, Updates, 
New ), then add a suitable entry to the alist, constructed 
from L and the derivation history of Old. 

ii) IlL is of the form getgroup (Feature_set, 
Ac c e s s i i st ), replace it with a literal of the form 
get_gro'up (Ori gi nal, Acce s s_l i st_l ), 
where: 
a) O r i g i n a l  is the base of the update chain that 

F e a t u r e  s e t  belongs to. 

b) Access list_l is derived from Access_list 
as follows: for each element F=V, if F=VI is in the 
list of updates, unify V with Vl and throw away 
F=V. 

iii) If L is of any other form, keep it unaltered. 

Phase 3 
1. Remove duplicate calls. 
2. Re-expand calls to get_group and put_group. 
3. Add structure-building calls to the end of the rule body. 

3.5 .  T h e  p a t t e r n - m a t c h e r  
Since the learned rules acquired by the generalizer in effect 

comprise a specialized grammar, it would be possible to 
apply the normal parsing mechanism to them. However, 
this fails to exploit the grammar's unusually simple 
structure: the depth of a derivation-tree cannot exceed two, 
and NP is the only non-lexical category. Thinking about the 
problem in this way should make the pattern-matcher's 
construction easy to understand. The rules are compiled into 
a trie-structure, indexed by constituent category; this can 
either be "NP", or some lexical category. The pattern- 
matcher then locates potentially suitable rules by a kind of 
non-deterministic LR parsing method, driven by the trie- 
structure and otherwise optimized to exploit the peculiarities 
of the situation; a well-formed substring table is used to 
remember previously located NP's. Our tests indicate that 
this method is at least five times faster than the target 
system's normal parser. 

The following pseudo-code characterizes the algorithm. 
Positions in the input string are marked from 0 to * e n d * ;  
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* t r i e -  r o o t *  denotes the root-node of the trie-structure; 
p o i n t e r  marks the place we have reached in the input 
string, t r i e _ n o  d e  the current position in the rule trie, 
and n p s  the sequence of NP's so far located between 0 and 
p o i  n t e  r .  We assume that lexical analysis has already been 
performed, so that we can discover by a suitable look-up 
operation whether or not there is an item of a given lexical 
category at a given location in the input string. 

Pattern-matching algorithm 
1. Set pointer to 0. Set trie-node to *trie- 

root*. 
2. Set category to the lexical category of the item at 

pointer. 
3. Non-determinisfically do one of: 

a) If there is a tde arc from trie-node to next- 
node triggering on category then set trie- 
node to next-node. Bump pointer andgo 
back to 2. 

b) If there is atde arc from trie-node to next- 
node triggering on "NP", and there is an NP from 
pointer to next-pointer, set trie-node 
to next-node, set pointer to next- 
pointer, push the found NP onto nps, and go 
back to 2. 

c) If pointer = *end*, and trie-node is a leaf 
of the trie marked with a rule, then try to apply it to 
the whole input string, if necessary looking up NP's 
in sequence from rips.  

The subroutine for finding NP's is similar, though 
slightly simpler; the variable and constant names correspond 
in the obvious way to those in the first algorithm. 

To find an NP from p o i n t e r  to n e x t - p o i n t e r :  

1. If the well-formed substring table records that NP's have 
been searched for at p o i n t e r ,  pick one non- 
deterministically and return, else 

2. Set NP-pointer to pointer. Set NP-trie- 
node to *NP-trie-root*. 

3. Set NP-category to the lexical category of the item 
at NP-pointer. 

4. Non-deterministically do one of: 

a) Find a trie arc from N P - t r i e - n o d e  to NP- 
next-node UJggering on category. Set NP- 
trie-node to NP-next-node. Bump NP- 
pointer and go back to 3. 

b) If there is a reduction rule at NP-trie-node, 
attempt to apply it to the segment of the input 
string joining p o i n t e r  to N P - p o i n t e r ,  and 
record the result in the well-formed substring table. 
Then return. 

c) If N P - p o i n t e r  = p o i n t e r  and there are no 
alternatives left, record in the well-formed substring 
table that NP's have been searched for at p o i n t e r ,  
and return with failure. 

4. Results 
A proper evaluation of performance gain due to the EBL 

bypass is impossible without a large statistical sample of 
typical user interactions with the target system; at this stage 
of the project, such data is unfortunately not available. Our 
preliminary performance measurements have been based on a 
corpus of 31 queries of distinct syntactic type, in length 
varying between 3 and 14 words; the histogram in diagram 2 
summarizes the distribution of the speed-up factor over this 
set. The speed-up factor was defined as the ratio of EBL 
look-up to parsing for sentences where an applicable rule 
existed. It averaged slightly over 30, and as shown in the 
diagram exceeded 10 on all queries. The average look-up 
overhead on sentences for which no applicable rule existed 
was less than 3%. One of the few disappointments of the 
project was however the poor performance of the simplifier, 
which was unable to achieve better than an average 20% 
reduction in rule size; this appeared mainly to be due to the 
necessity to keep all feature sets for possible later use in 
semantic interpretation. 

Distribution of Speed-ups 

6 

4 

2 

0 
0-10 10-2020-3030-4040-5050-6060-70 

Diagram 2. Distribution of speed-ups due to EBL 
bypassing. 

The following transcript of a short session with the 
system illustrates the EBL module in action. Input 
sentences are shown in bold-face, and comments in italics. 
Note that the glosses for acquired rules are only very 
approximate, and omit nearly all features. 

EBL bypass initialized, no rules. 
Does Iceland export fish? 
Bypassing. 
No match. 
Adding a top level rule. 

'~->doesNPTVNP?" 
Adding 2 second level rules. 

"NP-> Name"and 
"NP->N:[mass=y]" 

Is the Vip Club 
organization? 
Bypassing. 

a small 
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No match. 
Adding a top level rule. 

"S -> is NP NP?" 
Adding 2 second level rules. 

"NP -> the Name" and 
"NP -> DET ADJ N" 

Who is a member of the Vip 
Bypassing. 
No match. 
Adding a top level rule. 

"S -> NP:[wh=y] isNP?" 
Adding 2 second level rules. 

'TVP -> PRO" and 
'TVP -> DET N P DET NAME" 

Club? 

Is John a citizen of the United 
States? 
Bypassing. 
EBL look-up succeeded. 

The top-level rule used is "S -> is NP NP?", from the 
second example; the second-level rules are "NP -> Name" 
from the first example, and "NP -> DET N P DET 
NAME"from the third. 

5. Conclusions and further 
directions 

On the basis of the experiments reported here, we think 
there are good reasons to take EBL seriously as a practical 
and generally applicable way of optimizing NL query 
systems; the speed-ups achieved were very considerable at a 
low overhead. Even more importantly, it was possible to 
apply the EBL method despite the target's having several 
characteristics undesirable from this point of view; our a 
priori guess at the beginning of the project was that, if it 
worked here, it would work on most systems. We plan soon 
to begin implementation of a similar module for a large 
unification grammar for Swedish, where it should be easy to 
cover both syntactic and semantic processing. 

One thing that ought to be studied more is the dependence 
of access time on the number of learned rules when this 
number becomes large (over 500, say). It certainly seems 
reasonable to hope that the pattern-matching algorithm 
presented here will give approximately logarithmic 
behaviour, but this is really an empirical question, since it 
depends on the distribution of the common query-types in 
terms of their lexical categories. Another important question 
is the extent to which it is possible to compress the 
generated rules. Since we are essentially trading space for 
time, this is likely to define the limits of the method, since 
we will eventually simply run out of space to store more 
learned rules, even if we can index them efficiently. 

In conclusion, it seems to us that application of the EBL 
method to Natural Language offers a fruitful field for 
continued investigation of both a practical and theoretical 
nature. 
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