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Abstract 

This paper describes recent improvements in the SPHINX 
Speech Recognition System. These enhancements include 
function-phrase modeling, between-word coarticulation 
modeling, and corrective training. On the DARPA resource 
management task, SPHINX attained a speaker-independent 
word accuracy of 96% with a grammar (perplexity 60), and 
82% without grammar (perplexity 997). 

1. Introduction 
SPHINX is a large-vocabulary, speaker-independent, 

continuous speech recognition system based on discrete 
hidden Markov models (HMMs) with LPC-derived 
parameters. In order to deal with the problem of 
speaker independence, we added knowledge to these 
HMMs in several ways. We represented additional 
knowledge through the use of multiple codebooks. We 
also enhanced the recognizer with word duration 
modeling. In order to model co-articulation in con- 
tinuous speech, we introduced the use of function- 
word-dependent phone models, and generalized 
triphone models. 

More recently, we have made considerable progress 
with the SPHINX System. We reformulated the general- 
ized triphone clustering algorithm as a maximum- 
likelihood procedure, and carried out some experiments 
with generalized triphones. We also implemented and 
evaluated the modeling of function phrases, and 
between-word coarticulation modeling rising general- 
ized triphones. The latter experiment reduced SPHINX's 
error rate by 24-44%. We modified the corrective train- 
ing algorithm [1] for speaker-independent, continuous 
speech recognition. Corrective training reduced 
SPHINX's error rate by 20-24%. 

In this paper, we will describe all components of the 
SPHINX System, with emphasis on the recent improve- 
ments. The SPHaNX System has been described in 
[2] and [3]. Publications on the recent improvements 

will be forthcoming. 

On the 991-word DARPA resource management 
task, SPHINX achieved speaker-independent word recog- 
nition accuracies of 82% and 96%, with grammars of 
perplexity 991 and 60, respectively. Results with the 
1988 and 1989 test data resulted in 78 and 76% without 
grammar, and 96% and 94% with the word pair gram- 
mar. 

2. Speech Representation 
The speech is sampled at 16 K H z ,  and pre- 

emphasized with a filter of 1 - 0.97z -1. Then, a Ham- 
ming window with a width of 20 msec is applied every 
10 msec. Autocorrelation analysis with order 14 is fol- 
lowed by LPC analysis with order 14. Finally, 12 LPC- 
derived cepstral coefficients are computed from the 
LPC coefficients, and these LPC cepstral coefficients 
are transformed to a mel-scale using a bilinear trans- 
form. 

These 12 coefficients are vector quantized into a 
codebook of 256 prototype vectors. In order to incor- 
porate additional speech parameters, we created two ad- 
ditional codebooks. One codebook is vector quantized 
from differential coefficients. The differential coef- 
ficient of frame n is the difference between the coef- 
ficient of frame n+2 and frame n-2. This 40 msec. 
difference captures the slope of the spectral envelope. 
The other codebook is vector quantized from energy 
and differential energy values. 

3. Context-Independent HMM Training 
SPHINX is based on phonetic hidden Markov models. 

We identified a set of 48 phones, and a hidden Markov 
model is trained for each phone. Each phonetic HMM 
contains three discrete output distributions of VQ sym- 
bols. Each distribution is the joint density of the three 
codebook pdf's, which are assumed to be independent. 
The use of multiple codebooks was introduced by 
Gupta, et al. [4]. 

We initialize our training procedure with the TIMIT 
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phonetically labeled database. With this initialization, 
we use the forward-backward algorithm to train the 
parameters of the 48 phonetic HMMs. The training 
corpus consists of 4200 task-domain sentences spoken 
by 105 speakers. For each sentence, word HMMs are 
constructed by concatenating phone HMMs. These 
word HMMs are then concatenated into a large sen- 
tence HMM, and trained on the corresponding speech. 
Because the initial estimates are quite good, only two 
iterations of the forward-backward algorithm are run. 
This training phase produces 48 context-independent 
phone models. In the next two sections, we will discuss 
the second Iraining phase for context-dependent phone 
models. 

4. Function Word/Phrase Dependent 
Models 
One problem with continuous speech is the unclear 

articulation of function words, such as a, the, in, of, etc. 
Since the set of function words in English is limited and 
function words occur frequently, it is possible to model 
each phone in each function word separately. By ex- 
plicitly modeling the most difficult sub-vocabulary, 
recognition rate can be increased substantially. We 
selected a set of 42 function words, which contained 
105 phones. We modeled each of these phones 
separately. 

We have found that function words are hardest to 
recognize when they occur in clusters, such as that are 
in the. The words are even less clearly articulated, and 
have strong inter-word eoarticulatory effects. In view 
of this, we created a set of phone models specific to 
function phrases, which are phrases that consist of only 
function words. We identified 12 such phrases, 
modified the pronunciations of these phrases according 
to phonological rules, and modeled the phones in them 
separately. A few examples of these phrases are: is the, 
that are, and of the. 

5. Generalized Triphone Models 
The function-word and function-phrase dependent 

phone models provide better representations of the 
function words. However, simple phone models for the 
non-function words are inadequate, because the realiza- 
tion of a phone crucially depends on context. In order 
to model the most prominent contextual effect, 
Schwartz, et al. [5] proposed the use of triphone 
models. A different triphone model is used for each left 
and right context. While triphone models are sensitive 
to neighboring phonetic contexts, and have led to good 
results, there are a very large number of them, which 

can only be sparsely trained. Moreover, they do not 
take into account the similarity of certain phones in 
their affect on other phones (such as /]a/  and / p /  on 
vowels). 

In view of this, we introduce the generalized 
triphone model. Generalized triphones are created from 
triphone models using a clustering procedure: 

1. An HMM is generated for every triphone con- 
text. 

2. Clusters of triphones are created; initially, each 
clusters consists of one triphone. 

3. Find the most similar pair of clusters which 
represent the same phone, and merge them. 

4. For each pair of same-phone clusters, consider 
moving every element from one to the other. 

1. Move the element if the resulting 
configuration is an improvement. 

2. Repeat until no such moves are left. 

5. Until some convergence criterion is met, go to 
step 2. 

To determine the distance between two models, we 
use the following distance metric: 

( H  ( P a ( i ) ) N a ( O ) ' ( H  (Pb (i))Nb(O) 

D(a,b)  = 
i i (1) 

[ I  (Pm (i)) Nm ~i) 
i 

where D (a, b) is the distance between two models of 
the same phone in context a and b. Pa (/) is the output 
probability of codeword i in model a, and N a (i) is the 
count of codeword i in model a. m is the merged model 
by adding N a and N b. In measuring the distance be- 
tween the two models, we only consider the output 
probabilities, and ignore the transition probabilities, 
which are of secondary importance. 

Equation 1 measures the ratio between the probabil- 
ity that the individual distributions generated the train- 
ing data and the probability that the combined distribu- 
tion generated the training data. Thus, it is consistent 
with the maximum-likelihood criterion used in the 
forward-backward algorithm. This distance metric is 
equivalent to, and was motivated by, entropy clustering 
used in [6] and [7]. 

This context generalization algorithm provides the 
ideal means for finding the equilibrium between 
trainability and sensitivity. Given a fixed amount of 
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training data, it is possible to find the largest number of 
trainable detailed models. Armed with this technique, 
we could attack any problem and find the "right" num- 
ber of models that are as sensitive and trainable as pos- 
sible. This is illustrated in Figure 1, which shows that 
the optimal number of models increases as the training 
data is increased. 
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Figure 1: Error rate as a function of the 
amount of training and the number of models. 

6. Between-Word Coarticulation Modeling 
Triphone and generalized triphone models are power- 

ful subword modeling techniques because they account 
for the left and right phonetic contexts, which are the 
principal causes of phonetic variability. However, 
triphone-based models consider only intra-word con- 
text. For example, in the word speech ( / s  p i y  
ch/) ,  both left and right contexts for / p /  and / i y /  
are known, while the left context for / s / a n d  the right 
context for / c h /  are a special symbol for "word 
boundary". However, in continuous speech, a word- 
boundary phone is strongly affected by the phone 
beyond the word boundary. This is especially true for 
short function words like the or a. 

A simple extension of triphones to model between- 
word coarticulation is problematic because the number 
of triphone models grows sharply when between-word 
triphones are considered. For example, there are 2381 
within-word triphones in our 991-word task. But there 
are 7057 triphones when between-word triphones are 
also considered. 

Therefore, generalized triphones are particularly 
suitable for modeling between-word coarticulation. We 
first generaated 7057 triphone models that accounted for 
both intra-word and inter-word triphones. These 7057 
models were then clustered into 1000 generalized 
triphone models. The membership of each generalized 
triphone is retained, so that inter-word contextual con- 
straints can be applied during training and recognition. 

The main change in the training algorithm is in the 
construction of the sentence model. Two connections 
are now needed to link two words together. The first 
uses the known context to connect the appropriate 
triphones, and the second allows for the possibility of a 
between-word silence. In that case, a silence context is 
used. Figure 2 illuslxates the word boundary network of 
two words, where word w 1 consists of phones A, B, and 
C, and word w 2 consists of D, E, and F. 

CCB,D) D(C,E) 

C(B,SIL) SIL D(SIL,E) 

Figure 2: Sentence network connection 
during training. Here word w 1 consists of 
phones A, B, and C, and word w z consists of 
D, E, and F. P(L,R) represents a phone P 
with left-context phone L and right-context 
phone R. 

For words with only one or two phones, sentence 
model concatenation is more complex. If w 2 is 
pronounced (D E), then both D(C,E) and D(SIL,E) 
must be further forked into E(D,X) and E(D,SIL), 
where X is the first phone of the next word. This is 
even more complicated when several one-phone and 
two-phone words are concatenated. To reduce the com- 
plexity of the pronunciation graph of a sentence, we 
introduce dummy states to merge transitions whose ex- 
pected contexts are the same. 

The recognition algorithm must be modified because 
words may now have multiple begining and ending 
phones. Figure 3 illustrates the connection between 
two words during recognition. Like the training phase, 
the two words are connected both directly and through 
a silence. If one or both of the triphones has not oc- 
curred in the training data, we use the context- 
independent phone (or monophone) instead. Therefore, 
the direct connection between two words could be em- 
bodied in one of four forms: 
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A E(D,SIL) V(SIL,W) Z 

E(D,V) V(E,W) 

Figure 3: Transitioning from one word (A B 
C D E) to another (V W X Y Z) in recog- 
nition. 

• triphone to triphone. 

• triphone to monophone. 

• monophone to triphone. 

• monophone to monophone. 

The modeling of between-word coarticulation 
reduced SPHINX's error rate by 24-44%, for different 
test sets and grammars. More details about our im- 
plementation and results can be found in [8]. 

7. Corrective Training 
Bahl et al. [1] introduced the corrective training algo- 

rithm for HMMs as an alternative to the forward- 
backward algorithm. While the forward-backward al- 
gorithm attempts to increase the probability that the 
models generated the training data, corrective training 
attempts to maximize the recognition rate on the train- 
ing data. This algorithm has two components: (1) 
error-correction learning--which improves correct 
words and suppresses misrecognized words, (2) 
reinforcement learning - -which  improves correct 
words and suppresses near-misses. Applied to the IBM 
speaker-dependent isolated-word office correspondence 
task, this algorithm reduced the error rate by 16% on 
test data and 88% on training data. This improvement, 
while significant, suggests that corrective training be- 
comes overly specialized for the training data. 

In this study, we extend the corrective and reinforce- 
ment learning algorithm to speaker-independent, 
continuous speech recognition. Speaker independence 
may present some problems, because corrections ap- 
propriate for one speaker may be inappropriate for 
another. However, with a speaker-independent task, it 
is possible to collect and use a large training set. More 
training provides not only improved generalization but 
also a greater coverage of the vocabulary. We also use 
cross-validation to increase the effective training data 
size. Cross-validation partitions the training data and 
determines misrecognitions using models trained on 
different partitions. This simulation of actual recog- 

nition leads to more realistic misrecognitions for error 
correction. 

Extension to continuous speech is more problematic. 
With isolated-word input, both error-correcting and 
reinforcement training are relatively straighforward, 
since all errors are simple substitutions. Bahl, et al. 
[1] determined both misrecognized words and near- 

misses by matching the utterance against the entire 
vocabulary. However, with continuous speech, the er- 
rors include insertions and deletions. Moreover, many 
substitutions appear as phrase-substitutions, such as 
home any for how many. These problems make rein- 
forcement learning difficult. We propose an algorithm 
that hypothesizes near-miss sentences for any given 
sentence. First, a dynamic programming algorithm is 
used to align each correct sentence with the correspond- 
ing misrecognized sentence in the cross-recognized 
training set to produce an ordered list of likely phrase 
substitutions. Since simple text-to-text alignment 
would not be sensitive to sub-word and sub-phone 
similarities, we used a frame-level distance metric. 
This list of phrase substitutions are then used to ran- 
domly hypothesize near-miss sentences for reinforce- 
ment learning. 

Our experiments with corrective and reinforcement 
learning showed that our modifications led to a 20% 
error-rate reduction without grammar (72% on training 
set), and a 23% reduction with grammar (63% on train- 
ing set). This demonstrated that increased training, 
both through speaker-independent data collection and 
through cross-validation, narrowed the gap between the 
results from training and testing data. Furthermore, this 
showed that our extension of the IBM corrective train- 
ing algorithm to continuous speech was successful. 
More details about this work are described in [9] and 
[10]. 

8. Summary of Training Procedure 
The SPHINX training procedure operates in three 

stages. In the first stage, 48 context-independent 
phonetic models are trained. In the second stage, the 
models from the first stage are used to initialize the 
training of context-dependent phone models, which 
could be generalized triphone models and/or the func- 
tion word/phrase dependent models. Since many 
parameters in the context-dependent models were never 
observed, we interpolate the context-dependent model 
parameters with the corresponding context-independent 
ones. We use deleted interpolation [11] to derive ap- 
propriate weights in the interpolation. The third and 
final stage uses corrective training to refine the dis- 
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cnminatory ability of the models. The SPHINX Ixaining 
procedure is shown in Figure 4. 
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Figure 4: The SPHINX Training Procedure. 

9. HMM Recognition with Word Duration 
For recognition, we use a Viterbi search that finds the 

optimal state sequence in a large HMM network. At 
the highest level, this HMM is a network of word 
HMMs, arranged according to the grammar. Each word 
is instantiated with its phonetic pronunciation network, 
and each phone is instantiated with the corresponding 
phone model. Beam search is used to reduce the 
amount of computation. 

One problem with HMMs is that they do not provide 
very good duration models. We incorporated word 
duration into SPHINX as a part of the Viterbi search. 
The duration of a word is modeled by a univariate 
Gaussian distribution, with the mean and variance es- 
timated from a supervised Viterbi segmentation of the 
training set. By precomputing the duration score for 
various durations, this duration model has essentially no 
overhead. 

10. Results 
The SPHINX System was tested on 150 sentences 

from 15 speakers. These sentences were the official 
DARPA test data for evaluations in March and October 
1987. The word accuracies for various versions of 
SPHINX with the word-pair grammar (perplexity 60) and 
the null grammar (perplexity 991) are shown in Table 1. 
Word accuracy is defined as the percent of words cor- 
rect minus the percent of insertions. 

Version No Grammar Word Pair 

1 Codebook 25.8% 58.1% 

3 Codebooks 45.3% 84.4% 

+Duration 49.6% 83.8% 

+Fn-word 57.0% 87.9% 

+Fn-phrase 59.2% 88.4% 

+Gen-triphone ! 72.8% 94.2% 

i-Between-word I 77.9% 95.5% I 
+Corrective ! 81.9% 96.2% 

Table 1: Results of various versions of SPHINX. 

The first improvement was obtained by adding ad- 
ditonal feature sets and codebooks. Next, we found 
duration modeling to be helpful when no grammar was 
used. Modeling function words and generalized 
triphones both led to substantial improvements. We 
also found that generalized triphones outperformed 
triphones, while saving 60% memory*. The improve- 
ments from function-phrase dependent modeling en- 
couraged us to implement between-word triphone 
models. This led to substantial improvements with no 
increase in the number of models. Finally, we showed 
the effectiveness of our extension of the corrective 
training algorithm to speaker-independent continuous 
speech. 

Since the above experiments were repeatedly run on 
the same set of test data, it is important to verify that 
SPHINX is capable of achieving comparable levels of 
performance on new test data. Recently, SPHINX was 
evaluated on two new sets of test data (June 1988 
evaluation and February 1989 evaluation). With no 
grammar, recognition accuracies of 78.1% and 76.4% 
were obtained on these two test sets. With the word- 
pair grammar, the accuracies were 95.7% and 93.9%. 

*More detailed descriptions and results on contextual modeling can 
be found in [2] or [3]. 
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II. Conclusion 
This paper has presented an up-to-date description of 

the SPHINX Speech Recognition System. We have 
described a number of recent improvements, including 
function-phrase modeling, between-word coarticulation 
modeling, and corrective and reinforcement training. 

Through these techniques we demonstrated that ac- 
curate large-vocabulary speaker-independent con- 
tinuous speech recognition is feasible. We report 
recognition accuracies of 82% and 96% with grammars 
of perplexity 997 and 60. The results degraded some- 
what on new test data, but remain highly accurate. 
These results were made possible by three important 
factors: (I) ample training data, (2) a powerful learning 
paradigm, and (3) knowledge-guided detailed models. 

Encouraged by these results, we will continue in the 
current SPHINX framework, and direct our future efforts 
to improving each of these three areas. We feel that 
work in each of the three directions will lead to substan- 
tial progress, and hope that our future work will con- 
tribute to the next generation of accurate, robust, and 
versatile speech recognition systems. 
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