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Abstract

We propose a framework for discrimina-
tive IR atop linguistic features, trained to
improve the recall of answer candidate pas-
sage retrieval, the initial step in text-based
question answering. We formalize this
as an instance of linear feature-based IR,
demonstrating a 34% - 43% improvement
in recall for candidate triage for QA.

1 Introduction

Question answering (QA) with textual corpora is
typically modeled as first finding a candidate set of
passages (sentences) that may contain an answer
to a question, followed by an optional candidate
reranking stage, and then finally an information
extraction (IE) step to select the answer string. QA
systems normally employ an information retrieval
(IR) system to produce the initial set of candidates,
usually treated as a black box, bag-of-words pro-
cess that selects candidate passages best overlap-
ping with the content in the question.

Recent efforts in corpus-based QA have been
focused heavily on reranking, or answer sentence
selection: filtering the candidate set as a supervised
classification task to single out those that answer
the given question. Extensive research has explored
employing syntactic/semantic features (Yih et al.,
2013; Wang and Manning, 2010; Heilman and
Smith, 2010; Yao et al., 2013a) and recently using
neural networks (Yu et al., 2014; Severyn and Mos-
chitti, 2015; Wang and Nyberg, 2015; Yin et al.,
2016). The shared aspect of all these approaches
is that the quality of reranking a candidate set is
upper-bounded by the initial set of candidates: un-
less one plans on reranking the entire corpus for
each question as it arrives, one is still reliant on an
initial IR stage in order to obtain a computation-
ally feasible QA system. Huang et al. (2013) used

neural networks and cosine distance to rank the
candidates for IR, but without providing a method
to search for the relevant documents in sublinear
time.

We propose a framework for performing this
triage step for QA sentence selection and other re-
lated tasks in sublinear time. Our method shows
a log-linear model can be trained to optimize an
objective function for downstream reranking, and
the resulting trained weights can be reused to re-
trieve a candidate set. The content that our method
retrieves is what the downstream components are
known to prefer: it is trainable using the same data
as employed in training candidate reranking. Our
approach follows Yao et al. (2013b) who proposed
the automatic coupling of QA sentence selection
and IR by augmenting a bag-of-words query with
desired named entity (NE) types based on a given
question. While Yao et al. showed improved per-
formance in IR as compared with an off-the-shelf
IR system, the model was proof-of-concept, em-
ploying a simple linear interpolation between bag-
of-words and NE features with a single scalar value
tuned on a development set, kept static across all
types of questions at test time. We generalize Yao
et al.’s intuition by casting the problem as an in-
stance of classification-based retrieval (Robertson
and Spärck Jones, 1976), formalized as a discrim-
inative retrieval model (Cooper et al., 1992; Gey,
1994; Nallapati, 2004) allowing for the use of NLP
features. Our framework can then be viewed as
an instance of linear feature-based IR, following
Metzler and Croft (2007).

To implement this approach, we propose a gen-
eral feature-driven abstraction for coupling re-
trieval and answer sentence selection.1 Our exper-
iments demonstrate state-of-the-art results on QA
sentence selection on the dataset of Lin and Katz

1https://github.com/ctongfei/probe.
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Figure 1: Steps in mapping natural language questions into weighted features used in retrieval.

(2006), and we show significant improvements over
a bag-of-words of baseline on a novel Wikipedia-
derived dataset we introduce here, based on WIK-
IQA (Yang et al., 2015).

2 Approach

Formally, given a candidate setD = {p1, · · · , pN},
a query q and a scoring function F (q, p), an IR
system retrieves the top-k items under the objective

arg max
p∈D

F (q, p). (1)

If the function F is simple enough (e.g. tf-idf ), it
could be easily solved by traditional IR techniques.
However, tackling this problem with a complex F
via straightforward application of supervised classi-
fication (e.g., recent neural network based models)
requires a traversal over all possible candidates, i.e.
the corpus, which is computationally infeasible for
any reasonable collection.

Let fQ(q) refer to feature extraction on the query
q, with corresponding candidate-side feature extrac-
tion fP (p) on the candidate, and finally fQP (q, p)
extracts features from a (query, candidate) pair is
defined in terms of fQ and fP via composition (de-
fined later):

fQP (q, p) = C(fQ(q), fP (p)). (2)

From a set of query/candidate pairs we can train a
modelM such that given the feature vector of a pair
(q, p), its returning value M(fQP (q, p)) represents
the predicted probability of whether the passage p
answers the question q. This model is chosen to be
a log-linear model with the feature weight vector
θ, leading to the optimization problem

arg max
p∈D

θ · fQP (q, p). (3)

This is in accordance with the pointwise reranker
approach, and is an instance of the linear feature-
based model of Metzler and Croft (2007). Under
specific compositional operations in fQP the fol-
lowing transformation can be made:

θ · fQP (q, p) = tθ(fQ(q)) · fP (p). (4)

This is elaborated in § 4. We project the orig-
inal feature vector of the query fQ(q) to a trans-
formed version tθ(fQ(q)): this transformed vector
is dependent on the model parameters θ, where
the association learned between the query and the
candidate is incorporated into the transformed vec-
tor. This is a weighted, trainable generalization of
query expansion in traditional IR systems.

Under this transformation we observe that the
joint feature function fQP (q, p) is decomposed into
two parts with no interdependency – the original
problem in Eq. (4) is reduced to a standard maxi-
mum inner product search (MIPS) problem as seen
on the RHS of Eq. (4). Under sparse assumptions
(where the query vector and the candidate feature
vector are both sparse), this MIPS problem can be
efficiently (sublinearly) solved using classical IR
techniques (multiway merging of postings lists).

3 Features

A feature vector can be seen as an associative array
that maps features in the form “KEY=value” to real-
valued weights. One item in a feature vector f is
denoted as “(KEY = value,weight)”, and a feature
vector can be seen as a set of such tuples. We write
f(KEY=value) = weight to indicate that the features
serve as keys to the associative array, and θX is the
weight of the feature X in the trained model θ.

3.1 Question features
fwh: Question word, typically the wh-word of a
sentence. If it is a question like “How many”, the
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word after the question word is also included in the
feature, i.e., feature “(QWORD=how many, 1)” will
be added to the feature vector.
flat: Lexical answer type (LAT), if the query has a
question word:“what” or “which”, we identify the
LAT of this question (Ferrucci et al., 2010), which
is defined as the head word of the first NP after the
question word. E.g., “What is the city of brotherly
love?” would result in “(LAT=city, 1)”. 2

fNE: All the named entities (NE) discovered in this
question. E.g., “(NE-PERSON=Margaret Thatcher,
1)” would be generated if Thatcher is mentioned.
fTfIdf: The L2-normalized tf-idf weighted bag-of-
words feature of this question. An example feature
would be “(WORD = author, 0.454)”.

3.2 Passage features

All passage features are constrained to be binary.
fBoW: Bag-of-words: any distinct word x in the
passage will generate a feature “(WORD=x, 1)”.
fNEType: Named entity type. If the passage
contains a name of a person, a feature “(NE-
TYPE=PERSON, 1)” will be generated.
fNE: Same as the NE feature for questions.

4 Feature vector operations

Composition Here we elaborate the composition
C of the question feature vector and passage feature
vector, defining two operators on feature vectors:
Cartesian product (⊗) and join (./).

For any feature vector of a question fQ(q) =
{(ki = vi, wi)}, (wi ≤ 1)3 and any feature vector
of a passage fP (p) = {(kj = vj , 1)}, the Cartesian
product and join of them is defined as

fQ(q)⊗ fP (p) = {((ki, kj) = (vi, vj), wi)}
fQ(q) ./ fP (p) = {((ki = kj) = 1, wi)}.

Notation (ki = kj) = 1 denotes a feature for a
question/passage pair, that when present, witnesses
the fact that that the value for feature ki on the
question side is the same as the feature kj on the
passage side.

The composition that generates the feature vec-
tor for the question/passage pair is therefore defined

2If the question word is not “what” or “which”, generate
an empty feature (LAT=∅, 1).

3If wi > 1, the vector can always be normalized so that
the weight of every feature is less than 1.

as

C( fQ(q) , fP (p) )
= (fwh(q)⊗ flat(q)) ⊗ fNEType(p)
+ (fwh(q)⊗ flat(q)) ⊗ fBoW(p)
+ fNE(q) ./ fNE(p)
+ fTfIdf(q) ./ fBoW(p) .

(5)

(fwh(q) ⊗ flat(q)) ⊗ fNEType(p) captures the as-
sociation of question words and lexical answer
types with the expected type of named entities.
(fwh(q) ⊗ flat(q)) ⊗ fBoW(p) captures the relation
between some question types with certain words
in the answer. fNE(q) ./ fNE(p) captures named
entity overlap between questions and answering
sentences.

fTfIdf(q) ./ fBoW(p) measures general tf-idf -
weighted context word overlap. Using only this
feature without the others effectively reduces the
system to a traditional tf-idf -based retrieval system.

Projection Given a question, it is desired to
know what kind of features that its potential an-
swer might have. Once this is known, an index
searcher will do the work to retrieve the desired
passage.

For the Cartesian product of features, we define

t⊗θ (f) = {(k′ = v′, wθ(k,k′)=(v,v′))|(k = v, w) ∈ f},
for all k′, v′ such that θ(k,k′)=(v,v′) 6= 0, i.e. feature
(k, k′) = (v, v′) appears in the trained model.

For join, we have

t./
θ (f) = {(k′ = v, wθ(k=k′)=1)|(k = v, w) ∈ f},

for all k′ such that θ(k=k′)=1 6= 0, i.e. feature
(k = k′) = 1 appears in the trained model.

It can be shown from the definitions above that

t⊗θ (f) · g = θ · (f ⊗ g);
t./
θ (f) · g = θ · (f ./ g).

Then the transformed feature vector t(q) of an
expected answer passage given a feature vector of
a question fQ(q) is:

t(q) = t⊗θ (fwh(q)⊗ flat(q)) + t./
θ (fNE(q) + fTfIdf(q)).

Calculating the vector t(q) is computationally
efficient because it only involves sparse vectors.

We have formally proved Eq. (4) by the feature
vectors we proposed, showing that given a question,
we can reverse-engineer the features we expect to
be present in a candidate using the transformation
function tθ, which we will then use as a query
vector for retrieval.
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Retrieval We use Apache LUCENE4 to build the
index of the corpus, which, in the scenario of
this work, is the feature vectors of all candidates
fP (p), p ∈ D. This is an instance of weighted
bag-of-features instead of common bag-of-words.

For a given question q, we first compute its fea-
ture vector f(q) and then compute its transformed
feature vector tθ(q) given model parameters θ,
forming a weighted query. We modified the similar-
ity function of LUCENE when executing multiway
postings list merging so that fast efficient maximum
inner product search can be achieved. This clas-
sical IR technique ensures sublinear performance
because only vectors with at least one overlapping
feature, instead of the whole corpus, is traversed. 5

5 Experiments

TREC Data We use the training and test data from
Yao et al. (2013b). Passages are retrieved from the
AQUAINT Corpus (Graff, 2002), which is NER-
tagged by the Illinois Named Entity Tagger (Rati-
nov and Roth, 2009) with an 18-label entity type set.
Questions are parsed using the Stanford CORENLP
(Manning et al., 2014) package. Each question is
paired with 10 answer candidates from AQUAINT,
annotated for whether it answers the question via
crowdsourcing. The test data derives from Lin and
Katz (2006), which contains 99 TREC questions
that can be answered in AQUAINT. We follow Nal-
lapati (2004) and undersample the negative class,
taking 50 sentences uniformly at random from the
AQUAINT corpus, per query, filtered to ensure no
such sentence matches a query’s answer pattern as
negative samples to the training set.
Wikipedia Data We introduce a novel evaluation
for QA retrieval, based on WIKIQA (Yang et al.,
2015), which pairs questions asked to Bing with
their most associated Wikipedia article, along with
sentence-level annotations on the introductory sec-
tion of those articles as to whether they answer the
question. 6

4http://lucene.apache.org.
5The closest work on indexing we are aware of is by Bilotti

et al. (2007), who transformed linguistic structures to struc-
tured constraints, which is different from our approach of
directly indexing linguistic features.

6Note that as compared to the TREC dataset, there are
some questions in WIKIQA which are not answerable based
on the provided context alone. E.g. “who is the guy in the
wheelchair who is smart” has the answer “Professor Stephen
Hawking , known for being a theoretical physicist , has ap-
peared in many works of popular culture .” This sets the upper
bound on performance with WIKIQA below 100% when us-
ing contemporary question answering techniques, as assumed

We automatically aligned WIKIQA annotations,
which was based on an unreported version of
Wikipedia, with the Feb. 2016 snapshot, us-
ing for our corpus the introductory section of
all Wikipedia articles, processed with Stanford
CORENLP. Alignment was performed via string
edit distance, leading to a 55% alignment to the
original annotations. Table 1 dev/test reflects the
subset resulting from this alignment; all of the orig-
inal WIKIQA train was used in training, along with
50 negative examples randomly sampled per ques-
tion.

# of questions # of
train dev test sentences

TREC/AQUAINT 2150 53 99 23,398,942
WIKIQA/Wikipedia 2118 77 157 20,368,761

Table 1: Summary of the datasets.

Setup The model is trained using LIBLINEAR (Fan
et al., 2008), with heavy L1-regularization (feature
selection) to the maximum likelihood objective.
The model is tuned on the dev set, with the objec-
tive of maximizing recall.
Baseline systems Recent work in neural network
based reranking is not directly applicable here as
those are linear with respect to the number of candi-
date sentences, which is computationally infeasible
given a large corpus.
Off-the-shelf LUCENE: Directly indexing the sen-
tences in LUCENE and do sentence retrieval. This
is equivalent to maximum tf-idf retrieval.
Yao et al. (2013b): A retrieval system which aug-
ments the bag-of-words query with desired named
entity types based on a given question.
Evaluation metrics (1) R@1k: The recall in top-
1000 retrieved list. Contrary to normal IR systems
which optimize precision (as seen in metrics such
as P@10), our system is a triaging system whose
goal is to retrieve good candidates for downstream
reranking: high recall within a large set of initial
candidates is our foremost aim. (2) b-pref (Buck-
ley and Voorhees, 2004): is designed for situations
where relevance judgments are known to be far
from complete,7 computing a preference relation
of whether judged relevant documents are retrieved
ahead of judged irrelevant document; (3) MAP:

here.
7This is usually the case in passage retrieval, where com-

plete annotation of all sentences in a large corpus as to whether
they answer each question is not feasible beyond a small set
(such as the work of Lin and Katz (2006)).
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Figure 2: The R@k and S@k curve for different
models in the TREC/AQUAINT setting.

mean average precision; and (4) MRR: mean recip-
rocal rank. We are most concerned with (1,2), and
(3,4) are reported in keeping with prior work.
Results Our approach (DiscIR) significantly out-
performs Yao et al. in R@1k and b-pref, demon-
strating the effectiveness of trained weighted
queries compared to binary augmented features.
The performance gain with respect to off-the-shelf
LUCENE with reranking shows that our weighted
augmented queries by decomposition is superior to
vanilla tf-idf retrieval, as can be shown in Table 2.

R@1k b-pref MAP MRR
TREC / AQUAINT

LUCENE (dev) 52.44% 41.95% 9.63% 13.94%
LUCENE (test) 35.47% 38.22% 9.78% 15.06%
Yao+ (test)8 25.88% 45.41% 13.75% 29.87%
DiscIR (dev) 71.34% 70.69% 20.07% 30.34%
DiscIR (test) 78.20% 75.15% 17.84% 25.30%

WIKIQA / Wikipedia
LUCENE (dev) 25.00% 25.97% 1.83% 1.83%
LUCENE (test) 24.73% 25.69% 0.58% 0.72%
DiscIR (dev) 60.00% 61.69% 9.56% 9.65%
DiscIR (test) 58.79% 60.88% 10.26% 11.42%

Table 2: Performance of the QA retrieval systems.

We also plot the performance of these systems at
different ks on a log-scale (shown in Fig. 2 and Fig.
3). We use two metrics here: recall at k (R@k) and
success at k (S@k). Success at k is the percentage
of queries in which there was at least one relevant
answer sentence among the first k retrieved result
by a specific system, which is the true upper bound
for downstream tasks.

Again, DiscIR demonstrated significantly higher
8Results on dev data is not reported in Yao et al. (2013b).
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Figure 3: The R@k and S@k curve for different
models in the WIKIQA/Wikipedia setting.

recalls than baselines at different ks and across
different datasets. Success rate at different ks are
also uniformly higher than LUCENE, and at most
ks higher than the model of Yao et al.’s.

6 Conclusion and Future Work

Yao et al. (2013b) proposed coupling IR with fea-
tures from downstream question answer sentence
selection. We generalized this intuition by recog-
nizing it as an instance of discriminative retrieval,
and proposed a new framework for generating
weighted, feature-rich queries based on a query.
This approach allows for the straightforward use
of a downstream feature-driven model in the candi-
date selection process, and we demonstrated how
this leads to a significant gain in recall, b-pref and
MAP, hence providing a larger number of correct
candidates that can be provided to a downstream
(neural) reranking model, a clear next step for fu-
ture work.
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