
EACL 2014

Proceedings of the Demonstrations at the 14th Conference of
the European Chapter of the

Association for Computational Linguistics

April 26-30, 2014
Gothenburg, Sweden

GOLD SPONSORS

SILVER SPONSOR

BRONZE SPONSORS

SUPPORTERS

MASTER'S PROGRAMME IN

LANGUAGE
TECHNOLOGY

EXHIBITORS

OTHER SPONSORS

HOSTS

c©2014 The Association for Computational Linguistics

ii

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-937284-75-6

iii

Preface: General Chair

Dear readers,

Welcome to EACL 2014, the 14th Conference of the European Chapter of the Association for
Computational Linguistics! This is the largest EACL meeting ever: with eighty long papers, almost fifty
short ones, thirteen student research papers, twenty-six demos, fourteen workshops and six tutorials, we
expect to bring to Gothenburg up to five hundred participants, for a week of excellent science interspersed
with entertaining social events.

It is hard to imagine how much work is involved in the preparation of such an event. It takes about three
years, from the day the EACL board starts discussing the location and nominating the chairs, until the
final details of the budget are resolved. The number of people involved is also huge, and I was fortunate
to work with an excellent, dedicated and efficient team, to which I am enormously grateful.

The scientific program was very ably composed by the Program Committee Chairs, Sharon Goldwater
and Stefan Riezler, presiding over a team of twenty-four area chairs. Given that this year we had long
paper submissions, followed by a rebuttal period, followed by a very stressed short paper reviewing
period, this meant a lot of work. Overall, Sharon and Stefan handled over five hundred submissions,
or over 1,500 reviews! The result of this work is a balanced, high-quality scientific program that I’m
sure we will all enjoy. The PC Chairs have also selected the three invited speakers, and we will have the
pleasure of attending keynotes delivered by Simon King, Ulrike von Luxburg, and Dan Roth – a great
choice of speakers!

The diverse workshop program was put together by the Workshop Chairs, Anja Belz and Reut Tsarfaty,
under very strict deadlines due to the fact that as in previous years, workshops were coordinated with
other ACL events (this year, ACL and EMNLP). Even in light of the competition, Anja and Reut
negotiated a varied and attractive set of fourteen workshops which will keep us busy over the weekend
prior to the main conference.

Also on that weekend are the six tutorials, selected from among several submissions by the Tutorial
Chairs, Afra Alishahi and Marco Baroni. Again, the tutorials offer a set of diverse and timely topics,
covering both core areas of NLP and tangential fields of research.

We included in the program a large number of demonstrations, selected by Marko Tadić and Bogdan
Babych, the Demo Chairs. And an integral part of the scientific program is the Student Research
Workshop, put together by the SRW Chairs, Desmond Elliott, Konstantina Garoufi, Douwe Kiela, and
Ivan Vulić, whose work was supervised by the SRW Faculty Advisor, Sebastian Padó.

The Proceedings that you’re reading now were compiled by the Publication Chairs, Gosse Bouma and
Yannick Parmentier. Their responsibilities include the preparation of all the proceedings, including the
main session, the SRW, the demo session, the workshop proceedings etc. – thousands of pages, all under
very strict deadlines.

It has been a very special pleasure for me to work with an excellent local organization team. The Local
Organization Chairs, Lars Borin and Aarne Ranta, were assisted by an extremely efficient team, Yvonne
Adesam, Martin Kaså and Nina Tahmasebi. Their effort cannot be overestimated: from dealing with
the two universities over issues of conference space and funding, through dealing with two professional
conference organizers, to corresponding with authors, participants and of course all the other chairs.
Add the stress involved in being in charge of a hefty budget that has to be balanced by the end of the
conference, and you can only admire the relaxed way in which they took upon themselves this daunting
task.

iv

The local team included also Peter Ljunglöf, the Publicity Chair, to whom we should all be grateful for
the beautiful web site of the conference and the timely e-mails, tweets and Facebook statuses. The Local
Sponsorship Chairs, Sofie Johansson Kokkinakis and Staffan Larsson, worked together with the ACL
Sponsorship Chairs Jochen Leidner and Alessandro Moschitti, to obtain some much needed financial
support. Sincere thanks are due to the various sponsors for their generous contribution.

The local team did a wonderful job organizing a social program this year. This includes a reception at the
City Hall on Sunday, a catered poster and demo session on Monday, a conference dinner on Tuesday and
of course, the famous Cortège at the very end of the conference. A perfect mix of business and pleasure.

I am grateful to all members of the EACL board for their advice and guidance, and in particular to past
Chair Sien Moens, Chair Stephen Clark, Chair-elect Lluìs Màrquez and Treasurer Mike Rosner. Many
thanks are also due to the ACL Treasurer Graeme Hirst and of course, as always, to the ACL Business
Manager Priscilla Rasmussen, who was always there with her vast experience to clear up uncertainties
and lend a helping hand.

Finally, let us not forget that this is all about you: authors, reviewers, demo presenters, workshop
organizers and speakers, tutorial speakers and participants of the conference. Thank you for choosing to
be part of EACL-2014, I wish you a very enjoyable conference!

Shuly Wintner, University of Haifa
General Chair
March 2014

v

Preface: Demo Chairs

In front of you there is a volume containing all contributions accepted for Demonstrations program at
the EACL2014 conference which takes place from 26 to 30 April 2014 in Gothenburg, Sweden. The
Demonstrations program primary aim is to present the software systems and solutions related to all
areas of computational linguistics and natural language processing. This program encourages the early
exhibition of research prototypes, but also includes interesting mature systems. Probably for the first time
in the line of many EACL conferences, the number of contributions for demonstations of new/existing
software systems dealing with different types of language/speech processing, exceeded the number of
available slots by almost three times. This confronted us with the situation where we were forced to
introduce a strict selection process although the number of very good and excellent demo proposals was
surprisingly high. The selection process was completed following the predefined criteria of relevance
for EACL2014 conference, novelty, overall usability and applicability to more than one linguistic level
and to more than one computational linguistic field/task. The contributions that had to be left below the
threshold were not necessary of lower quality, but found themselves in more competitive environment
this time. We would like to thank the general chairs and the local organizers, without whom it would
have been impossible to put together such a strong demonstations program. We hope you will find this
proceedings useful and that the software systems presented in this proceedings will inspire new ideas
and approaches in your future work.

With kind regards,

Demo chairs
Marko Tadić
Bogdan Babych

vi

General Chair:

Shuly Wintner, University of Haifa (Israel)

Program Chairs:

Sharon Goldwater, University of Edinburgh (UK)
Stefan Riezler, Heidelberg University (Germany)

Local Organizing Committee:

Lars Borin (chair), University of Gothenburg (Sweden)
Aarne Ranta (chair), University of Gothenburg and Chalmers University of Technology (Sweden)
Yvonne Adesam, University of Gothenburg (Sweden)
Martin Kaså, University of Gothenburg (Sweden)
Nina Tahmasebi, Chalmers University of Technology (Sweden)

Publication Chairs:

Gosse Bouma, University of Groningen (The Netherlands)
Yannick Parmentier, University of Orléans (France)

Workshop Chairs:

Anja Belz, University of Brighton (UK)
Reut Tsarfaty, Uppsala University (Sweden)

Tutorial Chairs:

Afra Alishahi, Tilburg University (The Netherlands)
Marco Baroni, University of Trento (Italy)

Demo Chair:

Marko Tadić, University of Zagreb (Croatia)
Bogdan Babych, University of Leeds (UK)

Student Research Workshop Chairs:

Desmond Elliott, University of Edinburgh (UK)
Konstantina Garoufi, University of Potsdam (Germany)
Douwe Kiela, University of Cambridge (UK)
Ivan Vulić, KU Leuven (Belgium)

Student Research Workshop Faculty advisor:

Sebastian Padó, Heidelberg University (Germany)

Sponsorship Chairs:

Jochen Leidner, Thomson-Reuters/Linguit Ltd. (Switzerland)

vii

Alessandro Moschitti, University of Trento (Italy)
Sofie Johansson Kokkinakis, University of Gothenburg (Sweden)
Staffan Larsson, University of Gothenburg (Sweden)

Publicity Chair:

Peter Ljunglöf, University of Gothenburg and Chalmers University of Technology (Sweden)

Area Chairs:

Enrique Alfonseca, John Blitzer, Aoife Cahill, Vera Demberg, Chris Dyer, Jacob Eisenstein, Micha
Elsner, Katrin Erk, Afsaneh Fazly, Katja Filippova, Alexander Fraser, Iryna Gurevych, Chin-Yew
Lin, David McClosky, Yusuke Miyao, Hwee Tou Ng, Slav Petrov, Simone Paolo Ponzetto, Sebas-
tian Riedel, Verena Rieser, Helmut Schmid, Izhak Shafran, Hiroya Takamura, Lucy Vanderwende

Reviewers:

Fadi Abu-Sheika, Meni Adler, Nitish Aggarwal, Lars Ahrenberg, Afra Alishahi, Yaser Al-Onaizan,
Yasemin Altun, Waleed Ammar, Jacob Andreas, Ion Androutsopoulos, Gabor Angeli, Mihael Ar-
can, Yoav Artzi, Jordi Atserias Batalla, Michael Auli, Harald Baayen, Timothy Baldwin, David
Bamman, Mohit Bansal, Marco Baroni, Loïc Barrault, Núria Bel, Kedar Bellare, Islam Belt-
agy, Luciana Benotti, Yinon Bentor, Jonathan Berant, Sabine Bergler, Raffaella bernardi, Klin-
ton Bicknell, Chris Biemann, Arianna Bisazza, Yonatan Bisk, Roi Blanco, Michael Bloodgood,
Phil Blunsom, Nathan Bodenstab, Branimir Boguraev, Bernd Bohnet, Gemma Boleda, Danushka
Bollegala, Francis Bond, Kalina Bontcheva, Johan Bos, Houda Bouamor, Thorsten Brants, Chloé
Braud, Fabienne Braune, Chris Brew, Ted Briscoe, Julian Brooke, Marco Brunello, Paul Buite-
laar, Harry Bunt, Aljoscha Burchardt, David Burkett, Stephan Busemann, Bill Byrne, Nicoletta
Calzolari, Ivan Cantador, Yunbo Cao, Giuseppe Carenini, Marine Carpuat, Xavier Carreras, John
Carroll, Dave Carter, Francisco Casacuberta, Pablo Castells, Nathanael Chambers, Jason Chang,
Ming-Wei Chang, David Chen, Hsin-Hsi Chen, Wenliang Chen, Chen Chen, Kehai Chen, Colin
Cherry, Jackie Chi Kit Cheung, David Chiang, Christian Chiarcos, Kostadin Cholakov, Christos
Christodoulopoulos, Jennifer Chu-Carroll, Cindy Chung, Massimiliano Ciaramita, Philipp Cimi-
ano, Stephen Clark, Shay Cohen, Bonaventura Coppola, Marta R. Costa-jussà, Danilo Croce,
Heriberto Cuayahuitl, Walter Daelemans, Cristian Danescu-Niculescu-Mizil, Dipanjan Das, Brian
Davis, Munmun De Choudhury, Marie-Catherine de Marneffe, Gerard de Melo, Thierry Declerck,
Michael Deisher, Steve DeNeefe, John DeNero, Pascal Denis, Michael Denkowski, Leon Derczyn-
ski, Marilena di Bari, Barbara Di Eugenio, Alberto Diaz, Michelangelo Diligenti, Markus Dreyer,
Gregory Druck, Jinhua Du, Xiangyu Duan, Kevin Duh, Ewan Dunbar, Nadir Durrani, Marc
Dymetman, Judith Eckle-Kohler, Koji Eguchi, Vladimir Eidelman, Andreas Eisele, David Elson,
Angela Fahrni, James Fan, Richárd Farkas, Manaal Faruqui, Miriam Fernandez, Raquel Fernan-
dez, Oliver Ferschke, João Filgueiras, Mark Fishel, Jeffrey Flanigan, Radu Florian, Mikel For-
cada, Karën Fort, Eric Fosler-Lussier, Victoria Fossum, Jennifer Foster, Gil Francopoulo, Stefan
L. Frank, Stella Frank, Francesca Frontini, Alona Fyshe, Michel Galley, Juri Ganitkevitch, Wenx-
uan Gao, Claire Gardent, Dan Garrette, Guillermo Garrido, Albert Gatt, Georgi Georgiev, Andrea
Gesmundo, Arnab Ghoshal, George Giannakopoulos, Daniel Gildea, Kevin Gimpel, Jonathan
Ginzburg, Yoav Goldberg, Julio Gonzalo, Spence Green, Edward Grefenstette, Camille Guin-
audeau, Sonal Gupta, Francisco Guzman, Nizar Habash, Barry Haddow, John Hale, David Hall,
Keith Hall, Greg Hanneman, Sanda Harabagiu, Christian Hardmeier, Matthias Hartung, mohammed
hasanuzzaman, Katsuhiko Hayashi, Zhongjun He, Michael Heilman, James Henderson, John Hen-
derson, Aurélie Herbelot, Ulf Hermjakob, Raquel Hervas, Graeme Hirst, Hieu Hoang, Johannes
Hoffart, Mark Hopkins, Veronique Hoste, Fei Huang, Xiaojiang Huang, Xuanjing Huang, Rebecca
Hwa, Nancy Ide, Gonzalo Iglesias, Diana Inkpen, Ann Irvine, Jagadeesh Jagarlamudi, Srinivasan

viii

Janarthanam, Lifeng Jia, Richard Johansson, Doug Jones, Laura Kallmeyer, Jaap Kamps, Evange-
los Kanoulas, Damianos Karakos, Graham Katz, Simon Keizer, Frank Keller, Shahram Khadivi,
Adam Kilgarriff, Jin-Dong Kim, Seungyeon Kim, Katrin Kirchhoff, Philipp Koehn, Alexander
Koller, Terry Koo, Anna Korhonen, Zornitsa Kozareva, Emiel Krahmer, Marco Kuhlmann, Roland
Kuhn, Shankar Kumar, Jonathan Kummerfeld, Patrik Lambert, Phillippe Langlais, Guy Lapalme,
Egoitz Laparra, Mirella Lapata, Staffan Larsson, Thomas Lavergne, Alon Lavie, Florian Laws,
Lillian Lee, Junhui Li, lishuang li, Zhenghua Li, Maria Liakata, Chu-Cheng Lin, Krister Linden,
Xiao Ling, Bing Liu, Jing Liu, Qun Liu, Yang Liu, Karen Livescu, Peter Ljunglöf, Elena Lloret,
Adam Lopez, Annie Louis, Wei Lu, Yanjun Ma, Ji Ma, Klaus Macherey, Wolfgang Macherey,
Bernardo Magnini, Inderjeet Mani, Chris Manning, Daniel Marcu, José B. Mariño, André F. T.
Martins, Yuval Marton, Rebecca Mason, Yuji Matsumoto, Takuya Matsuzaki, Cettolo Mauro,
Arne Mauser, Chandler May, Diana McCarthy, Ryan McDonald, Bob McMurray, Yashar Mehdad,
Edgar Meij, Arul Menezes, Florian Metze, Christian M. Meyer, Jeffrey Micher, Bonan Min, Mar-
garet Mitchell, Behrang Mohit, Karo Moilanen, Monica Monachini, Christof Monz, Raymond
Mooney, Andrea Moro, Alessandro Moschitti, Thomas Mueller, Smaranda Muresan, Brian Mur-
phy, Seung-Hoon Na, Tetsuji Nakagawa, Toshiaki Nakazawa, Preslav Nakov, Ramesh Nallapati,
Vivi Nastase, Tetsuya Nasukawa, Roberto Navigli, Mark-Jan Nederhof, Sapna Negi, Matteo Negri,
Ani Nenkova, Graham Neubig, Vincent Ng, Jian-Yun Nie, Jan Niehues, Joakim Nivre, Brendan
O’Connor, Stephan Oepen, Kemal Oflazer, Naoaki Okazaki, Gozde Ozbal, Sebastian Padó, Martha
Palmer, Patrick Pantel, Cecile Paris, Christopher Parisien, Rebecca J. Passonneau, Alexandre Pas-
sos, Siddharth Patwardhan, Michael Paul, Michael J. Paul, Adam Pauls, Sasa Petrovic, Daniele
Pighin, Andrei Popescu-Belis, Maja Popović, Fred Popowich, Matt Post, Sameer Pradhan, John
Prager, Stephen Pulman, Matthew Purver, Sampo Pyysalo, Behrang Qasemizadeh, Ariadna Quat-
toni, Chris Quirk, Altaf Rahman, Owen Rambow, Ari Rappoport, Sujith Ravi, Alexis Raykhel,
Michaela Regneri, Roi Reichart, Ehud Reiter, Jason Riesa, German Rigau, Alan Ritter, Stephen
Roller, Laurent Romary, Carolyn Rose, Michael Roth, Dana Rubinstein, Rachel Rudinger, Vasile
Rus, Alexander M. Rush, Graham Russell, Delia Rusu, Kenji Sagae, Horacio Saggion, Kazi Saidul
Hasan, Hassan Sajjad, Mark Sammons, Baskaran Sankaran, Felix Sasaki, Giorgio Satta, Hassan
Sawaf, David Schlangen, Nathan Schneider, Björn Schuller, Sabine Schulte im Walde, Yohei Seki,
Hendra Setiawan, Aliaksei Severyn, Serge Sharoff, Libin Shen, Shuming Shi, Hiroyuki Shindo,
Ekaterina Shutova, Advaith Siddharthan, Carina Silberer, Mario J. Silva, Khalil Sima’an, Michel
Simard, Kiril Simov, Serra Sinem Tekiroglu, Sameer Singh, Olivier Siohan, Gabriel Skantze,
Nathaniel Smith, Stephen Soderland, Anders Søgaard, Thamar Solorio, Hagen Soltau, Swapna
Somasundaran, Lucia Specia, Valentin Spitkovsky, Caroline Sporleder, Edward Stabler, Mark
Steedman, Josef Steinberger, Georg Stemmer, Amanda Stent, Mark Stevenson, Matthew Stone,
Veselin Stoyanov, Carlo Strapparava, Michael Strube, Sara Stymne, Keh-Yih Su, Katsuhito Sudoh,
Weiwei Sun, Mihai Surdeanu, Jun Suzuki, Mary Swift, Stan Szpakowicz, Whitney Tabor, Partha
Pratim Talukdar, Joel Tetreault, Simone Teufel, Stefan Thater, Mariët Theune, Blaise Thomson,
Jörg Tiedemann, Christoph Tillmann, Kristina Toutanova, David Traum, Ming-Feng Tsai, Richard
Tzong-Han Tsai, Ioannis Tsochantaridis, Yulia Tsvetkov, Dan Tufiş, Masao Utiyama, Tim Van
de Cruys, Antal van den Bosch, Benjamin Van Durme, Josef van Genabith, Paola Velardi, David
Vilar, Andreas Vlachos, Stephan Vogel, Clare Voss, Stephen Wan, Haifeng Wang, Kai Wang, ling
wang, Wen Wang, Pidong Wang, Yu-Chun Wang, Taro Watanabe, Bonnie Webber, Jason Williams,
Philip Williams, Colin Wilson, Travis Wolfe, Dekai Wu, Sander Wubben, Fei Xia, Deyi Xiong,
Deyi Xiong, Peng Xu, Bishan Yang, Hui Yang, Muyun Yang, tae yano, Limin Yao, Dani Yo-
gatama, François Yvon, Beñat Zapirain, Richard Zens, Torsten Zesch, Luke Zettlemoyer, Feifei
Zhai, Hui Zhang, Joy Ying Zhang, Lei Zhang, Min Zhang, Yi Zhang, Yue Zhang, Meng Zhang,
Liu Zhanyi, Shiqi Zhao, Tiejun Zhao, Xin Zhao, Xin Zhao, Muhua Zhu, Chengqing Zong

ix

Table of Contents

ITU Turkish NLP Web Service
Gülşen Eryiğit . 1

Multilingual, Efficient and Easy NLP Processing with IXA Pipeline
Rodrigo Agerri, Josu Bermudez and German Rigau . 5

XLike Project Language Analysis Services
Xavier Carreras, Lluís Padró, Lei Zhang, Achim Rettinger, Zhixing Li, Esteban García-Cuesta,

Željko Agić, Bozo Bekavac, Blaz Fortuna and Tadej Štajner . 9

Semantic Annotation, Analysis and Comparison: A Multilingual and Cross-lingual Text Analytics Toolkit
Lei Zhang and Achim Rettinger . 13

RDRPOSTagger: A Ripple Down Rules-based Part-Of-Speech Tagger
Dat Quoc Nguyen, Dai Quoc Nguyen, Dang Duc Pham and Son Bao Pham 17

Morfessor 2.0: Toolkit for statistical morphological segmentation
Peter Smit, Sami Virpioja, Stig-Arne Grönroos and Mikko Kurimo . 21

CASMACAT: A Computer-assisted Translation Workbench
Vicent Alabau, Christian Buck, Michael Carl, Francisco Casacuberta, Mercedes García-Martínez,

Ulrich Germann, Jesús González-Rubio, Robin Hill, Philipp Koehn, Luis Leiva, Bartolomé Mesa-Lao,
Daniel Ortiz-Martínez, Herve Saint-Amand, Germán Sanchis Trilles and Chara Tsoukala 25

Jane: Open Source Machine Translation System Combination
Markus Freitag, Matthias Huck and Hermann Ney . 29

CHISPA on the GO: A mobile Chinese-Spanish translation service for travellers in trouble
Jordi Centelles, Marta R. Costa-jussà and Rafael E. Banchs . 33

Safe In-vehicle Dialogue Using Learned Predictions of User Utterances
Staffan Larsson, Fredrik Kronlid and Pontus Wärnestål . 37

Speech-Enabled Hybrid Multilingual Translation for Mobile Devices
Krasimir Angelov, Björn Bringert and Aarne Ranta . 41

The New Thot Toolkit for Fully-Automatic and Interactive Statistical Machine Translation
Daniel Ortiz-Martínez and Francisco Casacuberta . 45

A Lightweight Terminology Verification Service for External Machine Translation Engines
Alessio Bosca, Vassilina Nikoulina and Marc Dymetman . 49

Finding Terms in Corpora for Many Languages with the Sketch Engine
Miloš Jakubíček, Adam Kilgarriff, Vojtěch Kovář, Pavel Rychlý and Vít Suchomel 53

A Graphical Interface for Automatic Error Mining in Corpora
Gregor Thiele, Wolfgang Seeker, Markus Gärtner, Anders Björkelund and Jonas Kuhn.57

DKIE: Open Source Information Extraction for Danish
Leon Derczynski, Camilla Vilhelmsen Field and Kenneth S. Bøgh . 61

Event Extraction for Balkan Languages
Vanni Zavarella, Dilek Kucuk, Hristo Tanev and Ali Hürriyetoğlu . 65

xi

Anaphora – Clause Annotation and Alignment Tool.
Borislav Rizov and Rositsa Dekova . 69

SPARSAR: An Expressive Poetry Reader
Rodolfo Delmonte and Anton Maria Prati . 73

Annotating by Proving using SemAnTE
Assaf Toledo, Stavroula Alexandropoulou, Sophie Chesney, Robert Grimm, Pepijn Kokke, Benno

Kruit, Kyriaki Neophytou, Antony Nguyen and Yoad Winter . 77

Answering List Questions using Web as a corpus
Patricia Gonçalves and Antonio Branco . 81

Designing Language Technology Applications: A Wizard of Oz Driven Prototyping Framework
Stephan Schlögl, Pierrick Milhorat, Gérard Chollet and Jérôme Boudy . 85

RelationFactory: A Fast, Modular and Effective System for Knowledge Base Population
Benjamin Roth, Tassilo Barth, Grzegorz Chrupała, Martin Gropp and Dietrich Klakow 89

MMAX2 for coreference annotation
Mateusz Kopeć . 93

The GATE Crowdsourcing Plugin: Crowdsourcing Annotated Corpora Made Easy
Kalina Bontcheva, Ian Roberts, Leon Derczynski and Dominic Rout . 97

A Spinning Wheel for YARN: User Interface for a Crowdsourced Thesaurus
Pavel Braslavski, Dmitry Ustalov and Mikhail Mukhin . 101

xii

Demo Program

Session 1

ITU Turkish NLP Web Service
Gülşen Eryiğit

Multilingual, Efficient and Easy NLP Processing with IXA Pipeline
Rodrigo Agerri, Josu Bermudez and German Rigau

XLike Project Language Analysis Services
Xavier Carreras, Lluís Padró, Lei Zhang, Achim Rettinger, Zhixing Li, Esteban
García-Cuesta, Željko Agić, Bozo Bekavac, Blaz Fortuna and Tadej Štajner

Semantic Annotation, Analysis and Comparison: A Multilingual and Cross-lingual
Text Analytics Toolkit
Lei Zhang and Achim Rettinger

RDRPOSTagger: A Ripple Down Rules-based Part-Of-Speech Tagger
Dat Quoc Nguyen, Dai Quoc Nguyen, Dang Duc Pham and Son Bao Pham

Morfessor 2.0: Toolkit for statistical morphological segmentation
Peter Smit, Sami Virpioja, Stig-Arne Grönroos and Mikko Kurimo

CASMACAT: A Computer-assisted Translation Workbench
Vicent Alabau, Christian Buck, Michael Carl, Francisco Casacuberta, Mercedes
García-Martínez, Ulrich Germann, Jesús González-Rubio, Robin Hill, Philipp
Koehn, Luis Leiva, Bartolomé Mesa-Lao, Daniel Ortiz-Martínez, Herve Saint-
Amand, Germán Sanchis Trilles and Chara Tsoukala

Jane: Open Source Machine Translation System Combination
Markus Freitag, Matthias Huck and Hermann Ney

CHISPA on the GO: A mobile Chinese-Spanish translation service for travellers in
trouble
Jordi Centelles, Marta R. Costa-jussà and Rafael E. Banchs

Safe In-vehicle Dialogue Using Learned Predictions of User Utterances
Staffan Larsson, Fredrik Kronlid and Pontus Wärnestål

Speech-Enabled Hybrid Multilingual Translation for Mobile Devices
Krasimir Angelov, Björn Bringert and Aarne Ranta

The New Thot Toolkit for Fully-Automatic and Interactive Statistical Machine
Translation
Daniel Ortiz-Martínez and Francisco Casacuberta

A Lightweight Terminology Verification Service for External Machine Translation
Engines
Alessio Bosca, Vassilina Nikoulina and Marc Dymetman

xiii

Session 2

Finding Terms in Corpora for Many Languages with the Sketch Engine
Miloš Jakubíček, Adam Kilgarriff, Vojtěch Kovář, Pavel Rychlý and Vít Suchomel

A Graphical Interface for Automatic Error Mining in Corpora
Gregor Thiele, Wolfgang Seeker, Markus Gärtner, Anders Björkelund and Jonas Kuhn

DKIE: Open Source Information Extraction for Danish
Leon Derczynski, Camilla Vilhelmsen Field and Kenneth S. Bøgh

Event Extraction for Balkan Languages
Vanni Zavarella, Dilek Kucuk, Hristo Tanev and Ali Hürriyetoğlu

Anaphora – Clause Annotation and Alignment Tool.
Borislav Rizov and Rositsa Dekova

SPARSAR: An Expressive Poetry Reader
Rodolfo Delmonte and Anton Maria Prati

Annotating by Proving using SemAnTE
Assaf Toledo, Stavroula Alexandropoulou, Sophie Chesney, Robert Grimm, Pepijn Kokke,
Benno Kruit, Kyriaki Neophytou, Antony Nguyen and Yoad Winter

Answering List Questions using Web as a corpus
Patricia Gonçalves and Antonio Branco

Designing Language Technology Applications: A Wizard of Oz Driven Prototyping Frame-
work
Stephan Schlögl, Pierrick Milhorat, Gérard Chollet and Jérôme Boudy

RelationFactory: A Fast, Modular and Effective System for Knowledge Base Population
Benjamin Roth, Tassilo Barth, Grzegorz Chrupała, Martin Gropp and Dietrich Klakow

MMAX2 for coreference annotation
Mateusz Kopeć

The GATE Crowdsourcing Plugin: Crowdsourcing Annotated Corpora Made Easy
Kalina Bontcheva, Ian Roberts, Leon Derczynski and Dominic Rout

A Spinning Wheel for YARN: User Interface for a Crowdsourced Thesaurus
Pavel Braslavski, Dmitry Ustalov and Mikhail Mukhin

xiv

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 1–4,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

ITU Turkish NLP Web Service

Gülşen Eryiğit
Department of Computer Engineering

Istanbul Technical University
Istanbul, 34469, Turkey

gulsen.cebiroglu@itu.edu.tr

Abstract
We present a natural language processing
(NLP) platform, namely the “ITU Turk-
ish NLP Web Service” by the natural lan-
guage processing group of Istanbul Tech-
nical University. The platform (available
at tools.nlp.itu.edu.tr) operates
as a SaaS (Software as a Service) and pro-
vides the researchers and the students the
state of the art NLP tools in many lay-
ers: preprocessing, morphology, syntax
and entity recognition. The users may
communicate with the platform via three
channels: 1. via a user friendly web inter-
face, 2. by file uploads and 3. by using the
provided Web APIs within their own codes
for constructing higher level applications.

1 Introduction
ITU NLP research group is devoted to produce
Turkish NLP tools for more than 10 years. The
group offers many NLP courses in graduate level
and core NLP research components to different re-
search groups both in NLP field and other disci-
plines: e.g. linguistics, data mining, web mining
and information retrieval. The motivation of the
presented platform in this paper comes from the
real word problems of sharing the produced NLP
resources by different people from varying level of
computer background (starting from undergradu-
ates to PhD students or researchers, people from
other fields (e.g.linguistics)). These may be cate-
gorized under the following main problems:

1. Need to provide assistance for the installa-
tion and the usage of different tools, all pos-
ing different technological requirements in
the users’ computers.

2. Difficulty to share the updates and the new
modules introduced into the pipeline.

3. Difficulty of using the tools for educational
purposes within the classrooms and term
projects.

4. licensing issues of the underlying technolo-
gies (such as FST and machine learning soft-
wares)

The difficulty in the ease-of-use of Turkish NLP
tools and their inconsistencies with each others
were also causing the replication of the same effort
in different places and preventing the community
from working on less-studied higher level areas for
the Turkish language. A good example to this may
be the efforts for creating Turkish morphological
analyzers: some outstanding ones among many
others are (Oflazer, 1994; Eryiğit and Adalı, 2004;
Akın and Akın, 2007; Sak et al., 2008; Çöltekin,
2010; Şahin et al., 2013))

In this paper, we present our new web ser-
vice which provides both a whole Turkish NLP
pipeline (from raw data to syntax, example given
in Figure1 priorly defined in (Eryiğit, 2012)) and
its atomic NLP components for stand-alone usage,
namely:

• Tokenizer
• Deasciifier
• Vowelizer
• Spelling Corrector
• Normalizer
• isTurkish
• Morphological Analyzer
• Morphological Disambiguator
• Named Entity Recognizer
• Dependency Parser

2 Provided Components

The provided components via our web service
may be grouped under 4 layers: preprocessing,
morphological processing, multiword expression
handling and syntactic processing.

2.1 Preprocessing
The preprocessing layer consists of many sub
components specifically developed for unformat-

1

Figure 1: ITU Turkish NLP Pipeline

2

ted social media data in focus. These are a tok-
enizer, a diacritic restorer, a vowelizer, a spelling
corrector and a normalizer. The diacritic restorer 1

is the component where the ASCII characters are
transformed into their proper Turkish forms. The
deasciifier (Adalı and Eryiğit, 2014) chooses the
most probable candidate within the current context
by using conditional random fields (CRFs). The
vocalizer (Adalı and Eryiğit, 2014) restores the
omitted vowels (generally within the social media
messages for shortening purpose): e.g. “svyrm”
will be converted to “seviyorum” (I love you).
The spelling corrector2 is kind of an adaptation
of Wang et al.(2011) into agglutinative languages.
The normalizer (Torunoǧlu and Eryiğit, 2014) is
constructed of the previous three components and
many other modules and provides a state of the art
text normalizer for Turkish.

2.2 Morphological Processing

This layer consists of a rule based morpholog-
ical analyzer (Şahin et al., 2013; Şahin, 2014)
which uses HFST-Helsinki Finite State Transducer
(Lindén et al., 2009) and a hybrid morphological
disambiguator3. This layer also provides the is-
Turkish component which validates a word by us-
ing the morphological analyzer.

2.3 Multi Word Expressions

As shown in Eryigit et al. (2011), the detection
and unification of the named entities has the high-
est impact for the syntactic layer. That is why the
following Turkish named entity recognizer (Şeker
and Eryiğit, 2012) is included within the pipeline
and the remaining multiword expressions are de-
tected in the syntactic layer as shown in Figure 1
(dependency label MWE).

2.4 Syntactic Parsing

For the syntactic layer we are providing the state
of the art dependency parser for Turkish presented
in (Eryiğit et al., 2008; Nivre et al., 2007) which
produces the ouputs in Conll format (Buchholz
and Marsi, 2006).

3 Conclusion and Future Work

We introduced our ITU Turkish NLP Web Plat-
form which provides us easier administration, au-
tomatic updates and patch management, com-

1named as “deasciifier” since the term is already adopted
by the Turkish community

2Publication in preparation.
3Publication in preparation.

patibility, easier usage, easier collaboration4 and
global accessibility by being designed as a SaaS.
Any body from any discipline with any level of un-
derlying computer background may easily use our
web interface either for only analyzing language
data or for constructing more complicated NLP
systems. The platform already attracted many
users from different universities in Turkey and it is
now started to get used in many research projects
and graduate theses. We believe as being the pi-
oneer serving almost all of the available and top
performing NLP tools for Turkish, ITU Turkish
NLP Web Service will fed light to new research
topics for this language.

For now, the pipeline is constructed by convert-
ing the input output formats of each individual
tools. But our current effort is to transform the
platform into a UIMA(Ferrucci and Lally, 2004)
compliant architecture so that it can also integrate
with other such platforms universally. We also
plan to service the new version of ITU Data Anno-
tation Tool (Eryiğit, 2007) from the same address
where the users will also be able to see their data
visually (e.g. dependency trees)

Acknowledgments

I want to thank my students without whose it
would be impossible to produce the ITU Turkish
NLP pipeline: Thomas Joole, Dilara Torunoğlu,
Umut Sulubacak and Hasan Kaya. This work is
part of a research project supported by TUBITAK
1001(Grant number: 112E276) as an ICT cost ac-
tion (IC1207) project.

References
Kübra Adalı and Gülşen Eryiğit. 2014. Vowel and

diacritic restoration for social media texts. In 5th
Workshop on Language Analysis for Social Media
(LASM) at EACL, Gothenburg, Sweden, April. As-
sociation for Computational Linguistics.

Ahmet Afsin Akın and Mehmet Dündar Akın. 2007.
Zemberek, an open source nlp framework for turkic
languages. Structure.

Sabine Buchholz and Erwin Marsi. 2006. Conll-X
shared task on multilingual dependency parsing. In
Proceedings of the 10th Conference on Computa-
tional Natural Language Learning, pages 149–164,
New York, NY. Association for Computational Lin-
guistics.

Çağrı Çöltekin. 2010. A freely available morpho-
logical analyzer for Turkish. In Proceedings of
the 7th International conference on Language Re-
sources and Evaluation (LREC2010), pages 820–
827.
4The mailing list notifications are sent to registered users

with each new broadcast.

3

Figure 2: ITU Turkish NLP Web Interface

Gülşen Eryiğit and Eşref Adalı. 2004. An affix strip-
ping morphological analyzer for Turkish. In Pro-
ceedings of the International Conference on Artifi-
cial Intelligence and Applications, pages 299–304,
Innsbruck, 16-18 February.

Gulsen Eryigit, Tugay Ilbay, and Ozan Arkan Can.
2011. Multiword expressions in statistical depen-
dency parsing. In Proceedings of the Second Work-
shop on Statistical Parsing of Morphologically Rich
Languages (IWPT), pages 45–55, Dublin, Ireland,
October. Association for Computational Linguistics.

Gülşen Eryiğit. 2007. Itu treebank annotation tool.
In Proceedings of the ACL workshop on Linguistic
Annotation (LAW 2007), Prague, 24-30 June.

Gülşen Eryiğit. 2012. The impact of automatic mor-
phological analysis & disambiguation on depen-
dency parsing of turkish. In Proceedings of the
Eighth International Conference on Language Re-
sources and Evaluation (LREC), Istanbul, Turkey,
23-25 May.

Gülşen Eryiğit, Joakim Nivre, and Kemal Oflazer.
2008. Dependency parsing of Turkish. Computa-
tional Linguistics, 34(3):357–389.

David Ferrucci and Adam Lally. 2004. UIMA: an
architectural approach to unstructured information
processing in the corporate research environment.
Natural Language Engineering, 10(3-4):327–348.

Krister Lindén, Miikka Silfverberg, and Tommi Piri-
nen. 2009. Hfst tools for morphology–an efficient
open-source package for construction of morpholog-
ical analyzers. In State of the Art in Computational
Morphology, pages 28–47. Springer.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
Chanev, Gülşen Eryiğit, Sandra Kübler, Stetoslav
Marinov, and Erwin Marsi. 2007. Maltparser:

A language-independent system for data-driven de-
pendency parsing. Natural Language Engineering
Journal, 13(2):99–135.

Kemal Oflazer. 1994. Two-level description of Turk-
ish morphology. Literary and Linguistic Comput-
ing, 9(2):137–148.

Muhammet Şahin, Umut Sulubacak, and Gülşen
Eryiğit. 2013. Redefinition of Turkish morphol-
ogy using flag diacritics. In Proceedings of The
Tenth Symposium on Natural Language Processing
(SNLP-2013), Phuket, Thailand, October.

Muhammet Şahin. 2014. ITUMorph, a more accurate
and faster wide coverage morphological analyzer for
Turkish. Master’s thesis, Istanbul Technical Univer-
sity.

Haşim Sak, Tunga Güngör, and Murat Saraçlar. 2008.
Turkish language resources: Morphological parser,
morphological disambiguator and web corpus. In
GoTAL 2008, volume 5221 of LNCS, pages 417–
427. Springer.

Gökhan Akın Şeker and Gülşen Eryiğit. 2012. Initial
explorations on using CRFs for Turkish named en-
tity recognition. In Proceedings of COLING 2012,
Mumbai, India, 8-15 December.

Dilara Torunoǧlu and Gülşen Eryiğit. 2014. A cas-
caded approach for social media text normalization
of Turkish. In 5th Workshop on Language Analy-
sis for Social Media (LASM) at EACL, Gothenburg,
Sweden, April. Association for Computational Lin-
guistics.

Ziqi Wang, Gu Xu, Hang Li, and Ming Zhang. 2011.
A fast and accurate method for approximate string
search. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics: Human Language Technologies, pages 52–61.

4

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 5–8,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

Multilingual, Efficient and Easy NLP Processing with IXA Pipeline

Rodrigo Agerri
IXA NLP Group

Univ. of the Basque Country
UPV/EHU

Donostia San-Sebastián
rodrigo.agerri@ehu.es

Josu Bermudez
Deusto Institute of Technology

Deustotech
Univ. of Deusto

Bilbao
josu.bermudez@deusto.es

German Rigau
IXA NLP Group

Univ. of the Basque Country
UPV/EHU

Donostia-San Sebastián
german.rigau@ehu.es

Abstract
IXA pipeline is a modular set of Natural Lan-
guage Processing tools (or pipes) which pro-
vide easy access to NLP technology. It aims at
lowering the barriers of using NLP technology
both for research purposes and for small indus-
trial developers and SMEs by offering robust
and efficient linguistic annotation to both re-
searchers and non-NLP experts. IXA pipeline
can be used “as is” or exploit its modularity
to pick and change different components. This
paper describes the general data-centric archi-
tecture of IXA pipeline and presents competi-
tive results in several NLP annotations for En-
glish and Spanish.

1 Introduction
Many Natural Language Processing (NLP) applica-
tions demand some basic linguistic processing (Tok-
enization, Part of Speech (POS) tagging, Named Entity
Recognition and Classification (NER), Syntactic Pars-
ing, Coreference Resolution, etc.) to be able to further
undertake more complex tasks. Generally, NLP anno-
tation is required to be as accurate and efficient as pos-
sible and existing tools, quite righly, have mostly fo-
cused on performance. However, this generally means
that NLP suites and tools usually require researchers
to do complex compilation/installation/configuration in
order to use such tools. At the same time, in the indus-
try, there are currently many Small and Medium Enter-
prises (SMEs) offering services that one way or another
depend on NLP annotations.

In both cases, in research and industry, acquiring, de-
ploying or developing such base qualifying technolo-
gies is an expensive undertaking that redirects their
original central focus: In research, much time is spent
in the preliminaries of a particular research experiment
trying to obtain the required basic linguistic annota-
tion, whereas in an industrial environment SMEs see
their already limited resources taken away from of-
fering products and services that the market demands.
IXA pipeline provides ready to use modules to per-
form efficient and accurate linguistic annotation to al-
low users to focus on their original, central task. When
designing the architecture, we took several decisions
with respect to what IXA pipeline had to be:

Simple and ready to use: Every module of the IXA
pipeline can be up an running after two simple steps.

Portable: The modules come with “all batteries in-
cluded” which means that no classpath configurations
or installing of any third-party dependencies is re-
quired. The modules will will run on any platform as
long as a JVM 1.7+ and/or Python 2.7 are available.

Modular: Unlike other NLP toolkits, which often are
built in a monolithic architecture, IXA pipeline is built
in a data centric architecture so that modules can be
picked and changed (even from other NLP toolkits).
The modules behave like Unix pipes, they all take stan-
dard input, do some annotation, and produce standard
output which in turn is the input for the next module.
The data-centric architecture of IXA pipeline means
that any module is highly independent and can there-
fore be used with other tools from other toolkits if re-
quired.

Efficient: Piping the tokenizer (250K words per sec-
ond) POS tagger and lemmatizer all in one process
annotates over 5K words/second. The NERC mod-
ule annotates over 5K words/second. In a multi-core
machine, these times are dramatically reduced due to
multi-threading.

Multilingual: Currently we offer NLP annotations for
both English and Spanish, but other languages are be-
ing included in the pipeline. Tokenization already
works for several languages, including Dutch, French,
Italian, German, Spanish and English.

Accurate: For example, POS tagging and NERC for
English and Spanish are comparable with other state
of the art systems, as it is the coreference resolution
module for English.

Apache License 2.0: IXA Pipeline is licensed under
the Apache License 2.0, an open-source license that fa-
cilitates source code use, distribution and integration,
also for commercial purposes.1

Next section describes the IXA pipeline architecture,
section 3 the modules so far developed. Whenever
available, we also present empirical evaluation. Sec-
tion 4 describes the various ways of using the tools.
Finally, section 5 discusses some concluding remarks.

1http://www.apache.org/licenses/LICENSE-2.0.html

5

2 Architecture

IXA pipeline is primarily conceived as a set of
ready to use tools that can provide efficient and
accurate linguistic annotation without any installa-
tion/configuration/compilation effort. As in Unix-like
operative systems, IXA pipeline consists of a set of pro-
cesses chained by their standard streams, in a way that
the output of each process feeds directly as input to the
next one. The Unix pipeline metaphor has been ap-
plied for NLP tools by adopting a very simple and well
known data centric architecture, in which every mod-
ule/pipe is interchangeable for another one as long as it
takes and produces the required data format.

The data format in which both the input and output of
the modules needs to be formatted to represent and fil-
ter linguistic annotations is KAF (Bosma et al., 2009).
KAF is a language neutral annotation format represent-
ing both morpho-syntactic and semantic annotation in a
structured format. KAF was originally designed in the
Kyoto European project2, but it has since been in con-
tinuous development3. Our Java modules all use kaflib4

library for easy integration.

Every module in the IXA pipeline, except the coref-
erence resolution, is implemented in Java, and re-
quires Java JDK1.7+ to compile. The integration of
the Java modules in the IXA pipeline is performed us-
ing Maven5. Maven is used to take care of classpaths
configurations and third-party tool dependencies. This
means that the binaries produced and distributed will
work off-the-self. The coreference module uses pip6

to provide an easy, one step installation. If the source
code of an ixa-pipe-$module is cloned from the remote
repository, one command to compile and have ready the
tools will suffice.

Some modules in IXA pipeline provide linguistic an-
notation based on probabilistic supervised approaches
such as POS tagging, NER and Syntactic Parsing. IXA
pipeline uses two well known machine learning algo-
rithms, namely, Maximum Entropy and the Percep-
tron. Both Perceptron (Collins, 2002; Collins, 2003)
and Maximum Entropy models (Ratnaparkhi, 1999) are
adaptable algorithms which have been successfully ap-
plied to NLP tasks such as POS tagging, NER and
Parsing with state of the art results. To avoid dupli-
cation of efforts, IXA pipeline uses the already avail-
able open-source Apache OpenNLP API7 to train POS,
NER and parsing probabilistic models using these two
approaches.

2http://kyoto-project.eu
3http://www.opener-project.org/kaf/
4https://github.com/ixa-ehu/kaflib
5http://maven.apache.org/
6https://pypi.python.org/pypi/pip
7http://opennlp.apache.org

3 Pipes

IXA pipeline currently provides the following linguis-
tic annotations: Sentence segmentation, tokenization,
Part of Speech (POS) tagging, Lemmatization, Named
Entity Recognition and Classification (NER), Con-
stituent Parsing and Coreference Resolution. Every
module works for English and Spanish and is imple-
mented in Java/Maven as described above. The only
exception is the coreference resolution module, which
currently is available in Python 2.7 and for English only
(Spanish version will comme soon). We will now de-
scribe which annotation services are provided by each
module of the pipeline.

3.1 ixa-pipe-tok

This module provides rule-based Sentence Segmenta-
tion and Tokenization for French, Dutch, English, Ital-
ian and Spanish. It produces tokenized and segmented
text in KAF, running text and CoNLL formats. The
rules are originally based on the Stanford English To-
kenizer8, but with substantial modifications and addi-
tions. These include tokenization for other languages
such as French and Italian, normalization according
the Spanish Ancora Corpus (Taulé et al., 2008), para-
graph treatment, and more comprehensive gazeteers
of non breaking prefixes. The tokenizer depends on
a JFlex9 specification file which compiles in seconds
and performs at a very reasonable speed (around 250K
word/second, and much quicker with Java multithread-
ing).

3.2 ixa-pipe-pos

ixa-pipe-pos provides POS tagging and lemmatization
for English and Spanish. We have obtained the best
results so far with the same featureset as in Collins’s
(2002) paper. Perceptron models for English have been
trained and evaluated on the WSJ treebank using the
usual partitions (e.g., as explained in Toutanova et al.
(2003). We currently obtain a performance of 97.07%
vs 97.24% obtained by Toutanova et al., (2003)). For
Spanish, Maximum Entropy models have been trained
and evaluated using the Ancora corpus; it was ran-
domly divided in 90% for training and 10% for test-
ing. This corresponds to 440K words used for train-
ing and 70K words for testing. We obtain a perfor-
mance of 98.88% (the corpus partitions are available
for reproducibility). Giménez and Marquez (2004) re-
port 98.86%, although they train and test on a different
subset of the Ancora corpus.

Lemmatization is currently performed via 3 different
dictionary lookup methods: (i) Simple Lemmatizer: It
is based on HashMap lookups on a plain text dictionary.
Currently we use dictionaries from the LanguageTool
project10 under their distribution licenses. The English

8http://www-nlp.stanford.edu/software/tokenizer.shtml
9http://jflex.de/

10http://languagetool.org/

6

dictionary contains 300K lemmas whereas the Spanish
provides over 600K; (ii) Morfologik-stemming11: The
Morfologik library provides routines to produce binary
dictionaries, from dictionaries such as the one used by
the Simple Lemmatizer above, as finite state automata.
This method is convenient whenever lookups on very
large dictionaries are required because it reduces the
memory footprint to 10% of the memory required for
the equivalent plain text dictionary; and (iii) We also
provide lemmatization by lookup in WordNet-3.0 (Fell-
baum and Miller, 1998) via the JWNL API12. Note that
this method is only available for English.

3.3 ixa-pipe-nerc

Most of the NER systems nowdays consist of language
independent systems (sometimes enriched with gaze-
teers) based on automatic learning of statistical mod-
els. ixa-pipe-nerc provides Named Entity Recogni-
tion (NER) for English and Spanish. The named en-
tity types are based on the CONLL 200213 and 200314

tasks which were focused on language-independent su-
pervised named entity recognition (NER) for four types
of named entities: persons, locations, organizations and
names of miscellaneous entities that do not belong to
the previous three groups. We currently provide two
very fast language independent models using a rather
simple baseline featureset (e.g., similar to that of Cur-
ran and Clark (2003), except POS tag features).

For English, perceptron models have been trained
using CoNLL 2003 dataset. We currenly obtain 84.80
F1 which is coherent with other results reported with
these features (Clark and Curran, 2003; Ratinov and
Roth, 2009). The best Stanford NER model reported
on this dataset achieves 86.86 F1 (Finkel et al., 2005),
whereas the best system on this dataset achieves 90.80
F1 (Ratinov and Roth, 2009), using non local features
and substantial external knowledge.

For Spanish we currently obtain best results train-
ing Maximum Entropy models on the CoNLL 2002
dataset. Our best model obtains 79.92 F1 vs 81.39
F1 (Carreras et al., 2002), the best result so far on this
dataset. Their result uses external knowledge and with-
out it, their system obtains 79.28 F1.

3.4 ixa-pipe-parse

ixa-pipe-parse provides statistical constituent parsing
for English and Spanish. Maximum Entropy models
are trained to build shift reduce bottom up parsers (Rat-
naparkhi, 1999) as provided by the Apache OpenNLP
API. Parsing models for English have been trained us-
ing the Penn treebank and for Spanish using the Ancora
corpus (Taulé et al., 2008).

Furthermore, ixa-pipe-parse provides two methods
of HeadWord finders: one based on Collins’ head rules

11https://github.com/morfologik/morfologik-stemming
12http://jwordnet.sourceforge.net/
13http://www.clips.ua.ac.be/conll2002/ner/
14http://www.clips.ua.ac.be/conll2003/ner/

as defined in his PhD thesis (1999), and another one
based on Stanford’s parser Semantic Head Rules15.
The latter are a modification of Collins’ head rules ac-
cording to lexical and semantic criteria. These head
rules are particularly useful for the Coreference reso-
lution module and for projecting the constituents into
dependency graphs.

As far as we know, and although previous ap-
proaches exist (Cowan and Collins, 2005), ixa-pipe-
parse provides the first publicly available statistical
parser for Spanish.

3.5 Coreference Resolution

The module of coreference resolution included in the
IXA pipeline is loosely based on the Stanford Multi
Sieve Pass system (Lee et al., 2013). The module takes
every linguistic information it requires from the KAF
layers annotated by all the previously described mod-
ules. The system consists of a number of rule-based
sieves. Each sieve pass is applied in a deterministic
manner, reusing the information generated by the pre-
vious sieve and the mention processing. The order in
which the sieves are applied favours a highest precision
approach and aims at improving the recall with the sub-
sequent application of each of the sieve passes. This
is illustrated by the evaluation results of the CoNLL
2011 Coreference Evaluation task (Lee et al., 2013), in
which the Stanford’s system obtained the best results.

So far we have evaluated our module on the CoNLL
2011 testset and we are a 5% behind the Stanford’s sys-
tem (52.8 vs 57.6 CoNLL F1), the best on that task (Lee
et al., 2013). It is interesting that in our current imple-
mentation, mention-based metrics are favoured (CEAF
and B3). Still, note that these results are comparable
with the results obtained by the best CoNLL 2011 par-
ticipants. Currently the module performs coreference
resolution only for English, although a Spanish version
will be coming soon.

4 Related Work

Other NLP toolkits exist providing similar or more ex-
tensive functionalities than the IXA pipeline tools, al-
though not many of them provide multilingual support.
GATE (Cunningham, 2002) is an extensive framework
supporting annotation of text. GATE has some capacity
for wrapping Apache UIMA components16, so should
be able to manage distributed NLP components. How-
ever, GATE is a very large and complex system, with a
corresponding steep learning curve.

Freeling (Padró and Stanilovsky, 2012) provides
multilingual processing for a number of languages,
incluing Spanish and English. As opposed to IXA
pipeline, Freeling is a monolithic toolkit written in C++
which needs to be compiled natively. The Stanford

15http://www-nlp.stanford.edu/software/lex-parser.shtml
16http://uima.apache.org/

7

CoreNLP17 is a monolithic suite, which makes it dif-
ficult to integrate other tools in its chain.

IXA pipeline tools can easily be used piping the in-
put with the output of another too, and it is also pos-
sible to easily replace or extend the toolchain with a
third-party tool. IXA pipeline is already being used to
do extensive parallel processing in the FP7 European
projects OpeNER18 and NewsReader19.

5 Conclusion and Future Work
IXA pipeline provides a simple, efficient, accurate and
ready to use set of NLP tools. Its modularity and data
centric architecture makes it flexible to pick and change
or integrate new linguistic annotators. Currently we of-
fer linguistic annotation for English and Spanish, but
more languages are being integrated. Furthermore,
other annotations such as Semantic Role Labelling and
Named Entity Disambiguation are being included in
the pipeline following the same principles.

Additionally, current integrated modules are be-
ing improved: both on the quality and variety of
the probabilistic models, and on specific issues such
as lemmatization, and treatment of time expressions.
Finally, we are adding server-mode execution into
the pipeline to provide faster processing. IXA
pipeline is publicly available under Apache 2.0 license:
http://adimen.si.ehu.es/web/ixa-pipes.

Acknowledgements
TThis work has been supported by the OpeNER FP7
project under Grant No. 296451, the FP7 NewsReader
project, Grant No. 316404, and by the SKATER Span-
ish MICINN project No TIN2012-38584-C06-01. The
work of Josu Bermudez on coreference resolution is
supported by a PhD Grant of the University of Deusto
(http://www.deusto.es).

References
Wauter Bosma, Piek Vossen, Aitor Soroa, German

Rigau, Maurizio Tesconi, Andrea Marchetti, Mon-
ica Monachini, and Carlo Aliprandi. 2009. Kaf: a
generic semantic annotation format. In Proceedings
of the GL2009 Workshop on Semantic Annotation.

X. Carreras, L. Marquez, and L. Padro. 2002. Named
entity extraction using AdaBoost. In proceedings
of the 6th conference on Natural language learning-
Volume 20, pages 1–4.

Stephen Clark and James Curran. 2003. Language In-
dependent NER using a Maximum Entropy Tagger.
In Proceedings of the Seventh Conference on Nat-
ural Language Learning (CoNLL-03), pages 164–
167, Edmonton, Canada.

17http://nlp.stanford.edu/software/corenlp.shtml
18http://www.opener-project.org
19http://www.newsreader-project.eu

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and exper-
iments with perceptron algorithms. In Proceedings
of the ACL-02 conference on Empirical methods in
natural language processing-Volume 10, pages 1–8.

Michael Collins. 2003. Head-driven statistical mod-
els for natural language parsing. Computational lin-
guistics, 29(4):589–637.

Brooke Cowan and Michael Collins. 2005. Mor-
phology and reranking for the statistical parsing of
spanish. In Proceedings of the conference on Hu-
man Language Technology and Empirical Methods
in Natural Language Processing, pages 795–802.
Association for Computational Linguistics.

Hamish Cunningham. 2002. Gate, a general architec-
ture for text engineering. Computers and the Hu-
manities, 36(2):223–254.

C. Fellbaum and G. Miller, editors. 1998. Wordnet: An
Electronic Lexical Database. MIT Press, Cambridge
(MA).

J. R. Finkel, T. Grenager, and C. Manning. 2005. In-
corporating non-local information into information
extraction systems by gibbs sampling. In Proceed-
ings of the 43rd Annual Meeting on Association for
Computational Linguistics, pages 363–370.

Jesús Giménez and Lluis Marquez. 2004. Svmtool: A
general pos tagger generator based on support vector
machines. In In Proceedings of the 4th International
Conference on Language Resources and Evaluation.
Citeseer.

Heeyoung Lee, Angel Chang, Yves Peirsman,
Nathanael Chambers, Mihai Surdeanu, and Dan Ju-
rafsky. 2013. Deterministic coreference resolu-
tion based on entity-centric, precision-ranked rules.
Computational Linguistics, pages 1–54, January.

Lluı́s Padró and Evgeny Stanilovsky. 2012. Freeling
3.0: Towards wider multilinguality. In Proceedings
of the Language Resources and Evaluation Confer-
ence (LREC 2012), Istanbul, Turkey, May. ELRA.

L. Ratinov and D. Roth. 2009. Design challenges and
misconceptions in named entity recognition. In Pro-
ceedings of the Thirteenth Conference on Computa-
tional Natural Language Learning, page 147155.

Adwait Ratnaparkhi. 1999. Learning to parse natural
language with maximum entropy models. Machine
learning, 34(1-3):151–175.

Mariona Taulé, Maria Antònia Martı́, and Marta Re-
casens. 2008. Ancora: Multilevel annotated corpora
for catalan and spanish. In LREC.

Kristina Toutanova, Dan Klein, Christopher Manning,
and Yoram Singer. 2003. Feature-Rich Part-of-
Speech Tagging with a Cyclic Dependency Network.
In Proceedings of HLT-NAACL, pages 252–259.

8

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 9–12,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

XLike Project Language Analysis Services

Xavier Carreras∗, Lluı́s Padró∗, Lei Zhang♠, Achim Rettinger♠, Zhixing Li1,
Esteban Garcı́a-Cuesta�, Željko Agić?, Božo Bekavac/, Blaz Fortuna†, Tadej Štajner†

∗ Universitat Politècnica de Catalunya, Barcelona, Spain. � iSOCO S.A. Madrid, Spain.
/ University of Zagreb, Zagreb, Croatia. ? University of Potsdam, Germany.
† Jožef Stefan Institute, Ljubljana, Slovenia. 1 Tsinghua University, Beijing, China.

♠ Karlsruhe Institute of Technology, Karlsruhe, Germany.

Abstract

This paper presents the linguistic analysis
infrastructure developed within the XLike
project. The main goal of the imple-
mented tools is to provide a set of func-
tionalities supporting the XLike main ob-
jectives: Enabling cross-lingual services
for publishers, media monitoring or de-
veloping new business intelligence appli-
cations. The services cover seven major
and minor languages: English, German,
Spanish, Chinese, Catalan, Slovenian, and
Croatian. These analyzers are provided
as web services following a lightweigth
SOA architecture approach, and they are
publically accessible and shared through
META-SHARE.1

1 Introduction

Project XLike2 goal is to develop technology able
to gather documents in a variety of languages and
genres (news, blogs, tweets, etc.) and to extract
language-independent knowledge from them, in
order to provide new and better services to pub-
lishers, media monitoring, and business intelli-
gence. Thus, project use cases are provided by
STA (Slovenian Press Agency) and Bloomberg, as
well as New York Times as an associated partner.

Research partners in the project are Jožef Ste-
fan Institute (JSI), Karlsruhe Institute of Technol-
ogy (KIT), Universitat Politècnica de Catalunya
(UPC), University of Zagreb (UZG), and Tsinghua
University (THU). The Spanish company iSOCO
is in charge of integration of all components de-
veloped in the project.

This paper deals with the language technology
developed within the project XLike to convert in-

1accessible and shared here means that the services are
publicly callable, not that the code is open-source.
http://www.meta-share.eu

2
http://www.xlike.org

put documents into a language-independent rep-
resentation that afterwards enables knowledge ag-
gregation.

To achieve this goal, a bench of linguistic pro-
cessing pipelines is devised as the first step in the
document processing flow. Then, a cross-lingual
semantic annotation method, based on Wikipedia
and Linked Open Data (LOD), is applied. The
semantic annotation stage enriches the linguistic
anaylsis with links to knowledge bases for differ-
ent languages, or links to language independent
representations.

2 Linguistic Analyzers

Apart from basic state-of-the-art tokenizers, lem-
matizers, PoS/MSD taggers, and NE recogniz-
ers, each pipeline requires deeper processors able
to build the target language-independent seman-
tic representantion. For that, we rely on three
steps: dependency parsing, semantic role label-
ing and word sense disambiguation. These three
processes, combined with multilingual ontologi-
cal resouces such as different WordNets and Pred-
icateMatrix (López de la Calle et al., 2014), a
lexical semantics resource combining WordNet,
FrameNet, and VerbNet, are the key to the con-
struction of our semantic representation.

2.1 Dependency Parsing
We use graph-based methods for dependency
parsing, namely, MSTParser3 (McDonald et al.,
2005) is used for Chinese and Croatian, and
Treeler4 is used for the other languages. Treeler is
a library developed by the UPC team that imple-
ments several statistical methods for tagging and
parsing.

We use these tools in order to train dependency
parsers for all XLike languages using standard
available treebanks.

3
http://sourceforge.net/projects/mstparser

4
http://treeler.lsi.upc.edu

9

2.2 Semantic Role Labeling

As with syntactic parsing, we are developing SRL
methods with the Treeler library. In order to train
models, we will use the treebanks made available
by the CoNLL-2009 shared task, which provided
data annotated with predicate-argument relations
for English, Spanish, Catalan, German and Chi-
nese. No treebank annotated with semantic roles
exists for Slovene or Croatian. A prototype of
SRL has been integrated in all pipelines (except
the Slovene and Croatian pipelines). The method
implemented follows a pipeline architecture de-
scribed in (Lluı́s et al., 2013).

2.3 Word Sense Disambiguation

Word sense disambiguation is performed for all
languages with a publicly available WordNet. This
includes all languages in the project except Chi-
nese. The goal of WSD is to map specific lan-
guages to a common semantic space, in this case,
WN synsets. Thanks to existing connections be-
tween WN and other resources, SUMO and Open-
CYC sense codes are also output when available.

Thanks to PredicateMatrix, the obtained con-
cepts can be projected to FrameNet, achieving a
normalization of the semantic roles produced by
the SRL (which are treebank-dependent, and thus,
not the same for all languages). The used WSD
engine is the UKB (Agirre and Soroa, 2009) im-
plementation provided by FreeLing (Padró and
Stanilovsky, 2012).

2.4 Frame Extraction

The final step is to convert all the gathered linguis-
tic information into a semantic representation. Our
method is based on the notion of frame: a seman-
tic frame is a schematic representation of a situ-
ation involving various participants. In a frame,
each participant plays a role. There is a direct cor-
respondence between roles in a frame and seman-
tic roles; namely, frames correspond to predicates,
and participants correspond to the arguments of
the predicate. We distinguish three types of par-
ticipants: entities, words, and frames.

Entities are nodes in the graph connected to
real-world entities as described in Section 3.
Words are common words or concepts, linked to
general ontologies such as WordNet. Frames cor-
respond to events or predicates described in the
document. Figure 1 shows an example sentence,
the extracted frames and their arguments.

It is important to note that frames are a more
general representation than SVO-triples. While
SVO-triples represent a binary relation between
two participants, frames can represent n-ary rela-
tions (e.g. predicates with more than two argu-
ments, or with adjuncts). Frames also allow repre-
senting the sentences where one of the arguments
is in turn a frame (as is the case with plan to make
in the example).

Finally, although frames are extracted at sen-
tence level, the resulting graphs are aggregated
in a single semantic graph representing the whole
document via a very simple coreference resolution
based on detecting named entity aliases and repe-
titions of common nouns. Future improvements
include using an state-of-the-art coreference reso-
lution module for languages where it is available.

3 Cross-lingual Semantic Annotation

This step adds further semantic annotations on top
of the results obtained by linguistic processing.
All XLike languages are covered. The goal is
to map word phrases in different languages into
the same semantic interlingua, which consists of
resources specified in knowledge bases such as
Wikipedia and Linked Open Data (LOD) sources.
Cross-lingual semantic annotation is performed in
two stages: (1) first, candidate concepts in the
knowledge base are linked to the linguistic re-
sources based on a newly developed cross-lingual
linked data lexica, called xLiD-Lexica, (2) next
the candidate concepts get disambiguated based
on the personalized PageRank algorithm by utiliz-
ing the structure of information contained in the
knowledge base.

The xLiD-Lexica is stored in RDF format and
contains about 300 million triples of cross-lingual
groundings. It is extracted from Wikipedia dumps
of July 2013 in English, German, Spanish, Cata-
lan, Slovenian and Chinese, and based on the
canonicalized datasets of DBpedia 3.8 contain-
ing triples extracted from the respective Wikipedia
whose subject and object resource have an equiv-
alent English article.

4 Web Service Architecture Approach

The different language functionalities are imple-
mented following the service oriented architec-
ture (SOA) approach defined in the project XLike.
Therefore all the pipelines (one for each language)
have been implemented as web services and may

10

Figure 1: Graphical representation of frames in the sentence Acme, based in New York, now plans to
make computer and electronic products.

be requested to produce different levels of analy-
sis (e.g. tokenization, lemmatization, NERC, pars-
ing, relation extraction). This approach is very ap-
pealing due to the fact that it allows to treat ev-
ery language independently and execute the whole
language analysis process at different threads or
computers allowing an easier parallelization (e.g.
using external high perfomance platforms such as
Amazon Elastic Compute Cloud EC25) as needed.
Furthermore it also provides independent develop-
ment lifecycles for each language which is crucial
in this type of research projects. Recall that these
web services can be deployed locally or remotely,
maintaining the option of using them in a stand-
alone configuration.

The main structure for each one of the pipelines
is described below:

• Spanish, English, and Catalan: all mod-
ules are based on FreeLing (Padró and
Stanilovsky, 2012) and Treeler.
• German: German shallow processing is

based on OpenNLP6, Stanford POS tagger
and NE extractor (Toutanova et al., 2003;
Finkel et al., 2005). Dependency parsing,
semantic role labeling, word sense disam-
biguation, and SRL-based frame extraction
are based on FreeLing and Treeler.
• Slovene: Slovene shallow processing is pro-

vided by JSI Enrycher7 (Štajner et al., 2010),
which consists of the Obeliks morphosyntac-
tic analysis library (Grčar et al., 2012), the
LemmaGen lemmatizer (Juršič et al., 2010)
and a CRF-based entity extractor (Štajner et
al., 2012). Dependency parsing, word sense

5
http://aws.amazon.com/ec2/

6
http://opennlp.apache.org

7
http://enrycher.ijs.si

disambiguation are based on FreeLing and
Treeler. Frame extraction is rule-based since
no SRL corpus is available for Slovene.
• Croatian: Croatian shallow processing is

based on proprietary tokenizer, POS/MSD-
tagging and lemmatisaton system (Agić et
al., 2008), NERC system (Bekavac and
Tadić, 2007) and dependency parser (Agić,
2012). Word sense disambiguation is based
on FreeLing. Frame extraction is rule-based
since no SRL corpus is available for Croatian.
• Chinese: Chinese shallow and deep process-

ing is based on a word segmentation compo-
nent ICTCLAS8 and a semantic dependency
parser trained on CSDN corpus. Then, rule-
based frame extraction is performed (no SRL
corpus nor WordNet are available for Chi-
nese).

Each language analysis service is able to pro-
cess thousands of words per second when per-
forming shallow analysis (up to NE recognition),
and hundreds of words per second when produc-
ing the semantic representation based on full anal-
ysis. Moreover, the web service architecture en-
ables the same server to run a different thread for
each client, thus taking advantage of multiproces-
sor capabilities.

The components of the cross-lingual semantic
annotation stage are:

• xLiD-Lexica: The cross-lingual groundings
in xLiD-Lexica are translated into RDF data
and are accessible through a SPARQL end-
point, based on OpenLink Virtuoso9 as the
back-end database engine.

8
http://ictclas.org/

9
http://virtuoso.openlinksw.com/

11

• Semantic Annotation: The cross-lingual se-
mantic annotation service is based on the
xLiD-Lexica for entity mention recognition
and the JUNG Framework10 for graph-based
disambiguation.

5 Conclusion

We presented the web service based architecture
used in XLike FP7 project to linguistically ana-
lyze large amounts of documents in seven differ-
ent languages. The analysis pipelines perform ba-
sic processing as tokenization, PoS-tagging, and
named entity extraction, as well as deeper analy-
sis such as dependency parsing, word sense disam-
biguation, and semantic role labelling. The result
of these linguistic analyzers is a semantic graph
capturing the main events described in the docu-
ment and their core participants.

On top of that, the cross-lingual semantic an-
notation component links the resulting linguistic
resources in one language to resources in a knowl-
edge bases in any other language or to language
independent representations. This semantic repre-
sentation is later used in XLike for document min-
ing purposes such as enabling cross-lingual ser-
vices for publishers, media monitoring or devel-
oping new business intelligence applications.

The described analysis services are currently
available via META-SHARE as callable RESTful
services.

Acknowledgments

This work was funded by the European Union
through project XLike (FP7-ICT-2011-288342).

References
Željko Agić, Marko Tadić, and Zdravko Dovedan.

2008. Improving part-of-speech tagging accuracy
for Croatian by morphological analysis. Informat-
ica, 32(4):445–451.

Željko Agić. 2012. K-best spanning tree dependency
parsing with verb valency lexicon reranking. In Pro-
ceedings of COLING 2012: Posters, pages 1–12,
Mumbai, India, December. The COLING 2012 Or-
ganizing Committee.

Eneko Agirre and Aitor Soroa. 2009. Personalizing
pagerank for word sense disambiguation. In Pro-
ceedings of the 12th conference of the European
chapter of the Association for Computational Lin-
guistics (EACL-2009), Athens, Greece.
10Java Universal Network/Graph Framework

http://jung.sourceforge.net/

Božo Bekavac and Marko Tadić. 2007. Implementa-
tion of Croatian NERC system. In Proceedings of
the Workshop on Balto-Slavonic Natural Language
Processing (BSNLP2007), Special Theme: Informa-
tion Extraction and Enabling Technologies, pages
11–18. Association for Computational Linguistics.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by gibbs
sampling. In Proceedings of the 43rd Annual Meet-
ing on Association for Computational Linguistics
(ACL’05), pages 363–370.

Miha Grčar, Simon Krek, and Kaja Dobrovoljc. 2012.
Obeliks: statistični oblikoskladenjski označevalnik
in lematizator za slovenski jezik. In Zbornik Osme
konference Jezikovne tehnologije, Ljubljana, Slove-
nia.

Matjaz Juršič, Igor Mozetič, Tomaz Erjavec, and Nada
Lavrač. 2010. Lemmagen: Multilingual lemmati-
sation with induced ripple-down rules. Journal of
Universal Computer Science, 16(9):1190–1214.

Xavier Lluı́s, Xavier Carreras, and Lluı́s Màrquez.
2013. Joint arc-factored parsing of syntactic and se-
mantic dependencies. Transactions of the Associa-
tion for Computational Linguistics, 1:219–230.

Maddalen López de la Calle, Egoitz Laparra, and Ger-
man Rigau. 2014. First steps towards a predicate
matrix. In Proceedings of the Global WordNet Con-
ference (GWC 2014), Tartu, Estonia, January. GWA.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of
dependency parsers. In Proceedings of the 43rd
Annual Meeting of the Association for Computa-
tional Linguistics (ACL’05), pages 91–98, Ann Ar-
bor, Michigan, June.

Lluı́s Padró and Evgeny Stanilovsky. 2012. Freeling
3.0: Towards wider multilinguality. In Proceedings
of the Language Resources and Evaluation Confer-
ence (LREC 2012), Istanbul, Turkey, May. ELRA.

Tadej Štajner, Delia Rusu, Lorand Dali, Blaž Fortuna,
Dunja Mladenić, and Marko Grobelnik. 2010. A
service oriented framework for natural language text
enrichment. Informatica, 34(3):307–313.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Lin- guistics on Human Language Technology
(NAACL’03).

Tadej Štajner, Tomaž Erjavec, and Simon Krek.
2012. Razpoznavanje imenskih entitet v slovenskem
besedilu. In In Proceedings of 15th Internation
Multiconference on Information Society - Jezikovne
Tehnologije, Ljubljana, Slovenia.

12

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 13–16,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

Semantic Annotation, Analysis and Comparison:
A Multilingual and Cross-lingual Text Analytics Toolkit

Lei Zhang
Institute AIFB

Karlsruhe Institute of Technology
76128 Karlsruhe, Germany
l.zhang@kit.edu

Achim Rettinger
Institute AIFB

Karlsruhe Institute of Technology
76128 Karlsruhe, Germany
rettinger@kit.edu

Abstract

Within the context of globalization,
multilinguality and cross-linguality for
information access have emerged as issues
of major interest. In order to achieve
the goal that users from all countries
have access to the same information,
there is an impending need for systems
that can help in overcoming language
barriers by facilitating multilingual and
cross-lingual access to data. In this
paper, we demonstrate such a toolkit,
which supports both service-oriented and
user-oriented interfaces for semantically
annotating, analyzing and comparing
multilingual texts across the boundaries
of languages. We conducted an extensive
user study that shows that our toolkit
allows users to solve cross-lingual entity
tracking and article matching tasks more
efficiently and with higher accuracy
compared to the baseline approach.

1 Introduction

Automatic text understanding has been an
unsolved research problem for many years. This
partially results from the dynamic and diverging
nature of human languages, which results in many
different varieties of natural language. These
variations range from the individual level, to
regional and social dialects, and up to seemingly
separate languages and language families.
In recent years there have been considerable
achievements in approaches to computational
linguistics exploiting the information across
languages. This progress in multilingual and
cross-lingual text analytics is largely due
to the increased availability of multilingual
knowledge bases such as Wikipedia, which helps
at scaling the traditionally monolingual tasks

to multilingual and cross-lingual applications.
From the application side, there is a clear need
for multilingual and cross-lingual text analytics
technologies and services.

Text analytics in this work is defined as
three tasks: (i) semantic annotation by linking
entity mentions in the documents to their
corresponding representations in the knowledge
base; (ii) semantic analysis by linking the
documents by topics to the relevant resources in
the knowledge base; (iii) semantic comparison
by measuring semantic relatedness between
documents. While multilingual text analytics
addresses these tasks for multiple languages,
cross-lingual text analytics goes one step beyond,
as it faces these tasks across the boundaries of
languages, i.e., the text to be processed and the
resources in the knowledge base, or the documents
to be compared, are in different languages.

Due to the ever growing richness of its
content, Wikipedia has been increasingly gaining
attention as a precious knowledge base that
contains an enormous number of entities and
topics in diverse domains. In addition, Wikipedia
pages that provide information about the same
concept in different languages are connected
through cross-language links. Therefore, we use
Wikipedia as the central knowledge base.

With the goal of overcoming language barriers,
we would like to demonstrate our multilingual
and cross-lingual text analytics toolkit, which
supports both service-oriented and user-oriented
interfaces for semantically annotating, analyzing
and comparing multilingual texts across the
boundaries of languages.

2 Techniques

In this section, we first present the techniques
behind our toolkit w.r.t. its three components:
semantic annotation (Sec. 2.1), semantic analysis
and semantic comparison (Sec. 2.2).

13

2.1 Wikipedia-based Annotation

The process of augmenting phrases in text with
links to their corresponding Wikipedia articles
(in the sense of Wikipedia-based annotation) is
known as wikification. There is a large body
of work that links phrases in unstructured text
to relevant Wikipedia articles. While Mihalcea
and Csomai (Mihalcea and Csomai, 2007) met
the challenge of wikification by using link
probabilities obtained from Wikipedia’s articles
and by a comparison of features extracted from the
context of the phrases, Milne and Witten (Milne
and Witten, 2008) could improve the wikification
service significantly by viewing wikification even
more as a supervised machine learning task:
Wikipedia is used here not only as a source of
information to point to, but also as training data
to find always the appropriate link.

For multilingual semantic annotation, we
adopted the wikification system in (Milne and
Witten, 2008) and trained it for each language
using the corresponding Wikipedia version. To
perform cross-lingual semantic annotation, we
extended the wikification system by making use of
the cross-language links in Wikipedia to find the
corresponding Wikipedia articles in the different
target languages. More details can be found in our
previous work (Zhang et al., 2013).

2.2 Explicit Semantic Analysis

Explicit Semantic Analysis (ESA) has been
proposed as an approach for semantic modeling
of natural language text (Gabrilovich and
Markovitch, 2006). Based on a given set of
concepts with textual descriptions, ESA defines
the concept-based representation of documents.
Various sources for concept definitions have
been used, such as Wikipedia and Reuters Corpus.
Using the concept-based document representation,
ESA has been successfully applied to compute
semantic relatedness between texts (Gabrilovich
and Markovitch, 2007). In the context of the
cross-language information retrieval (CLIR) task,
ESA has been extended to a cross-lingual setting
(CL-ESA) by mapping the semantic document
representation from a concept space of one
language to an interlingual concept space (Sorg
and Cimiano, 2008).

The semantic analysis and semantic comparison
components of our toolkit are based on CL-ESA
in (Sorg and Cimiano, 2008). The semantic

Figure 2: Architecture of our Toolkit.

analysis component takes as input a document in a
source language and maps it to a high-dimensional
vector in the interlingual concept space, such
that each dimension corresponds to an Wikipedia
article in any target language acting as a
concept. For semantic comparison, the documents
in different languages are first translated into
vectors in the interlingual concept space and then
the cross-lingual semantic relatedness between
the documents in different languages can be
calculated using the standard similarity measure
between the resulting vectors.

3 Implementation

Our multilingual and cross-lingual toolkit is
implemented using a client-server architecture
with communication over HTTP using a XML
schema defined in XLike project1. The server
is a RESTful web service and the client user
interface is implemented using Adobe Flex as
both Desktop and Web Applications. The
toolkit can easily be extended or adapted to
switch out the server or client. In this way, it
supports both service-oriented and user-oriented
interfaces for semantically annotating, analyzing
and comparing multilingual texts across the
boundaries of languages. The architecture of our
toolkit is shown in Figure 2.

For all three components, namely semantic
annotation, analysis and comparison, we use
Wikipedia as the central knowledge base. Table 1
shows the statistics of the Wikipedia articles in
English, German, Spanish and French as well as
the cross-language links between the them in these
languages extracted from Wikipedia snapshots of
May 20122, which are used to build our toolkit.

We now describe the user interfaces of these
1http://www.xlike.org/
2http://dumps.wikimedia.org/

14

Figure 1: Screenshot of the Semantic Annotation Component of our Toolkit.

English (EN) German (DE) Spanish (ES) French (FR)
#Articles 4,014,643 1,438,325 896,691 1,234,567

(a) Number of articles.
EN-DE EN-ES EN-FR DE-ES DE-FR ES-FR

#Links (→) 721,878 568,210 779,363 295,415 455,829 378,052
#Links (←) 718,401 581,978 777,798 302,502 457,306 370,552
#Links (merged) 722,069 593,571 795,340 307,130 464,628 383,851

(b) Number of cross-language links.

Table 1: Statistics about Wikipedia.

components. Due to the lack of space, we only
show the screenshot of the semantic annotation
component in Figure 1. The semantic annotation
component allows the users to find the entities
in Wikipedia mentioned in the input document.
Given the input document in one language, the
users can select the output language, namely
the language of Wikipedia articles describing
the mentioned entities. In the left pie chart,
the users can see the percentage of Wikipedia
articles in different languages as annotations of the
input document. According to their weights, the
Wikipedia articles in each language are organized
in 3 relevance categories: high, medium and low.
In the middle bar chart, the number of Wikipedia
articles in each language and in each category
is illustrated. The right data grid provides the
Wikipedia article titles with their weights in the
output language and the mentions in the input
document. Clicking an individual title opens
the corresponding Wikipedia article in the output
language. The semantic analysis component
has the similar user interface as the semantic
annotation component. The difference is that the
Wikipedia articles listed in the right data grid are
topically relevant to the input documents instead
of being mentioned as entities. Regarding the user
interface of semantic comparison component, the
main inputs are two documents that might be in

different languages and the output is the semantic
relatedness between them.

4 User Study

We conducted a task-based user study and the
goal is to assess the effectiveness and usability of
our multilingual and cross-lingual text analytics
toolkit. We design two tasks reflecting the real-life
information needs, namely entity tracking and
article matching, to assess the functionality of
our toolkit from different perspectives. The entity
tracking task is to detect mentions of the given
entities in the articles, where the descriptions
of the entities and the articles are in different
languages. Given articles in one language as
context, the article matching task is to find the
most similar articles in another language.

The participants of our user study are 16
volunteers and each of them got both tasks, which
they had to solve in two ways: (1) using a major
online machine translation service as baseline
and (2) using our multilingual and cross-lingual
text analytics toolkit with all the functionality.
For each task, we randomly selected 10 parallel
articles in English, French and Spanish from the
JRC-Acquis parallel corpus3. After a survey,

3http://langtech.jrc.it/JRC-Acquis.
html

15

(a) Avg. successrate per task / method

(b) Avg. time spent per task / method

Figure 3: Evaluation Results of the User Study.

we decided to provide the entity descriptions for
entity tracking task and the context documents
for article matching task in English, which all
participants can speak. Regarding the articles to
be processed, we set up the tasks using Spanish
articles for the participants who do not know
Spanish, and tasks with French articles for the
participants who cannot speak French.

To measure the overall effectiveness of our
toolkit, we have analysed the ratio of tasks that
were completed successfully and correctly and the
time the participants required for the tasks. The
average success rate and time spent per task and
per method are illustrated in Figure 3. For entity
tracking task, we observe that a success rate of
80% was achieved using our toolkit in comparison
with the success rate of 70% yielded by using the
baseline. In addition, there is a significant gap
between the time spent using different methods.
While it took 21.5 minutes on average to solve
the task using the baseline, only 6.75 minutes
were needed when using our toolkit. Regarding
the article matching task, both methods performed
very well. Using our toolkit obtained a slightly
higher success rate of 99% than 94% using the
baseline. The time spent using both methods is not

so different. The participants spent 15.75 minutes
on average using the baseline while 2 minutes less
were needed using our toolkit.

In terms of the user study, our toolkit is
more effective than the baseline for both entity
tracking and article matching tasks. Therefore,
we conclude that our toolkit provides useful
functionality to make searching entities, analyzing
and comparing articles more easily and accurately
in the multilingual and cross-lingual scenarios.

Acknowledgments

This work was supported by the European
Community’s Seventh Framework Programme
FP7-ICT-2011-7 (XLike, Grant 288342).

References
[Gabrilovich and Markovitch2006] Evgeniy

Gabrilovich and Shaul Markovitch. 2006.
Overcoming the Brittleness Bottleneck using
Wikipedia: Enhancing Text Categorization with
Encyclopedic Knowledge. In AAAI, pages
1301–1306.

[Gabrilovich and Markovitch2007] Evgeniy
Gabrilovich and Shaul Markovitch. 2007.
Computing semantic relatedness using
wikipedia-based explicit semantic analysis. In
Proceedings of the 20th international joint
conference on artificial intelligence, volume 6,
page 12.

[Mihalcea and Csomai2007] Rada Mihalcea and
Andras Csomai. 2007. Wikify!: linking documents
to encyclopedic knowledge. In In CIKM ’07:
Proceedings of the sixteenth ACM conference
on Conference on information and knowledge
management, pages 233–242. ACM.

[Milne and Witten2008] David Milne and Ian H.
Witten. 2008. Learning to link with wikipedia.
In Proceedings of the 17th ACM conference on
Information and knowledge management, CIKM
’08, pages 509–518, New York, NY, USA. ACM.

[Sorg and Cimiano2008] P. Sorg and P. Cimiano. 2008.
Cross-lingual Information Retrieval with Explicit
Semantic Analysis. In Working Notes of the Annual
CLEF Meeting.

[Zhang et al.2013] Lei Zhang, Achim Rettinger,
Michael Frber, and Marko Tadic. 2013. A
comparative evaluation of cross-lingual text
annotation techniques. In CLEF, pages 124–135.

16

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 17–20,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

RDRPOSTagger: A Ripple Down Rules-based Part-Of-Speech Tagger

Dat Quoc Nguyen1 and Dai Quoc Nguyen1 and Dang Duc Pham2 and Son Bao Pham1

1 Faculty of Information Technology
University of Engineering and Technology

Vietnam National University, Hanoi
{datnq, dainq, sonpb}@vnu.edu.vn
2 L3S Research Center, Germany

pham@L3S.de

Abstract

This paper describes our robust, easy-
to-use and language independent toolkit
namely RDRPOSTagger which employs
an error-driven approach to automatically
construct a Single Classification Ripple
Down Rules tree of transformation rules
for POS tagging task. During the demon-
stration session, we will run the tagger on
data sets in 15 different languages.

1 Introduction
As one of the most important tasks in Natural
Language Processing, Part-of-speech (POS) tag-
ging is to assign a tag representing its lexical
category to each word in a text. Recently, POS
taggers employing machine learning techniques
are still mainstream toolkits obtaining state-of-
the-art performances1. However, most of them are
time-consuming in learning process and require a
powerful computer for possibly training machine
learning models.

Turning to rule-based approaches, the most
well-known method is proposed by Brill (1995).
He proposed an approach to automatically learn
transformation rules for the POS tagging problem.
In the Brill’s tagger, a new selected rule is learned
on a context that is generated by all previous rules,
where a following rule will modify the outputs of
all the preceding rules. Hence, this procedure re-
turns a difficulty to control the interactions among
a large number of rules.

Our RDRPOSTagger is presented to overcome
the problems mentioned above. The RDRPOSTag-
ger exploits a failure-driven approach to auto-
matically restructure transformation rules in the
form of a Single Classification Ripple Down Rules
(SCRDR) tree (Richards, 2009). It accepts inter-
actions between rules, but a rule only changes the

1http://aclweb.org/aclwiki/index.php?title=POS_Tagging_(State_of_the_art)

outputs of some previous rules in a controlled con-
text. All rules are structured in a SCRDR tree
which allows a new exception rule to be added
when the tree returns an incorrect classification.
A specific description of our new RDRPOSTagger
approach is detailed in (Nguyen et al., 2011).

Packaged in a 0.6MB zip file, implementations
in Python and Java can be found at the tagger’s
website http://rdrpostagger.sourceforge.net/. The
following items exhibit properties of the tagger:
• The RDRPOSTagger is easy to configure and

train. There are only two threshold parameters uti-
lized to learn the rule-based model. Besides, the
tagger is very simple to use with standard input
and output, having clear usage and instructions
available on its website.
• The RDRPOSTagger is language independent.

This POS tagging toolkit has been successfully
applied to English and Vietnamese. To train the
toolkit for other languages, users just provide a
lexicon of words and the most frequent associated
tags. Moreover, it can be easily combined with ex-
isting POS taggers to reach an even better result.
• The RDRPOSTagger obtains very competitive

accuracies. On Penn WSJ Treebank corpus (Mar-
cus et al., 1993), taking WSJ sections 0-18 as the
training set, the tagger achieves a competitive per-
formance compared to other state-of-the-art En-
glish POS taggers on the test set of WSJ sections
22-24. For Vietnamese, it outperforms all previ-
ous machine learning-based POS tagging systems
to obtain an up-to-date highest result on the Viet-
namese Treebank corpus (Nguyen et al., 2009).
• The RDRPOSTagger is fast. For instance in

English, the time2 taken to train the tagger on
the WSJ sections 0-18 is 40 minutes. The tagging
speed on the test set of the WSJ sections 22-24 is
2800 words/second accounted for the latest imple-
mentation in Python whilst it is 92k words/second

2Training and tagging times are computed on a Windows-
7 OS computer of Core 2Duo 2.4GHz & 3GB of memory.

17

Figure 1: A part of our SCRDR tree for English POS tagging.

for the implementation in Java.

2 SCRDR methodology

A SCRDR tree (Richards, 2009) is a binary tree
with two distinct types of edges. These edges are
typically called except and if-not edges. Associ-
ated with each node in a tree is a rule. A rule has
the form: if α then β where α is called the condi-
tion and β is referred to as the conclusion.

Cases in SCRDR are evaluated by passing a
case to the root of the tree. At any node in the
tree, if the condition of a node N ’s rule is satis-
fied by the case, the case is passed on to the ex-
ception child ofN using the except link if it exists.
Otherwise, the case is passed on to the N ’s if-not
child. The conclusion given by this process is the
conclusion from the last node in the SCRDR tree
which fired (satisfied by the case). To ensure that
a conclusion is always given, the root node typi-
cally contains a trivial condition which is always
satisfied. This node is called the default node.

A new node containing a new rule (i.e. a new ex-
ception rule) is added to an SCRDR tree when the
evaluation process returns the wrong conclusion.
The new node is attached to the last node in the
evaluation path of the given case with the except
link if the last node is the fired one. Otherwise, it
is attached with the if-not link.

For example with the SCRDR tree in the fig-
ure 1, given a case “as/IN investors/NNS an-
ticipate/VB a/DT recovery/NN” where “antici-
pate/VB” is the current word and tag pair, the case
satisfies the conditions of the rules at nodes (0),
(1) and (3), it then is passed to the node (6) (utiliz-
ing except links). As the case does not satisfy the
condition of the rule at node (6), it will be trans-
ferred to node (7) using if-not link. Since the case
does not fulfill the conditions of the rules at nodes
(7) and (8), we have the evaluation path (0)-(1)-
(3)-(6)-(7)-(8) with fired node (3). Therefore, the
tag for “anticipate” is concluded as “VBP”.

Rule (1) - the rule at node (1) - is the exception
rule3 of the default rule (0). As node (2) is the if-
not child node of the node (1), the associated rule
(2) is also an exception rule of the rule (0). Simi-
larly, both rules (3) and (4) are exception rules of
the rule (1) whereas all rules (6), (7) and (8) are
exception rules of the rule (3), and so on. Thus,
the exception structure of the SCRDR tree extends
to 4 levels: rules (1) and (2) at layer 1, rules (3),
(4) and (5) at layer 2, rules (6), (7) and (8) at layer
3, and rule (9) at layer 4.

3 The RDRPOSTagger toolkit
The toolkit consists of four main compo-
nents: Utility, Initial-tagger, SCRDR-learner and
SCRDR-tagger.

3.1 The Utility

The major functions of this component are to eval-
uate tagging performances (displaying accuracy
results), and to create a lexicon of words and the
most frequent associated tags as well as to extract
Raw corpus from an input golden training corpus.

3.2 The Initial-tagger

The initial-tagger developed in the RDRPOSTag-
ger toolkit is based on the lexicon which is gen-
erated in the use of the Utility component to as-
sign a tag for each word. To deal with unknown
words, the initial-tagger utilizes several regular ex-
pressions or heuristics for English and Vietnamese
whereas the most frequent tag in the training cor-
pus is exploited to label unknown-words when
adapting to other languages.

3.3 The SCRDR-learner

The SCRDR-learner component uses a failure-
driven method to automatically build a SCRDR
tree of transformation rules. Figure 3 describes the
learning process of the learner.

3The default rule is the unique rule which is not an excep-
tion rule of any other rule. Every rule in layer n is an excep-
tion rule of a rule in layer n− 1.

18

#12: if next1stTag == “object.next1stTag” then tag = “correctTag”
#14: if prev1stTag == “object.prev1stTag” then tag = “correctTag”
#18: if word == “object.word” && next1stTag == “object.next1stTag” then tag = “correctTag”

Figure 2: Rule template examples.

Figure 3: The diagram of the learning process of the learner.

The Initialized corpus is returned by perform-
ing the Initial-tagger on the Raw corpus. By com-
paring the initialized one with the Golden corpus,
an Object-driven dictionary of pairs (Object, cor-
rectTag) is produced in which Object captures the
5-word window context covering the current word
and its tag in following format (previous 2nd word
/ previous 2nd tag, previous 1st word / previous
1st tag, word / currentTag, next 1st word / next 1st

tag, next 2nd word / next 2nd tag) from the initial-
ized corpus, and the correctTag is the correspond-
ing tag of the current word in the golden corpus.

There are 27 Rule templates applied for Rule se-
lector which is to select the most suitable rules
to build the SCRDR tree. Examples of the rule
templates are shown in figure 2 where elements
in bold will be replaced by concrete values from
Objects in the object-driven dictionary to create
concrete rules. The SCRDR tree of rules is initial-
ized by building the default rule and all exception
rules of the default one in form of if currentTag =
“TAG” then tag = “TAG” at the layer-1 exception
structure, for example rules (1) and (2) in the fig-
ure 1, and the like. The learning approach to con-
struct new exception rules to the tree is as follows:

• At a node-F in the SCRDR tree, let SO be
the set of Objects from the object-driven dictio-
nary, which those Objects are fired at the node-F
but their initialized tags are incorrect (the current-
Tag is not the correctTag associated). It means that
node-F gives wrong conclusions to all Objects in
the SO set.
• In order to select a new exception rule of the

rule at node-F from all concrete rules which are

generated for all Objects in the SO set, the se-
lected rule have to satisfy constraints: (i) The rule
must be unsatisfied by cases for which node-F has
already given correct conclusions. This constraint
does not apply to node-F at layer-1 exception struc-
ture. (ii) The rule must associate to a highest score
value of subtracting B from A in comparison to
other ones, where A and B are the numbers of the
SO’s Objects which are correctly and incorrectly
concluded by the rule respectively. (iii) And the
highest value is not smaller than a given threshold.

The SCRDR-learner applies two threshold pa-
rameters: first threshold is to choose exception
rules at the layer-2 exception structure (e.g rules
(3), (4) and (5) in figure 1), and second threshold
is to select rules for higher exception layers.
• The process to add new exception rules is re-

peated until there is no rule satisfying the con-
straints above. At each iteration, a new rule is
added to the current SCRDR tree to correct error
conclusions made by the tree.

3.4 The SCRDR-tagger

The SCRDR-tagger component is to perform the
POS tagging on a raw text corpus where each line
is a sequence of words separated by white space
characters. The component labels the text corpus
by using the Initial-tagger. It slides due to a left-
to-right direction on a 5-word window context to
generate a corresponding Object for each initially
tagged word. The Object is then classified by the
learned SCRDR tree model to produce final con-
clusion tag of the word as illustrated in the exam-
ple in the section 2.

4 Evaluation
The RDRPOSTagger has already been success-
fully applied to English and Vietnamese corpora.

4.1 Results for English

Experiments for English employed the Penn WSJ
Treebank corpus to exploit the WSJ sections 0-18
(38219 sentences) for training, the WSJ sections
19-21 (5527 sentences) for validation and the WSJ
sections 22-24 (5462 sentences) for test.

Using a lexicon created in the use of the train-

19

ing set, the Initial-tagger obtains an accuracy of
93.51% on the test set. By varying the thresholds
on the validation set, we have found the most suit-
able values4 of 3 and 2 to be used for evaluating
the RDRPOSTagger on the test set. Those thresh-
olds return a SCRDR tree model of 2319 rules
in a 4-level exception structure. The training time
and tagging speed for those thresholds are men-
tioned in the introduction section. On the same test
set, the RDRPOSTagger achieves a performance at
96.49% against 96.46% accounted for the state-of-
the-art POS tagger TnT (Brants, 2000).

For another experiment, only in training pro-
cess: 1-time occurrence words in training set are
initially tagged as out-of-dictionary words. With
a learned tree model of 2418 rules, the tagger
reaches an accuracy of 96.51% on the test set.

Retraining the tagger utilizing another initial
tagger5 developed in the Brill’s tagger (Brill,
1995) instead of the lexicon-based initial one,
the RDRPOSTagger gains an accuracy result of
96.57% which is slightly higher than the perfor-
mance at 96.53% of the Brill’s.

4.2 Results for Vietnamese

In the first Evaluation Campaign6 on Vietnamese
Language Processing, the POS tagging track pro-
vided a golden training corpus of 28k sentences
(631k words) collected from two sources of the
national VLSP project and the Vietnam Lexicog-
raphy Center, and a raw test corpus of 2100 sen-
tences (66k words). The training process returned
a SCRDR tree of 2896 rules7. Obtaining a highest
performance on the test set, the RDRPOSTagger
surpassed all other participating systems.

We also carry out POS tagging experiments on
the golden corpus of 28k sentences and on the
Vietnamese Treebank of 10k sentences (Nguyen
et al., 2009) according to 5-fold cross-validation
scheme8. The average accuracy results are pre-
sented in the table 1. Achieving an accuracy of
92.59% on the Vietnamese Treebank, the RDR-

4The thresholds 3 and 2 are reused for all other experi-
ments in English and Vietnamese.

5The initial tagger gets a result of 93.58% on the test set.
6http://uet.vnu.edu.vn/rivf2013/campaign.html
7It took 100 minutes to construct the tree leading to tag-

ging speeds of 1100 words/second and 45k words/second for
the implementations in Python and Java, respectively, on the
computer of Core 2Duo 2.4GHz & 3GB of memory.

8In each cross-validation run, one fold is selected as test
set, 4 remaining folds are merged as training set. The initial
tagger exploits a lexicon generated from the training set. In
training process, 1-time occurrence words are initially labeled
as out-of-lexicon words.

Table 1: Accuracy results for Vietnamese

Corpus Initial-tagger RDRPOSTagger
28k 91.18% 93.42%
10k 90.59% 92.59%

POSTagger outperforms previous Maximum En-
tropy Model, Conditional Random Field and Sup-
port Vector Machine-based POS tagging systems
(Tran et al., 2009) on the same evaluation scheme.

5 Demonstration and Conclusion
In addition to English and Vietnamese, in the
demonstration session, we will present promising
experimental results and run the RDRPOSTagger
for other languages including Bulgarian, Czech,
Danish, Dutch, French, German, Hindi, Italian,
Lao, Portuguese, Spanish, Swedish and Thai. We
will also let the audiences to contribute their own
data sets for retraining and testing the tagger.

In this paper, we describe the rule-based
POS tagging toolkit RDRPOSTagger to auto-
matically construct transformation rules in form
of the SCRDR exception structure. We be-
lieve that our robust, easy-to-use and language-
independent toolkit RDRPOSTagger can be useful
for NLP/CL-related tasks.

References
Thorsten Brants. 2000. TnT: a statistical part-of-

speech tagger. In Proc. of 6th Applied Natural Lan-
guage Processing Conference, pages 224–231.

Eric Brill. 1995. Transformation-based error-driven
learning and natural language processing: a case
study in part-of-speech tagging. Comput. Linguist.,
21(4):543–565.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large anno-
tated corpus of English: the penn treebank. Comput.
Linguist., 19(2):313–330.

Phuong Thai Nguyen, Xuan Luong Vu, Thi
Minh Huyen Nguyen, Van Hiep Nguyen, and
Hong Phuong Le. 2009. Building a Large
Syntactically-Annotated Corpus of Vietnamese. In
Proc. of LAW III workshop, pages 182–185.

Dat Quoc Nguyen, Dai Quoc Nguyen, Son Bao Pham,
and Dang Duc Pham. 2011. Ripple Down Rules for
Part-of-Speech Tagging. In Proc. of 12th CICLing -
Volume Part I, pages 190–201.

Debbie Richards. 2009. Two decades of ripple down
rules research. Knowledge Engineering Review,
24(2):159–184.

Oanh Thi Tran, Cuong Anh Le, Thuy Quang Ha, and
Quynh Hoang Le. 2009. An experimental study
on vietnamese pos tagging. Proc. of the 2009 Inter-
national Conference on Asian Language Processing,
pages 23–27.

20

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 21–24,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

Morfessor 2.0: Toolkit for statistical morphological segmentation
Peter Smit1

peter.smit@aalto.fi
Sami Virpioja2

sami.virpioja@aalto.fi

Stig-Arne Grönroos1

stig-arne.gronroos@aalto.fi
Mikko Kurimo1

mikko.kurimo@aalto.fi

1Department of Signal Processing and Acoustics, Aalto University
2Department of Information and Computer Science, Aalto University

Abstract

Morfessor is a family of probabilistic ma-
chine learning methods for finding the
morphological segmentation from raw text
data. Recent developments include the de-
velopment of semi-supervised methods for
utilizing annotated data. Morfessor 2.0
is a rewrite of the original, widely-used
Morfessor 1.0 software, with well docu-
mented command-line tools and library in-
terface. It includes new features such as
semi-supervised learning, online training,
and integrated evaluation code.

1 Introduction

In the morphological segmentation task, the goal
is to segment words into morphemes, the small-
est meaning-carrying units. Morfessor is a family
of methods for unsupervised morphological seg-
mentation. The first version of Morfessor, called
Morfessor Baseline, was developed by Creutz and
Lagus (2002) its software implementation, Mor-
fessor 1.0, released by Creutz and Lagus (2005b).
A number of Morfessor variants have been devel-
oped later, including Morfessor Categories-MAP
(Creutz and Lagus, 2005a) and Allomorfessor
(Virpioja et al., 2010). Even though these algo-
rithms improve Morfessor Baseline in some areas,
the Baseline version has stayed popular as a gener-
ally applicable morphological analyzer (Spiegler
et al., 2008; Monson et al., 2010).

Over the past years, Morfessor has been used
for a wide range of languages and applications.
The applications include large vocabulary contin-
uous speech recognition (e.g. Hirsimäki et al.,
2006), machine translation (e.g. Virpioja et al.,
2007), and speech retrieval (e.g. Arisoy et al.,
2009). Morfessor is well-suited for languages with
concatenative morphology, and the tested lan-
guages include Finnish and Estonian (Hirsimäki

et al., 2009), German (El-Desoky Mousa et al.,
2010), and Turkish (Arisoy et al., 2009).

Morfessor 2.0 is a new implementation of the
Morfessor Baseline algorithm.1 It has been writ-
ten in a modular manner and released as an open
source project with a permissive license to encour-
age extensions. This paper includes a summary of
the Morfessor 2.0 software and a description of the
demonstrations that will be held. An extensive de-
scription of the features in Morfessor 2.0, includ-
ing experiments, is available in the report by Vir-
pioja et al. (2013).

2 Morfessor model and algorithms

Models of the Morfessor family are generative
probabilistic models that predict compounds and
their analyses (segmentations) given the model pa-
rameters. We provide a brief overview of the
methodology; Virpioja et al. (2013) should be re-
ferred to for the complete formulas and description
of the model and its training algorithms.

Unlike older Morfessor implementations, Mor-
fessor 2.0 is agnostic in regard to the actual data
being segmented. In addition to morphological
segmentation, it can handle, for example, sentence
chunking. To reflect this we use the following
generic terms: The smallest unit that can be split
will be an atom (letter). A compound (word) is a
sequence of atoms. A construction (morph) is a
sequence of atoms contained inside a compound.

2.1 Model and cost function

The cost function of Morfessor Baseline is derived
using maximum a posteriori estimation. That is,
the goal is to find the most likely parameters θ

1Morfessor 2.0 can be downloaded from the Mor-
pho project website (http://www.cis.hut.fi/
projects/morpho/) or GitHub repository (https:
//github.com/aalto-speech/morfessor).

21

given the observed training dataDW :

θMAP = arg max
θ

p(θ)p(DW |θ) (1)

Thus we are maximizing the product of the model
prior p(θ) and the data likelihood p(DW |θ). As
usual, the cost function to minimize is set as the
minus logarithm of the product:

L(θ,DW) = − log p(θ)− log p(DW |θ). (2)

During training, the data likelihood is calcu-
lated using a hidden variable that contains the cur-
rent chosen analyses. Secondly, it is assumed that
the constructions in a compound occur indepen-
dently. This simplifies the data likelihood to the
product of all construction probabilities in the cho-
sen analyses. Unlike previous versions, Morfes-
sor 2.0 includes also the probabilities of the com-
pound boundaries in the data likelihood.

For prior probability, Morfessor Baseline de-
fines a distribution over the lexicon of the model.
The prior assigns higher probability to lexicons
that store fewer and shorter constructions. The
lexicon prior consists of to parts, a product over
the form probabilities and a product over the usage
probabilities. The former includes the probability
of a sequence of atoms and the latter the maxi-
mum likelihood estimates of the constructions. In
contrast to Morfessor 1.0, Morfessor 2.0 currently
supports only an implicit exponential length prior
for the constructions.

2.2 Training and decoding algorithms

A Morfessor model can be trained in multiple
ways. The standard batch training uses a local
search utilizing recursive splitting. The model is
initialized with the compounds and the full model
cost is calculated. The data structures are designed
in such way that the cost is efficient compute dur-
ing the training.

In one epoch of the algorithm, all compounds
in the training data are processed. For each com-
pound, all possible two-part segmentations are
tested. If one of the segmentations yields the low-
est cost, it is selected and the segmentation is tried
recursively on the resulting segments. In each step
of the algorithm, the cost can only decrease or stay
the same, thus guaranteeing convergence. The al-
gorithm is stopped when the cost decreases less
than a configurable threshold value in one epoch.

An extension of the Viterbi algorithm is used
for decoding, that is, finding the optimal segmen-
tations for new compound forms without changing
the model parameters.

3 New features in Morfessor 2.0

3.1 Semi-supervised extensions

One important feature that has been implemented
in Morfessor 2.0 are the semi-supervised exten-
sions as introduced by Kohonen et al. (2010)

Morfessor Baseline tends to undersegment
when the model is trained for morphological seg-
mentation using a large corpus (Creutz and Lagus,
2005b). Oversegmentation or undersegmentation
of the method are easy to control heuristically
by including a weight parameter α for the likeli-
hood in the cost function. A low α increases the
priors influence, favoring small construction lexi-
cons, while a high value increases the data likeli-
hood influence, favoring longer constructions.

In semi-supervised Morfessor, the likelihood of
an annotated data set is added to the cost function.
As the amount of annotated data is typically much
lower than the amount of unannotated data, its ef-
fect on the cost function may be very small com-
pared to the likelihood of the unannotated data.
To control the effect of the annotations, a sepa-
rate weight parameter β can be included for the
annotated data likelihood.

If separate development data set is available for
automatic evaluation of the model, the likelihoods
weights can be optimized to give the best out-
put. This can be done by brute force using a grid
search. However, Morfessor 2.0 implementation
includes a simple heuristic for automatically tun-
ing the value of α during the training, trying to
balance precision and recall. A simple heuristic,
which gives an equivalent contribution to the an-
notated data, is used for β.

3.2 On-line training

In addition to the batch training mode, Morfes-
sor 2.0 supports on-line training mode, in which
unannotated text is processed one compound at a
time. This makes it simple to, for example, adapt
pre-trained models for new type of data. As fre-
quent compounds are encountered many times in
running text, Morfessor 2.0 includes an option for
randomly skipping compounds and constructions
that have been recently analyzed. The random

22

Figure 1: Screenshot from the Morfessor 2.0 demo.

skips can also be used to speed up the batch train-
ing.

3.3 Integrated evaluation code
One common method for evaluating the perfor-
mance of a Morfessor model is to compare it
against a gold standard segmentation using seg-
mentation boundary precision and recall. To make
the evaluation easy, the necessary tools for calcu-
lating the BPR metric by (Virpioja et al., 2011)
are included in Morfessor 2.0. For significance
testing when comparing multiple models, we have
included the Wilcoxon signed-rank test. Both the
evaluation code and statistical testing code are ac-
cessible from both the command line and the li-
brary interface.

3.4 N-best segmentation
In order to generate multiple segmentations for a
single compound, Morfessor 2.0 includes a n-best
Viterbi algorithm. It allows extraction of all possi-
ble segmentations for a compound and the proba-
bilities of the segmentations.

4 Demonstration

In the demonstration session, multiple features
and usages of Morfessor will be shown.

4.1 Web-based demonstration
A live demonstration will be given of segmenting
text with Morfessor 2.0 for different language and

training data options. In a web interface, the user
can choose a language, select the size of the train-
ing corpus and other options. After that a word
can be given which will be segmented using n-best
Viterbi, showing the 5 best results.

A list of planned languages can be found in Ta-
ble 1. A screen shot of the demo interface is shown
in Figure 1.

Languages # Words # Word forms
English 62M 384.903
Estonian 212M 3.908.820
Finnish 36M 2.206.719
German 46M 1.266.159
Swedish 1M 92237
Turkish 12M 617.298

Table 1: List of available languages for Morfessor
2.0 demonstration.

4.2 Command line interface

The new command line interface will be demon-
strated to train and evaluate Morfessor models
from texts in different languages. A diagram of
the tools is shown in Figure 2

4.3 Library interface

Interfacing with the Morfessor 2.0 Python library
will be demonstrated for building own scientific
experiments, as well as integrating Morfessor in

23

Training data Annotation data

morfessor-train

Morfessor
model

CorpusGold standard

morfessor-
segment

morfessor-
evaluate

Segmented corpusBPR-scores

Figure 2: The standard workflow for Morfessor
command line tools

bigger project. Also the code of the Web based
demonstration will be shown as an example.

Acknowledgements

The authors have received funding from the EC’s
7th Framework Programme (FP7/2007–2013) un-
der grant agreement n°287678 and the Academy
of Finland under the Finnish Centre of Excel-
lence Program 2012–2017 (grant n°251170) and
the LASTU Programme (grants n°256887 and
259934). The experiments were performed us-
ing computer resources within the Aalto Univer-
sity School of Science ”Science-IT” project.

References
E. Arisoy, D. Can, S. Parlak, H. Sak, and M. Saraclar.

2009. Turkish broadcast news transcription and re-
trieval. Audio, Speech, and Language Processing,
IEEE Transactions on, 17(5):874–883.

M. Creutz and K. Lagus. 2002. Unsupervised discov-
ery of morphemes. In Mike Maxwell, editor, Pro-
ceedings of the ACL-02 Workshop on Morphological
and Phonological Learning, pages 21–30. Associa-
tion for Computational Linguistics, July.

M. Creutz and K. Lagus. 2005a. Inducing the mor-
phological lexicon of a natural language from unan-
notated text. In Proceedings of AKRR’05, Interna-
tional and Interdisciplinary Conference on Adaptive
Knowledge Representation and Reasoning, pages
106–113, Espoo, Finland, June. Helsinki University
of Technology.

M. Creutz and K. Lagus. 2005b. Unsupervised
morpheme segmentation and morphology induction
from text corpora using Morfessor 1.0. Technical
Report A81, Publications in Computer and Informa-
tion Science, Helsinki University of Technology.

A. El-Desoky Mousa, M. Ali Basha Shaik, R. Schluter,
and H. Ney. 2010. Sub-lexical language models for
German LVCSR. In Spoken Language Technology
Workshop (SLT), 2010 IEEE, pages 171–176. IEEE.

T. Hirsimäki, M. Creutz, V. Siivola, M. Kurimo, S. Vir-
pioja, and J. Pylkkönen. 2006. Unlimited vocabu-
lary speech recognition with morph language mod-
els applied to Finnish. Computer Speech & Lan-
guage, 20(4):515–541.

T. Hirsimäki, J. Pylkkönen, and M. Kurimo. 2009.
Importance of high-order n-gram models in morph-
based speech recognition. Audio, Speech, and
Language Processing, IEEE Transactions on,
17(4):724–732.

O. Kohonen, S. Virpioja, and K. Lagus. 2010. Semi-
supervised learning of concatenative morphology.
In Proceedings of the 11th Meeting of the ACL Spe-
cial Interest Group on Computational Morphology
and Phonology, pages 78–86, Uppsala, Sweden,
July. Association for Computational Linguistics.

C. Monson, K. Hollingshead, and B. Roark. 2010.
Simulating morphological analyzers with stochastic
taggers for confidence estimation. In Multilingual
Information Access Evaluation I. Text Retrieval Ex-
periments, pages 649–657. Springer.

S. Spiegler, B. Golénia, K. Shalonova, P. Flach, and
R. Tucker. 2008. Learning the morphology of zulu
with different degrees of supervision. In Spoken
Language Technology Workshop, 2008. SLT 2008.
IEEE, pages 9–12. IEEE.

S. Virpioja, J. Väyrynen, M. Creutz, and M. Sadeniemi.
2007. Morphology-aware statistical machine trans-
lation based on morphs induced in an unsupervised
manner. In Proceedings of the Machine Translation
Summit XI, pages 491–498, Copenhagen, Denmark,
September.

S. Virpioja, O. Kohonen, and K. Lagus. 2010. Unsu-
pervised morpheme analysis with Allomorfessor. In
Multilingual Information Access Evaluation I. Text
Retrieval Experiments, volume 6241 of LNCS, pages
609–616. Springer Berlin / Heidelberg.

S. Virpioja, V. Turunen, S. Spiegler, O. Kohonen, and
M. Kurimo. 2011. Empirical comparison of evalua-
tion methods for unsupervised learning of morphol-
ogy. TAL, 52(2):45–90.

S. Virpioja, P. Smit, S. Grönroos, and M. Kurimo.
2013. Morfessor 2.0: Python implementation and
extensions for Morfessor Baseline. Report 25/2013
in Aalto University publication series SCIENCE +
TECHNOLOGY, Aalto University, Finland.

24

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 25–28,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

CASMACAT: A Computer-assisted Translation Workbench
V. Alabau?, C. Buck‡, M. Carl†, F. Casacuberta?, M. Garcı́a-Martı́nez†

U. Germann‡, J. González-Rubio?, R. Hill‡, P. Koehn‡, L. A. Leiva?

B. Mesa-Lao†, D. Ortiz?, H. Saint-Amand‡, G. Sanchis?, C. Tsoukala‡
?PRHLT Research Center, Universitat Politècnica de València

{valabau,fcn,jegonzalez,luileito,dortiz,gsanchis}@dsic.upv.es
†Copenhagen Business School, Department of International Business Communication

{ragnar.bonk,mc.isv,mgarcia,bm.ibc}@cbs.dk
‡School of Informatics, University of Edinburgh

{cbuck,ugermann,rhill2,pkoehn,hsamand,ctsoukal}@inf.ed.ac.uk

Abstract

CASMACAT is a modular, web-based
translation workbench that offers ad-
vanced functionalities for computer-aided
translation and the scientific study of hu-
man translation: automatic interaction
with machine translation (MT) engines
and translation memories (TM) to ob-
tain raw translations or close TM matches
for conventional post-editing; interactive
translation prediction based on an MT en-
gine’s search graph, detailed recording and
replay of edit actions and translator’s gaze
(the latter via eye-tracking), and the sup-
port of e-pen as an alternative input device.
The system is open source sofware and in-
terfaces with multiple MT systems.

1 Introduction

CASMACAT1 (Cognitive Analysis and Statistical
Methods for Advanced Computer Aided Trans-
lation) is a three-year project to develop an
advanced, interactive workbench for computer-
assisted translation (CAT). Currently, at the end of
the second year, the tool includes an array of inno-
vative features that combine to offer a rich, user-
focused working environment not available in any
other CAT tool.

CASMACAT works in close collaboration with
the MATECAT project2, another open-source web-
based CAT tool. However, while MATECAT is
concerned with conventional CAT, CASMACAT is
focused on enhancing user interaction and facili-
tating the real-time involvement of human trans-
lators. In particular, CASMACAT provides highly
interactive editing and logging features.

1http://www.casmacat.eu
2http://www.matecat.com

Through this combined effort, we hope to foster
further research in the area of CAT tools that im-
prove the translation workflow while appealing to
both professional and amateur translators without
advanced technical skills.

GUI web
server

CAT
server

MT
server

Javascript PHP

 Python

 Python

web socket
HTTP

HTTP

Figure 1: Modular design of the workbench: Web-
based components (GUI and web server), CAT
server and MT server can be swapped out.

2 Design and components

The overall design of the CASMACAT workbench
is modular. The system consists of four com-
ponents. (1) a front-end GUI implemented in
HTML5 and JavaScript; (2) a back-end imple-
mented in PHP; (3) a CAT server that manages the
editing process and communicates with the GUI
through web sockets; (4) a machine translation
(MT) server that provides raw translation of source
text as well as additional information, such as a
search graph that efficiently encodes alternative
translation options. Figure 1 illustrates how these
components interact with each other. The CAT
and MT servers are written in Python and inter-
act with a number of software components imple-
mented in C++. All recorded information (source,
translations, edit logs) is permanently stored in a
MySQL database.

These components communicate through a
well-defined API, so that alternative implementa-
tions can be used. This modular architecture al-

25

Figure 2: Translation view for an interactive post-editing task.

lows the system to be used partially. For instance,
the CAT and MT servers can be used separately as
part of a larger translation workflow, or only as a
front-end when an existing MT solution is already
in place.

2.1 CAT server
Some of the interactive features of CASMACAT

require real-time interaction, such as interactive
text-prediction (ITP), so establishing an HTTP
connection every time would cause a significant
network overhead. Instead, the CAT server relies
on web sockets, by means of Python’s Tornadio.

When interactive translation prediction is en-
abled, the CAT server first requests a translation
together with the search graph of the current seg-
ment from the MT server. It keeps a copy of the
search graph and constantly updates and visualizes
the translation prediction based on the edit actions
of the human translator.

2.2 MT server
Many of the functions of the CAT server require
information from an MT server. This information
includes not only the translation of the input sen-
tence, but also n-best lists, search graphs, word
alignments, and so on. Currently, the CASMACAT

workbench supports two different MT servers:
Moses (Koehn et al., 2007) and Thot (Ortiz-
Martı́nez et al., 2005).

The main call to the MT server is a request for
a translation. The request includes the source sen-
tence, source and target language, and optionally
a user ID. The MT server returns an JSON object,
following an API based on Google Translate.

3 Graphical User Interface

Different views, based on the MATECAT GUI,
perform different tasks. The translation view is
the primary one, used when translating or post-
editing, including logging functions about the

translation/post-editing process. Other views im-
plement interfaces to upload new documents or to
manage the documents that are already in the sys-
tem. Additionally, a replay view can visualize all
edit actions for a particular user session, including
eye tracking information, if available.

3.1 Post-Editing
In the translation view (Figure 2), the document
is presented in segments and the assistance fea-
tures provided by CASMACAT work at the segment
level. If working in a post-editing task without
ITP, up to three MT or TM suggestions are pro-
vided for the user to choose. Keyboard shortcuts
are available for performing routine tasks, for in-
stance, loading the next segment or copying source
text into the edit box. The user can assign different
status to each segment, for instance, “translated”
for finished ones or “draft” for segments that still
need to be reviewed. Once finished, the translated
document can be downloaded in XLIFF format.3

In the translation view, all user actions re-
lated to the translation task (e.g. typing activity,
mouse moves, selection of TM proposals, etc.) are
recorded by the logging module, collecting valu-
able information for off-line analyses.

3.2 Interactive Translation Prediction
Here we briefly describe the main advanced CAT
features implemented in the workbench so far.

Intelligent Autocompletion: ITP takes place
every time a keystroke is detected by the sys-
tem (Barrachina et al., 2009). In such event, the
system produces a prediction for the rest of the
sentence according to the text that the user has al-
ready entered. This prediction is placed at the right
of the text cursor.

Confidence Measures: Confidence mea-
sures (CMs) have two main applications in

3XLIFF is a popular format in the translation industry.

26

MT (González-Rubio et al., 2010). Firstly, CMs
allow the user to clearly spot wrong translations
(e.g., by rendering in red those translations
with very low confidence according to the MT
module). Secondly, CMs can also inform the user
about the translated words that are dubious, but
still have a chance of being correct (e.g., rendered
in orange). Figure 3 illustrates this.

Figure 3: Visualisation of Confidence Measures

Prediction Length Control: Providing the user
with a new prediction whenever a key is pressed
has been proved to be cognitively demanding (Al-
abau et al., 2012). Therefore, the GUI just displays
the prediction up to the first wrong word according
to the CMs provided by the system (Figure 4).

Figure 4: Prediction Length Control

Search and Replace: Most of CAT tools pro-
vide the user with intelligent search and replace
functions for fast text revision. CASMACAT fea-
tures a straightforward function to run search and
replacement rules on the fly.

Word Alignment Information: Alignment of
source and target words is an important part of
the translation process (Brown et al., 1993). To
display their correspondence, they are hihglighted
every time the user places the mouse or the text
cursor on a word; see Figure 5.

. .

Figure 5: Visualisation of Word Alignment

Prediction Rejection: With the purpose of eas-
ing user interaction, CASMACAT also supports a
one-click rejection feature (Sanchis-Trilles et al.,
2008). This feature invalidates the current predic-
tion made for the sentence that is being translated,
and provides the user with an alternate one.

3.3 Replay mode and logging functions
The CASMACAT workbench implements detailed
logging of user activity data, which enables both
automatic analysis of translator behaviour and
retrospective replay of a user session. Replay
takes place in the translation view of the GUI
and it displays the screen status of the recorded
translation/post-editing process. The workbench
also features a plugin to enrich the replay mode
with gaze data coming from an eye-tracker. This
eye-tracking integration is possible through a
project-developed web browser extension which,
at the moment, has only been fully tested with SR-
Research EyeLinks4.

4 E-pen Interaction

E-pen interaction is intended to be a complemen-
tary input rather than a substitution of the key-
board. The GUI features the minimum compo-
nents necessary for e-pen interaction; see Figure 6.
When the e-pen is enabled, the display of the cur-
rent segment is changed so that the source seg-
ment is shown above the target segment. Then the
drawing area is maximised horizontally, facilitat-
ing handwriting, particularly in tablet devices. An
HTML canvas is also added over the target seg-
ment, where the user’s drawings are handled. This
is achieved by means of MINGESTURES (Leiva
et al., 2013), a highly accurate, high-performance
gesture set for interactive text editing that can dis-
tinguish between gestures and handwriting. Ges-
tures are recognised on the client side so the re-
sponse is almost immediate. Conversely, when
handwritten text is detected, the pen strokes are
sent to the server. The hand-written text recog-
nition (HTR) server is based on iAtros, an open
source HMM decoder.

if any feature not is available on your networksubstitution

Figure 6: Word substitution with e-pen interaction

5 Evaluation

The CASMACAT workbench was recently evalu-
ated in a field trial at Celer Soluciones SL, a
language service provider based in Spain. The
trial involved nine professional translators work-
ing with the workbench to complete different post-
editing tasks from English into Spanish. The pur-

4http://www.sr-research.com

27

pose of this evaluation was to establish which of
the workbench features are most useful to profes-
sional translators. Three different configurations
were tested:

• PE: The CASMACAT workbench was used
only for conventional post-editing, without
any additional features.

• IA: Only the Intelligent Autocompletion fea-
ture was enabled. This feature was tested sep-
arately because it was observed that human
translators substantially change the way they
interact with the system.

• ITP: All features described in Section 3.2
were included in this configuration, except-
ing CMs, which were deemed to be not accu-
rate enough for use in a human evaluation.

For each configuration, we measured the aver-
age time taken by the translator to produce the fi-
nal translation (on a segment basis), and the aver-
age number of edits required to produce the final
translation. The results are shown in Table 1.

Setup Avg. time (s) Avg. # edits

PE 92.2 ± 4.82 141.39 ± 7.66
IA 86.07 ± 4.92 124.29 ± 7.28
ITP 123.3 ± 29.72 137.22 ± 13.67

Table 1: Evaluation of the different configurations
of the CASMACAT workbench. Edits are measured
in keystrokes, i.e., insertions and deletions.

While differences between these numbers are
not statistically significant, the apparent slowdown
in translation with ITP is due to the fact that all
translators had experience in post-editing but none
of them had ever used a workbench featuring in-
telligent autocompletion before. Therefore, these
were somewhat unsurprising results.

In a post-trial survey, translators indicated that,
on average, they liked the ITP system the best.
They were not fully satisfied with the freedom of
interactivity provided by the IA system. The lack
of any visual aid to control the intelligent auto-
completions provided by the system made transla-
tors think that they had to double-check any of the
proposals made by the system when making only
a few edits.

6 Conclusions

We have introduced the current CASMACAT work-
bench, a next-generation tool for computer as-
sisted translation. Each of the features available
in the most recent prototype of the workbench has
been explained. Additionally, we have presented
an executive report of a field trial that evaluated
genuine users’ performance while using the work-
bench. Although E-pen interaction has not yet
been evaluated outside of the laboratory, it will the
subject of future field trials, and a working demon-
stration is available.

Acknowledgements

Work supported by the European Union 7th

Framework Program (FP7/2007-2013) under the
CASMACAT project (grant agreement no 287576).

References
Vicent Alabau, Luis A. Leiva, Daniel Ortiz-Martı́nez,

and Francisco Casacuberta. 2012. User evaluation
of interactive machine translation systems. In Proc.
EAMT, pages 20–23.

Sergio Barrachina et al. 2009. Statistical approaches to
computer-assisted translation. Computational Lin-
guistics, 35(1):3–28.

Peter Brown et al. 1993. The mathematics of statistical
machine translation: Parameter estimation. Compu-
tational linguistics, 19(2):263–311.

Jesús González-Rubio, Daniel Ortiz-Martı́nez, and
Francisco Casacuberta. 2010. On the use of confi-
dence measures within an interactive-predictive ma-
chine translation system. In Proc. of EAMT.

Philipp Koehn et al. 2007. Moses: Open source toolkit
for statistical machine translation. In Proc. of ACL,
pages 177–180.

Luis A. Leiva, Vicent Alabau, and Enrique Vidal.
2013. Error-proof, high-performance, and context-
aware gestures for interactive text edition. In Proc.
of CHI, pages 1227–1232.

Daniel Ortiz-Martı́nez, Ismael Garcı́a-Varea, and Fran-
cisco Casacuberta. 2005. Thot: a toolkit to train
phrase-based statistical translation models. In Proc.
of MT Summit X, pages 141–148.

G. Sanchis-Trilles et al. 2008. Improving interactive
machine translation via mouse actions. In Proc. of
EMNLP, pages 485–494.

28

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 29–32,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

Jane: Open Source Machine Translation System Combination

Markus Freitag1 and Matthias Huck2 and Hermann Ney1

1 Lehrstuhl für Informatik 6 2 School of Informatics
Computer Science Department University of Edinburgh

RWTH Aachen University 10 Crichton Street
D-52056 Aachen, Germany Edinburgh EH8 9AB, UK

{freitag,ney}@cs.rwth-aachen.de mhuck@inf.ed.ac.uk

Abstract

Different machine translation engines can
be remarkably dissimilar not only with re-
spect to their technical paradigm, but also
with respect to the translation output they
yield. System combination is a method for
combining the output of multiple machine
translation engines in order to take benefit
of the strengths of each of the individual
engines.

In this work we introduce a novel system
combination implementation which is in-
tegrated into Jane, RWTH’s open source
statistical machine translation toolkit. On
the most recent Workshop on Statisti-
cal Machine Translation system combi-
nation shared task, we achieve improve-
ments of up to 0.7 points in BLEU over
the best system combination hypotheses
which were submitted for the official eval-
uation. Moreover, we enhance our sys-
tem combination pipeline with additional
n-gram language models and lexical trans-
lation models.

1 Introduction

We present a novel machine translation system
combination framework which has been imple-
mented and released as part of the most recent ver-
sion of the Jane toolkit.1 Our system combina-
tion framework has already been applied success-
fully for joining the outputs of different individual
machine translation engines from several project
partners within large-scale projects like Quaero
(Peitz and others, 2013), EU-BRIDGE (Freitag
and others, 2013), and DARPA BOLT. The com-
bined translation is typically of better quality than

1Jane is publicly available under an open source non-
commercial license and can be downloaded from http://
www.hltpr.rwth-aachen.de/jane/ .

any of the individual hypotheses. The source code
of our framework has now been released to the
public.

We focus on system combination via confusion
network decoding. This basically means that we
align all input hypotheses from individual machine
translation (MT) engines together and extract a
combination as a new output. For our baseline
algorithm we only need the first best translation
from each of the different MT engines, without
any additional information. Supplementary to the
baseline models integrated into our framework, we
optionally allow for utilization of n-gram language
models and IBM-1 lexicon models (Brown et al.,
1993), both trained on additional training corpora
that might be at hand.

We evaluate the Jane system combination
framework on the latest official Workshop on
Statistical Machine Translation (WMT) system
combination shared task (Callison-Burch et al.,
2011). Many state-of-the-art MT system combi-
nation toolkits have been evaluated on this task,
which allows us to directly compare the results ob-
tained with our novel Jane system combination
framework with the best known results obtained
with other toolkits.

The paper is structured as follows: We com-
mence with giving a brief outline of some related
work (Section 2). In Section 3 we describe the
techniques which are implemented in the Jane
MT system combination framework. The exper-
imental results are presented and analyzed in Sec-
tion 4. We conclude the paper in Section 5.

2 Related Work

The first application of system combination to MT
has been presented by Bangalore et al. (2001).
They used a multiple string alignment (MSA) ap-
proach to align the hypotheses together and built
a confusion network from which the system com-
bination output is determined using majority vot-

29

0 1
will:will/-0.3

EPS:*EPS*/-0.7
2

contain:contain/-0.2

comprise:comprise/-0.1

EPS:*EPS*/-0.7
3

EPS:*EPS*/-0.3

the:the/-0.6

comprising:comprising/-0.1
4

EPS:*EPS*/-0.9

an:an/-0.1
5

isolated:isolated/-0.8

EPS:*EPS*/-0.2
6

cdna:cdna/-1
7

EPS:*EPS*/-0.4

library:library/-0.6

Figure 1: Scored confusion network. *EPS* denotes the empty word, red arcs highlight the shortest path.

ing and an additional language model. Matusov
et al. (2006) proposed an alignment based on the
GIZA++ toolkit which introduced word reordering
not present in MSA, and Sim et al. (2007) used
alignments produced by TER scoring (Snover et
al., 2006). Extensions of the last two are based on
hidden Markov models (He et al., 2008), inversion
transduction grammars (Karakos et al., 2008), or
METEOR (Heafield and Lavie, 2010).

3 The Jane MT System Combination
Framework

In this section we describe the techniques for MT
system combination which we implemented in the
Jane toolkit.2 We first address the generation of a
confusion network from the input translations. For
that we need a pairwise alignment between all in-
put hypotheses. We then present word reordering
mechanisms, the baseline models, and additional
advanced models which can be applied for system
combination using Jane. The system combina-
tion decoding step basically involves determining
the shortest path through the confusion network
based on several model scores from this network.

3.1 Confusion Network
A confusion network represents all different com-
bined translations we can generate from the set of
provided input hypotheses. Figure 1 depicts an ex-
ample of a confusion network. A word alignment
between all pairs of input hypotheses is required
for generating a confusion network. For conve-
nience, we first select one of the input hypotheses
as the primary hypothesis. The primary hypothesis
then determines the word order and all remaining
hypotheses are word-to-word aligned to the given
word order.

To generate a meaningful confusion network,
we should adopt an alignment which only al-
lows to switch between words which are syn-
onyms, misspellings, morphological variants or
on a higher level paraphrases of the words from
the primary hypothesis. In this work we use
METEOR alignments. METEOR (Denkowski

2Practical usage aspects are explained in the man-
ual: http://www.hltpr.rwth-aachen.de/jane/
manual.pdf

and Lavie, 2011) was originally designed to re-
order a translation for scoring and has a high pre-
cision. The recall is lower because synonyms
which are not in the METEOR database or punc-
tuation marks like “!” and “?” are not aligned
to each other. For our purposes, we augment the
METEOR paraphrase table with entries like “.|!”,
“.|?”, or “the|a”.

Figure 2 shows an example METEOR hypothe-
sis alignment. The primary hypothesis “isolated
cdna lib” determines the word order. An entry
“a|b” means that word “a” from a secondary hy-
pothesis has been aligned to word “b” from the
primary one. “*EPS*” is the empty word and
thus an entry “*EPS*|b” means that no word could
be aligned to the primary hypothesis word “b”.
“a|*EPS*” means that the word “a” has not been
aligned to any word from the primary hypothesis.

After producing the alignment information, we
can build the confusion network. Now, we are able
to not only extract the original primary hypoth-
esis from the confusion network but also switch
words from the primary hypothesis to words from
any secondary hypothesis (also the empty word)
or insert words or sequences of words.

In the final confusion network, we do not stick
to one hypothesis as the primary system. For m in-
put hypotheses we build m different confusion net-
works, each having a different system as primary
system. The final confusion network is a union of
all m networks.3

The most straightforward way to obtain a com-
bined hypothesis from a confusion network is to
extract it via majority voting. For example, in
the first column in Figure 3, “the” has been seen
three times, but the translation options “a” and
“an” have each been seen only once. By means
of a straight majority vote we would extract “the”.
As the different single system translations are of
varying utility for system combination, we assign
a system weight to each input hypothesis. The sys-
tem weights are set by optimizing scaling factors
for binary system voting features (cf. Section 3.3).
We employ some more weighted baseline features

3Jane’s implementation for building confusion networks
is based on the OpenFST library (Allauzen et al., 2007).

30

the|*EPS* isolated|isolated cdna|cdna *EPS*|lib
a|*EPS* isolated|isolated cdna|cdna lib|lib
an|*EPS* isolated|isolated cdna|cdna lib|lib
the|*EPS* *EPS*|isolated cdna|cdna *EPS*|lib
the|*EPS* *EPS*|isolated cdna|cdna lib|lib

Figure 2: Alignment result after running
METEOR. *EPS* denotes the empty word.

EPS isolated cdna lib
the isolated cdna *EPS*
a isolated cdna lib
an isolated cdna lib
the *EPS* cdna lib
the *EPS* cdna *EPS*
the isolated cdna lib

Figure 3: Majority vote on aligned words. The last
line is the system combination output.

and additional models (cf. Section 3.4) in the deci-
sion process. In Figure 1 we scored the confusion
network with some system weights and used the
shortest path algorithm to find the hypothesis with
the highest score (the hypothesis along the path
highlighted in red).

3.2 Word Reordering
Many words from secondary hypotheses can be
unaligned as they have no connection to any words
of the primary hypothesis. However, words from
different secondary systems could be related to
each other. In order to account for these relations
and to give the words from the secondary hypothe-
ses a higher chance to be present in the combined
output, we introduce some simple word reordering
mechanisms.

We rank the hypotheses according to a language
model trained on all input hypotheses. We initial-
ize the confusion network with the sentence from
the primary system. During the generation of the
confusion network we align the hypotheses con-
secutively into the confusion network via the fol-
lowing procedure:

• If a word wi from hypothesis A has a relation
to a word v j of the primary hypothesis, we
insert it as a new translation alternative to v j.
• If wi has no relation to the primary, but to

a word uk from a secondary hypothesis in
the confusion network, we insert wi as a new
translation alternative to uk.
• Otherwise we insert wi in front of the previ-

ous inserted word wi−1 of hypothesis A. The
new position gets an epsilon arc for the pri-
mary and all unrelated secondary systems.

3.3 Baseline Models
Once we have the final confusion network, we
want to adopt models which are valuable features
to score the different translation options. In our
implementation we use the following set of stan-
dard models:

m binary system voting features For each word
the voting feature for system i (1≤ i≤m) is 1
iff the word is from system i, otherwise 0.

Binary primary system feature A feature that
marks the primary hypothesis.

LM feature 3-gram language model trained on
the input hypotheses.

Word penalty Counts the number of words.

3.4 Additional Models
The Jane system combination toolkit also pro-
vides the possibility to utilize some additional
models for system combination. For the current
release we integrated the optional usage of the fol-
lowing additional models:

Big LM A big language model trained on larger
monolingual target-side corpora.

IBM-1 Source-to-target and target-to-source
IBM-1 lexical translation models obtained
from bilingual training data.

4 Experimental Results

All experiments are conducted on the latest offi-
cial WMT system combination shared task.4 We
exclusively employ resources which were permit-
ted for the constrained track of the task in all our
setups. The big LM was trained on News Com-
mentary and Europarl data. As tuning set we
used newssyscombtune2011, as test set we used
newssyscombtest2011. Feature weights have been
optimized with MERT (Och, 2003). Table 1 con-
tains the empirical results (truecase). For all four
language pairs we achieve improvements over the
best 2011 evaluation system combination submis-
sion either in BLEU or TER. We get the highest
improvement of 0.7 points in BLEU for es→en
when adding both the big LM and IBM-1 features.
Adding the big LM over the baseline enhances
the translation quality for all four language pairs.
Adding IBM-1 lexicon models on top of the big
LM is of marginal or no benefit for most language

4The most recent system combination shared task that
has been organized as part of the WMT evaluation cam-
paign took place in 2011. http://www.statmt.org/
wmt11/system-combination-task.html

31

Table 1: Experimental results on the WMT system combination tasks (newssyscombtest2011).
system cz→en de→en es→en fr→en

BLEU TER BLEU TER BLEU TER BLEU TER

best single system 28.7 53.4 23.0 59.5 28.9 51.2 29.4 52.0
best 2011 evaluation syscomb 28.8 55.2 25.1 57.4 32.4 49.9 31.3 50.1
Jane syscomb baseline 28.8 53.6 24.7 57.6 32.7 50.3 31.3 50.3
Jane syscomb + big LM 29.0 54.5 25.0 57.3 32.9 50.3 31.4 50.0
Jane syscomb + big LM + IBM-1 29.0 54.5 25.0 57.3 33.1 50.0 31.5 50.1

pairs, but at least provides slight improvements for
es→en.

5 Conclusion

RWTH’s open source machine translation toolkit
Jane now includes a state-of-the-art system com-
bination framework. We found that the Jane sys-
tem combination performs on a similar level or
better than the best evaluation system combina-
tion submissions on all WMT 2011 system com-
bination shared task language pairs (with English
as target language). We furthermore presented the
effects of integrating a big n-gram language model
and of lexical features from IBM-1 models.

Acknowledgements

This material is based upon work supported by
the DARPA BOLT project under Contract No.
HR0011- 12-C-0015. Any opinions, findings and
conclusions or recommendations expressed in this
material are those of the authors and do not neces-
sarily reflect the views of DARPA.

The research leading to these results has re-
ceived funding from the European Union Sev-
enth Framework Programme (FP7/2007-2013) un-
der grant agreement no 287658.

References
Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-

jciech Skut, and Mehryar Mohri. 2007. OpenFst: A
General and Efficient Weighted Finite-State Trans-
ducer Library. In Jan Holub and Jan Zdárek, edi-
tors, Implementation and Application of Automata,
volume 4783 of Lecture Notes in Computer Science,
pages 11–23. Springer Berlin Heidelberg.

Srinivas Bangalore, German Bordel, and Giuseppe Ric-
cardi. 2001. Computing Consensus Translation
from Multiple Machine Translation Systems. In
Proc. of ASRU, pages 351–354.

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The
Mathematics of Statistical Machine Translation: Pa-
rameter Estimation. Computational Linguistics,
19(2):263–311.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Omar F. Zaidan. 2011. Findings of the 2011
Workshop on Statistical Machine Translation. In
Proc. of WMT, pages 22–64.

Michael Denkowski and Alon Lavie. 2011. Meteor
1.3: Automatic Metric for Reliable Optimization
and Evaluation of Machine Translation Systems. In
Proc. of WMT, pages 85–91.

Markus Freitag et al. 2013. EU-BRIDGE MT: Text
Translation of Talks in the EU-BRIDGE Project. In
Proc. of IWSLT.

Xiaodong He, Mei Yang, Jianfeng Gao, Patrick
Nguyen, and Robert Moore. 2008. Indirect-
HMM-based Hypothesis Alignment for Combining
Outputs from Machine Translation Systems. In
Proc. of EMNLP, pages 98–107.

Kenneth Heafield and Alon Lavie. 2010. Combining
Machine Translation Output with Open Source: The
Carnegie Mellon Multi-Engine Machine Translation
Scheme. The Prague Bulletin of Mathematical Lin-
guistics, 93:27–36.

Damianos Karakos, Jason Eisner, Sanjeev Khudanpur,
and Markus Dreyer. 2008. Machine translation sys-
tem combination using ITG-based alignments. In
Proc. of ACL: Short Papers, pages 81–84.

Evgeny Matusov, Nicola Ueffing, and Hermann Ney.
2006. Computing Consensus Translation from Mul-
tiple Machine Translation Systems Using Enhanced
Hypotheses Alignment. In Proc. of EACL, pages
33–40.

Franz J. Och. 2003. Minimum Error Rate Training for
Statistical Machine Translation. In Proc. of ACL,
pages 160–167.

Stephan Peitz et al. 2013. Joint WMT 2013 Submis-
sion of the QUAERO Project. In Proc. of WMT,
pages 185–192.

Khe Chai Sim, William J. Byrne, Mark J.F. Gales,
Hichem Sahbi, and Phil C. Woodland. 2007.
Consensus Network Decoding for Statistical Ma-
chine Translation System Combination. In
Proc. of ICASSP, volume 4, pages 105–108.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciula, and John Makhoul. 2006. A Study of
Translation Edit Rate with Targeted Human Annota-
tion. In Proc. of AMTA, pages 223–231.

32

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 33–36,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

CHISPA on the GO
A mobile Chinese-Spanish translation service for travelers in trouble

Jordi Centelles1,2, Marta R. Costa-jussà1,2 and Rafael E. Banchs2

1 Universitat Politècnica de Catalunya, Barcelona
2 Institute for Infocomm Research, Singapore

{visjcs,vismrc,rembanchs}@i2r.a-star.edu.sg

Abstract

This demo showcases a translation service that
allows travelers to have an easy and convenient
access to Chinese-Spanish translations via a mo-
bile app. The system integrates a phrase-based
translation system with other open source compo-
nents such as Optical Character Recognition and
Automatic Speech Recognition to provide a very
friendly user experience.

1 Introduction

During the last twenty years, Machine Transla-
tion technologies have matured enough to get out
from the academic world and jump into the com-
mercial area. Current commercially available ma-
chine translation services, although still not good
enough to replace human translations, are able to
provide useful and reliable support in certain ap-
plications such as cross-language information re-
trieval, cross-language web browsing and docu-
ment exploration.

On the other hand, the increasing use of smart-
phones, their portability and the availability of in-
ternet almost everywhere, have allowed for lots of
traditional on-line applications and services to be
deployed on these mobile platforms.

In this demo paper we describe “CHISPA on the
GO” a Chinese-Spanish translation service that in-
tends to provide a portable and easy to use lan-
guage assistance tool for travelers between Chi-
nese and Spanish speaking countries.

The main three characteristics of the presented
demo system are as follows:

• First, the system uses a direct translation be-
tween Chinese and Spanish, rather than using
a pivot language as intermediate step as most
of the current commercial systems do when
dealing with distant languages.

• Second, in addition to support on-line trans-
lations, as other commercial systems, our
system also supports access from mobile
platforms, Android and iOS, by means of na-
tive mobile apps.

• Third, the mobile apps combine the base
translation technology with other supporting
technologies such as Automatic Speech
Recognition (ASR), Optical Character
Recognition (OCR), Image retrieval and
Language detection in order to provide a
friendly user experience.

2 SMT system description

The translation technology used in our system
is based on the well-known phrase-based trans-
lation statistical approach (Koehn et al., 2003).
This approach performs the translation splitting
the source sentence in segments and assigning to
each segment a bilingual phrase from a phrase-
table. Bilingual phrases are translation units that
contain source words and target words, and have
different scores associated to them. These bilin-
gual phrases are then selected in order to max-
imize a linear combination of feature functions.
Such strategy is known as the log-linear model
(Och and Ney, 2002). The two main feature func-
tions are the translation model and the target lan-
guage model. Additional models include lexical
weights, phrase and word penalty and reordering.

2.1 Experimental details

Generally, Chinese-Spanish translation follows
pivot approaches to be translated (Costa-jussà et
al., 2012) because of the lack of parallel data to
train the direct approach. The main advantage
of our system is that we are using the direct ap-
proach and at the same time we rely on a pretty
large corpus. For Chinese-Spanish, we use (1) the
Holy Bible corpus (Banchs and Li, 2008), (2) the

33

United Nations corpus, which was released for re-
search purposes (Rafalovitch and Dale, 2009), (3)
a small subset of the European Parliament Plenary
Speeches where the Chinese part was syntheti-
cally produced by translating from English, (4) a
large TAUS corpus (TausData, 2013) which comes
from technical translation memories, and (5) an in-
house developed small corpus in the transportation
and hospitality domains. In total we have 70 mil-
lion words.

A careful preprocessing was developed for all
languages. Chinese was segmented with Stanford
segmenter (Tseng et al., 2005) and Spanish was
preprocessed with Freeling (Padró et al., 2010).
When Spanish is used as a source language, it is
preprocessed by lower-casing and unaccented the
input. Finally, we use the MOSES decoder (Koehn
et al., 2007) with standard configuration: align-
grow-final-and alignment symmetrization, 5-gram
language model with interpolation and kneser-ney
discount and phrase-smoothing and lexicalized re-
ordering. We use our in-house developed corpus
to optimize because our application is targeted to
the travelers-in-need domain.

3 Web Translator and Mobile
Application

This section describes the main system architec-
ture and the main features of web translator and
the mobile applications.

3.1 System architecture

Figure 1 shows a block diagram of the system ar-
chitecture. Below, we explain the main compo-
nents of the architecture, starting with the back-
end and ending with the front-end.

3.1.1 Back-end
As previously mentioned, our translation system
uses MOSES. More specifically, we use the open
source MOSES server application developed by
Saint-Amand (2013). Because translation tables
need to be kept permanently in memory, we use bi-
nary tables to reduce the memory space consump-
tion. The MOSES server communicates with a PHP

script that is responsible for receiving the query to
be translated and sending the translation back.

For the Chinese-Spanish language pair, we
count with four types of PHP scripts. Two of them
communicate with the web-site and the other two
with the mobile applications. In both cases, one

Figure 1: Block diagram of the system architec-
ture

of the two PHP scripts supports Chinese to Span-
ish translations and the other one the Spanish to
Chinese translations.

The functions of the PHP scripts responsible
for supporting translations are: (1) receive the
Chinese/Spanish queries from the front-end; (2)
preprocess the Chinese/Spanish queries; (3) send
these preprocessed queries to the Chinese/Spanish
to Spanish/Chinese MOSES servers; (4) receive the
translated queries; and (5) send them back to the
front-end.

3.1.2 Front-end
HTML and Javascript constitute the main code
components of the translation website.Another
web development technique used was Ajax, which
allows for asynchronous communication between
the MOSES server and the website. This means that
the website does not need to be refreshed after ev-
ery translation.

The HTTP protocol is used for the communica-
tions between the web and the server. Specifically,

34

we use the POST method, in which the server re-
ceives data through the request message’s body.

The Javascript is used mainly to implement the
input methods of the website, which are a Spanish
keyboard and a Pinyin input method, both open
source and embedded into our code. Also, using
Javascript, a small delay was programmed in order
to automatically send the query to the translator
each time the user stops typing.

Another feature that is worth mentioning is the
support of user feedback to suggest better transla-
tions. Using MYSQL, we created a database in
the server where all user suggestions are stored.
Later, these suggestions can be processed off-line
and used in order to improve the system.

Additionally, all translations processed by the
system are stored in a file. This information is to
be exploited in the near future, when a large num-
ber of translations has been collected, to mine for
the most commonly requested translations. The
most common translation set will be used to im-
plement an index and search engine so that any
query entered by a user, will be first checked
against the index to avoid overloading the trans-
lation engine.

3.2 Android and iphone applications
The android app was programmed with the An-
droid development tools (ADT). It is a plug-in for
the Eclipse IDE that provides the necessary envi-
ronment for building an app.

The Android-based “CHISPA on the GO” app
is depicted in Figure 2.

For the communication between the Android
app and the server we use the HTTPClient inter-
face. Among other things, it allows a client to
send data to the server via, for instance, the POST

method, as used on the website case.
For the Iphone app we use the xcode software

provided by apple and the programming language
used is Objective C.

In addition to the base translation system, the
app also incorporates Automatic Speech Recogni-
tion (ASR), Optical Character Recognition tech-
nologies as input methods (OCR), Image retrieval
and Language detection.

3.2.1 ASR and OCR
In the case of ASR, we relay on the native ASR
engines of the used mobile platforms: Jelly-bean
in the case of Android1 and Siri in the case of

1http://www.android.com/about/jelly-bean/

Figure 2: Android application

iOS2. Regarding the OCR implemented technol-
ogy, this is an electronic conversion of scanned
images into machine-encoded text. We adapted
the open-source OCR Tesseract (released under the
Apache license) (Tesseract, 2013).

3.2.2 Image retrieval
For image retrieving, we use the popular website
flickr (Ludicorp, 2004). The image retrieving is
activated with an specific button ”search Image”
button in the app (see Figure 2). Then, an URL

(using the HTTPClient method) is sent to a flickr
server. In the URL we specify the tag (i.e. the
topic of the images we want), the number of im-
ages, the secret key (needed to interact with flickr)
and also the type of object we expect (in our case,
a JSON object). When the server response is re-
ceived, we parse the JSON object. Afterwards,
with the HTTPConnection method and the infor-
mation parsed, we send the URL back to the server
and we retrieve the images requested. Also, the
JAVA class that implements all these methods ex-
tends an AsyncTask in order to not block the
user interface meanwhile is exchanging informa-
tion with the flickr servers.

3.2.3 Language detection
We have also implemented a very simple but ef-
fective language detection system, which is very
suitable for distinguishing between Chinese and
Spanish. Given the type of encoding we are using

2http://www.apple.com/ios/siri/

35

(UTF-8), codes for most characters used in Span-
ish are in the range from 40 to 255, and codes for
most characters used in Chinese are in the range
from 11,000 and 30,000. Accordingly, we have
designed a simple procedure which computes the
average code for the sequence of characters to be
translated. This average value is compared with a
threshold to determine whether the given sequence
of characters represents a Chinese or a Spanish in-
put.

4 Conclusions

In this demo paper, we described “CHISPA on
the GO” a translation service that allows travelers-
in-need to have an easy and convenient access to
Chinese-Spanish translations via a mobile app.

The main characteristics of the presented sys-
tem are: the use direct translation between Chi-
nese and Spanish, the support of both website as
well as mobile platforms, and the integration of
supporting input technologies such as Automatic
Speech Recognition, Optical Character Recogni-
tion, Image retrieval and Language detection.

As future work we intend to exploit collected
data to implement an index and search engine for
providing fast access to most commonly requested
translations. The objective of this enhancement is
twofold: supporting off-line mode and alleviating
the translation server load.

Acknowledgments

The authors would like to thank the Universitat
Politècnica de Catalunya and the Institute for In-
focomm Research for their support and permission
to publish this research. This work has been par-
tially funded by the Seventh Framework Program
of the European Commission through the Inter-
national Outgoing Fellowship Marie Curie Action
(IMTraP-2011-29951) and the HLT Department of
the Institute for Infocomm Reseach.

References
R. E. Banchs and H. Li. 2008. Exploring Span-

ish Morphology effects on Chinese-Spanish SMT.
In MATMT 2008: Mixing Approaches to Machine
Translation, pages 49–53, Donostia-San Sebastian,
Spain, February.

M. R. Costa-jussà, C. A. Henrı́quez Q, and R. E.
Banchs. 2012. Evaluating indirect strategies for
chinese-spanish statistical machine translation. J.
Artif. Int. Res., 45(1):761–780, September.

P. Koehn, F.J. Och, and D. Marcu. 2003. Statisti-
cal Phrase-Based Translation. In Proceedings of the
41st Annual Meeting of the Association for Compu-
tational Linguistics (ACL’03).

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Con-
stantin, and E. Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL’07), pages
177–180, Prague, Czech Republic, June.

Ludicorp. 2004. Flickr. accessed online May 2013
http://www.flickr.com/.

F.J. Och and H. Ney. 2002. Dicriminative training
and maximum entropy models for statistical ma-
chine translation. In Proceedings of the 40th An-
nual Meeting of the Association for Computational
Linguistics (ACL’02), pages 295–302, Philadelphia,
PA, July.

L. Padró, M. Collado, S. Reese, M. Lloberes, and
I. Castellón. 2010. FreeLing 2.1: Five Years of
Open-Source Language Processing Tools. In Pro-
ceedings of 7th Language Resources and Evaluation
Conference (LREC 2010), La Valleta, Malta, May.

A. Rafalovitch and R. Dale. 2009. United Nations
General Assembly Resolutions: A Six-Language
Parallel Corpus. In Proceedings of the MT Summit
XII, pages 292–299, Ottawa.

H. Saint-Amand. 2013. Moses server. accessed
online May 2013 http://www.statmt.org/
moses/?n=Moses.WebTranslation.

TausData. 2013. Taus data. accessed online May 2013
http://www.tausdata.org.

Tesseract. 2013. Ocr. accessed online
May 2013 https://code.google.com/p/
tesseract-ocr/.

H. Tseng, P. Chang, G. Andrew, D. Jurafsky, and
C. Manning. 2005. A conditional random field
word segmenter. In Fourth SIGHAN Workshop on
Chinese Language Processing.

Appendix: Demo Script Outline

The presenter will showcase the “CHISPA on the
GO” app by using the three different supported in-
put methods: typing, speech and image. Trans-
lated results will be displayed along with related
pictures of the translated items and/or locations
when available. A poster will be displayed close
to the demo site, which will illustrate the main ar-
chitecture of the platform and will briefly explain
the technology components of it.

36

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 37–40,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

Safe In-vehicle Dialogue Using Learned Predictions of User Utterances

Staffan Larsson
Talkamatic AB

Första Långgatan 18
413 28 Göteborg

Sweden
staffan@talkamatic.se

Fredrik Kronlid
Talkamatic AB

Första Långgatan 18
413 28 Göteborg

Sweden
fredrik@talkamatic.se

Pontus Wärnestål
Halmstad University

Box 823
301 18 Halmstad

Sweden
pontus.warnestal@hh.se

Abstract

We present a multimodal in-vehicle dia-
logue system which uses learned predic-
tions of user answers to enable shorter,
more efficient, and thus safer natural lan-
guage dialogues.

1 Background

1.1 Driver Distraction

Driver distraction is a common cause of accidents,
and is often caused by the driver interacting with
technologies such as mobile phones, media play-
ers or navigation systems. A study, commonly
referred to as the “100 car study” (Neale et al.,
2005) revealed that secondary task distraction is
the largest cause of driver inattention, and that the
handling of wireless devices is the most common
secondary task.

As interaction complexity in the car increases
due to more advanced infotainment systems and
smartphones, drivers are often executing several
tasks in parallel to the primary task of driving.
The increased functionality of these systems has
resulted in large hierarchical information architec-
tures that prolong interaction time, thereby nega-
tively affecting safety as well as user experience
(Kern and Schmidt, 2009).

1.2 Relation to state of the art

State-of-the-art infotainment systems typically do
not include user models at all. Siri, available on
the Apple iPhone 4S and later models, has a static
user model containing personal information ex-
plicitly provided by the user (home address, etc.).
This information is used in voice interactions; for
example, given that the user has entered their fam-
ily relations, phrases like “Call my wife” can be
used. A different approach is taken in Google
Now, which dynamically learns user patterns from

observations and presents unrequested informa-
tion as “cards” on the screen. However, Google
Now does not attempt to integrate predictions into
dialogue interaction.

The work reported here explores the use of
adaptive user modeling in multimodal dialogue
systems. User preferences and behaviour patterns
are learnt from observations of user interactions
with the infotainment system and the context in
which these interactions take place, and are used
proactively to predict user answers and thereby en-
able shorter and more efficient interaction. The
underlying motivating assumption is that using
apps and services in an in-vehicle context inher-
ently leads to distraction, and that reducing inter-
action time will reduce driver distraction.

1.3 TDM

Based on Larsson (2002) and later work, Talka-
matic AB has developed the Talkamatic Dialogue
Manager (TDM).

TDM provides a general interaction model
based on interaction which are basic to human-
human linguistic interaction, resulting in a high
degree of naturalness and flexibility which in-
creases usability. The model is domain-
independent which means that dialogue behaviour
can be altered without touching application prop-
erties and vice versa. TDM also offers integrated
multi-modality which allows user to freely switch
between modalities (Larsson et al., 2011).

1.4 Grounding in TDM

Grounding (Clark and Brennan, 1990) is, roughly,
the process of making sure that dialogue partici-
pants agree on what has been said so far and what
it meant. TDM has an extensive model of ground-
ing (Larsson, 2002). It operates on different levels:

• Perception

• Semantic Understanding

37

• Pragmatic Understanding

• Acceptance

System feedback (positive, negative and in
some cases interrogative) can be generated on each
level:

• Examples: “I didn’t hear” – negative percep-
tion

• “To work, is that right?” – interrogative se-
mantic understanding

• “OK” – positive acceptance.

2 Learning and Classification

Many dialogue applications require the user to an-
swer a number of questions. To make dialogue
shorter, we have extended TDM so that it tries to
predict user answers on the basis of a user model
learned from observations of user behaviour. As
an illustration, we use a road information appli-
cation which tries to predict the user’s destina-
tion and thereby eliminate the need to ask the user
about this.

2.1 Learning Method
Initially, a range of learning methods requir-
ing (N-gram, MDP, POMDP) were explored and
evaluated, but the KNN (K-Nearest Neighbours)
(Mitchell, 1997) was considered the best method.
An important advantage is that KNN can learn
from a relatively small set of observations. This
is in contrast to the MDP and POMDP (and to
a lesser extent, N-gram) methods, which require
large amounts of data to generate useful behaviour.
A potential drawback of KNN is that this model
cannot model sequences of user behaviours.

2.2 Parameter Selection
On the basis of user studies provided from the
user partner of the project, it was decided that the
most important user model parameters was posi-
tion, day of the week and hour of the day. The
training data were simulated and correspond to the
behaviour of an archetypal persona provided by
the user partner in the project.

2.3 Learning and Classification
The learning part of the system listens for a num-
ber of events, such as “start-car”, “stop-car” etc..
From these events and information about cur-
rent position, the time of the day and the day of

the week, the system creates new data instances.
The system thus learns how the user’s destination
varies depending on these parameters. A sample
dataset is shown in Figure 1, where data points
show destinations of trips initiated at various times
of the week.

When the dialogue manager requests a predic-
tion of the destination, the KNN algorithm tries to
find the K data points closest to the present data
point, and the top alternatives are returned to the
dialogue manager together with confidence scores
indicating the reliability of the predictions.

3 Integration of Classifications into TDM

3.1 Grounding uncertain information
We treat the information emanating from the user
model as uncertain information about a (predicted)
user utterance. Hence, the same mechanisms used
for grounding utterances have been adapted for in-
tegrating user model data.

3.2 Integrating Classifier Output
TDM is based on the Information State Update
(ISU) approach to dialogue management. The in-
formation state in TDM is based on that of the
system described in Larsson (2002) and includes
Questions Under Discussion, a dialogue plan, and
shared commitments.

The rule for integrating the user model data is
a standard ISU rule, consisting of preconditions
and effects on the information state. We describe
these informally below:

PRECONDITIONS

• If there is a propositional answer from the
user model resolving a question in the current
plan...

• and if the confidence score reported from the
user model is sufficient, then...

EFFECTS

• accept the propositional answer (include it
into the shared commitments), and...

• give appropriate feedback to the user depend-
ing on the confidence score:

• High confidence⇒ embedded feedback

– “Which route do you want to take to
work?”.

38

Figure 1: A sample dataset. The horizontal axis shows days of the week (0=Monday, ..., 6=Sunday)
and the vertical axis shows hour of the day. Data points show destinations of trips initiated at the time
indicated by their position. (“Now” is the current time, in this case Thursday at lunchtime.)

– The user can always reject the prediction
by requesting another destination.

• Medium confidence⇒ positive feedback

– “I assume you’re going to work”.
– If the user says “no”, the answer is re-

jected
– Silence is interpreted as acceptance.

• Low confidence⇒ interrogative feedback

– “To work, is that correct?”
– In this case, the user needs to explicitly

accept the proposed answer.
– Otherwise, the user is prompted for an

answer.

3.3 GUI output
If the ISU rule above does not apply because of
too low confidence scores, user model informa-
tion is still used in the GUI. When a Wh-question
is raised by the system, the GUI always presents a
list of possible alternatives. High-confidence alter-
natives are highlighted and sorted before the other
alternatives in the list.

4 Resulting behaviour

The demonstrator enables interaction with a learn-
ing dialogue system which uses predictions to sim-

plify interactions. Here is an sample interaction:

User: Traffic information
Car: Ok. What road?
User: E6.
Car: Showing traffic on the E6

If this is repeated on a number of occasions,
eventually the system will use a prediction:

User: Traffic information
Car: Showing traffic on the E6

The system thus reduces the need for repetitive
and information-scarce utterances from the user.
As soon as the system has started identifying a pat-
tern, it will start to suggest the most probable al-
ternatives. Initially, the most probable answers are
presented to the user as the top items in a list. The
alternatives are also marked in a different color to
make them more visible to the user (not shown
here).

User: Traffic information
Car: Ok. What road?
Car GUI: [E6] [E45] [E20] [155]
User: E6.
Car: Showing traffic on the E6

39

After some further use, the system has identi-
fied a pattern which is prominent enough for the
system to make a suggestion:

User: Traffic information
Car: E6, is that right?
User: Yes.
Car: Showing traffic on the E6

After getting further support for its hypothesis,
the system will merely inform the user that an as-
sumption has been made. If the user is satisfied
with the assumption, she does not need to do any-
thing, but can correct or confirm it if desired.

User: Traffic information
Car: I assume E6.
User: [silence]
Car: Showing traffic on the E6

User: Traffic information
Car: I assume E6.
User: No, E45.
Car: Showing traffic on the E45

If the user rejects the system suggestion with-
out giving another answer, the system will show
a menu where the most probable choices are the
topmost ones, and marked in a distinct colour (not
shown here).

User: Traffic information
Car: I assume E6.
User: No.
Car: What road?
Car GUI: [E6] [E45] [E20] [155]

When the system is certain about its hypothe-
sis, the system will simply provide the user with
the desired information without asking the user for
parameters.

User: Traffic information
Car: Showing traffic on the E6

5 Conclusions and further work

We have designed and implemented a mechanism
which learns user patterns and uses them proac-
tively to simplify and shorten dialogue interac-
tions. The idea of learning user patterns from ob-
servations is similar to Google Now. However,

while Google Now uses “cards” to provide un-
requested information to the user, we show how
predictions can be integrated into spoken or multi-
modal dialogue.

It remains for future work to evaluate the sys-
tem to establish that this actually reduces the dis-
traction rate of drivers. We also want to test the
performance of the learning mechanism by train-
ing it on real observations of user behaviours (as
opposed to simulated data).

The current mechanism only predicts answers
to individual system questions, which may result
in suboptimal behaviour in cases where there are
dependencies between the questions pertaining to
some task. An interesting area for future work is
to instead predict sequences of answers; however,
this would require a more powerful learning and
classification mechanisms.

Acknowledgements

This work was carried out within the FFI project
“Safe Speech by Knowledge” (2012-00941),
funded by VINNOVA, Volvo Car Corporation and
Talkamatic.

References
H. H. Clark and S. E. Brennan. 1990. Grounding

in communication. In L. B. Resnick, J. Levine,
and S. D. Behrend, editors, Perspectives on Socially
Shared Cognition, pages 127 – 149. APA.

Dagmar Kern and Albrecht Schmidt. 2009. Design
space for driver-based automotive user interfaces. In
Proceedings of the 1st International Conference on
Automotive User Interfaces and Interactive Vehic-
ular Applications, AutomotiveUI ’09, pages 3–10,
New York, NY, USA. ACM.

Staffan Larsson, Alexander Berman, and Jessica
Villing. 2011. Adding a speech cursor to a mul-
timodal dialogue system. In INTERSPEECH 2011,
12th Annual Conference of the International Speech
Communication Association, Florence, Italy, 2011,
pages 3319–3320.

Staffan Larsson. 2002. Issue-based Dialogue Manage-
ment. Ph.D. thesis, Göteborg University.

Tom M. Mitchell. 1997. Machine Learning. McGraw-
Hill, New York.

Vicki L. Neale, Thomas A. Dingus, Sheila G. Klauer,
Jeremy Sudweeks, and Michael Goodman. 2005.
An overview of the 100-car naturalistic study and
findings. Technical report.

40

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 41–44,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

Speech-Enabled Hybrid Multilingual Translation for Mobile Devices

Krasimir Angelov
University of Gothenburg

krasimir@chalmers.se

Björn Bringert
Google Inc

bringert@google.com

Aarne Ranta
University of Gothenburg
aarne@chalmers.se

Abstract
This paper presents an architecture and a
prototype for speech-to-speech translation
on Android devices, based on GF (Gram-
matical Framework). From the user’s
point of view, the advantage is that the
system works off-line and yet has a lean
size; it also gives, as a bonus, gram-
matical information useful for language
learners. From the developer’s point of
view, the advantage is the open architec-
ture that permits the customization of the
system to new languages and for special
purposes. Thus the architecture can be
used for controlled-language-like transla-
tors that deliver very high quality, which
is the traditional strength of GF. However,
this paper focuses on a general-purpose
system that allows arbitrary input. It cov-
ers eight languages.

1 Introduction

Many popular applications (apps) on mobile
devices are about language. They range
from general-purpose translators to tourist phrase
books, dictionaries, and language learning pro-
grams. Many of the apps are commercial and
based on proprietary resources and software. The
mobile APIs (both Android and iOS) make it easy
to build apps, and this provides an excellent way to
exploit and demonstrate computational linguistics
research, perhaps not used as much as it could.

GF (Grammatical Framework, (Ranta, 2011)) is
a grammar formalism designed for building multi-
lingual grammars and interfacing them with other
software systems. Both multilinguality and inter-
facing are based on the use of an abstract syntax,
a tree structure that captures the essence of syntax
and semantics in a language-neutral way. Transla-
tion in GF is organized as parsing the source lan-
guage input into an abstract syntax tree and then

linearizing the tree into the target language. Here
is an example of a simple question, as modelled by
an abstract syntax tree and linearized to four lan-
guages, which use different syntactic structures to
express the same content:

Query (What Age (Name ”Madonna”))
English: How old is Madonna?
Finnish: Kuinka vanha Madonna on?
French: Quel âge a Madonna?
Italian: Quanti anni ha Madonna?

In recent years much focus in GF has been
put on cloud applications (Ranta et al., 2010) and
on mobile apps, for both Android (Détrez and
Enache, 2010) and iOS (Djupfeldt, 2013). They
all implement text-based phrasebooks, whereas
Alumäe and Kaljurand (2012) have built a speech-
enabled question-answering system for Estonian.
An earlier speech translation system in GF is pre-
sented in Bringert (2008).

All embedded GF systems are based on a
standardized run-time format of GF, called PGF
(Portable Grammar Format; Angelov et al. 2009,
Angelov 2011). PGF is a simple “machine lan-
guage”, to which the much richer GF source lan-
guage is compiled by the GF grammar compiler.
PGF being simple, it is relatively straightforward
to write interpreters that perform parsing and lin-
earizations with PGF grammars. The first mobile
implementations were explicitly designed to work
on small devices with limited resources. Thus they
work fine for small grammars (with up to hun-
dreds of rules and lexical entries per language), but
they don’t scale up well into open-domain gram-
mars requiring a lexicon size of tens of thousands
of lemmas. Moreover, they don’t support out-of-
grammar input, and have no means of choosing
between alternative parse results, which in a large
grammar can easily amount to thousands of trees.

A new, more efficient and robust run-time sys-
tem for PGF was later written in C (Angelov,
2011). Its performance is competitive with the

41

state of the art in grammar-based parsing (Angelov
and Ljunglöf, 2014). This system uses statisti-
cal disambiguation and supports large-scale gram-
mars, such as an English grammar covering most
of the Penn Treebank. In addition, it is lean
enough to be embedded as an Android application
even with full-scale grammars, running even on
devices as old as the Nexus One from early 2010.

Small grammars limited to natural language
fragments, such as a phrasebook, are usable when
equipped with predictive parsing that can suggest
the next words in context. However, there is no
natural device for word suggestions with speech
input. The system must then require the user to
learn the input language; alternatively, it can be
reduced to simple keyword spotting. This can
be useful in information retrieval applications, but
hardly in translation. Any useful speech-enabled
translator must have wide coverage, and it cannot
be restricted to just translating keywords.

In this paper, we show a mobile system that
has a wide coverage and translates both text and
speech. The system is modular and could be eas-
ily adapted to traditional GF applications as well:
since the PGF format is the same, one can combine
any grammar with any run-time PGF interpreter.

The rest of the paper is organized as follows:
Section 2 describes the system’s functionalities
from the user’s point of view. Section 3 explains
the technology from the developer’s point of view.
Section 4 presents some preliminary results on the
usability of the system, and discusses some ways
of improving it. Section 5 concludes.

A proper quantitative evaluation of the transla-
tion quality has to wait till another occasion, and
will be more properly done in a context that ad-
dresses hybrid GF-based translation as a research
topic. Early attempts in this area have not yet con-
verged into a stable methodology, but we believe
that setting translation in the context of a practical
use case, as here, can help identify what issues to
focus on.

2 Functionalities

The app starts with the last-used language pair pre-
selected for input and output. It waits for speech
input, which is invoked by touching the micro-
phone icon. Once the input is finished, it appears
in text on the left side of the screen. Its translation
appears below it, on the right, and is also rendered
as speech (Figure 1 (a)).

(a) (b)

Figure 1: Translation between various languages
with (a) speech (b) text input.

The source and target languages are selected by
the two drop-down lists on the top of the screen.
The icon with two arrows to the right of the lan-
guage selectors allows the two languages to be
swapped quickly.

The speech recognition and text-to-speech
(TTS) is done using public Android APIs. On
most devices, these make use of Google’s speech
recognizer and synthesizer, which are available in
both online and offline versions. The offline en-
gines tend to have a reduced choice of languages
and reduced quality compared to the online en-
gines, but don’t require an internet connection.

Alternatively, the user can select the keyboard
mode. The microphone icon is then changed to a
keyboard icon, which opens a software keyboard
and shows a text field for entering a new phrase.
Once the phrase is translated, it is shown on the
screen but also sent to TTS (Figure 1 (b)).

If the input consists of a single lexical unit,
the user can open a dictionary description for the
word. The resulting screen shows the base form
of the word, followed by a list of possible transla-
tions. The target language is shown on the top of
the screen and it can be changed to see the transla-
tions in the other languages (Figure 2 (a)). Touch-
ing one of the translations opens a full-form in-
flection table together with other grammatical in-
formation about the word, such as gender and verb
valency (Figure 2 (b)).

Finally, the translator also works as an input
mode for other apps such as SMS. It provides a
soft keyboard, which is similar to the standard An-
droid keyboard, except that it has two more keys
allowing the entered phrase to be translated in-
place from inside any other application.

42

(a) (b)

Figure 2: (a) Results of dictionary lookup. (b) Va-
lency and the inflection table for a Bulgarian verb.

3 Technology

3.1 Run-time processing

The core of the system is the C runtime for PGF
(Angelov, 2011). The runtime is compiled to na-
tive code with the Android NDK and is called via
foreign function interface from the user interface,
which is implemented in Java.

The main challenge in using the runtime on mo-
bile devices is that even the latest models are still
several times slower that a modern laptop. For in-
stance, just loading the grammars for English and
Bulgarian, on a mobile device initially took about
28 seconds, while the same task is a negligible
operation on a normal computer. We spent con-
siderable time on optimizing the grammar loader
and the translator in general. Now the same gram-
mar, when loaded sequentially, takes only about
5-6 seconds. Furthermore, we made the grammar
loader parallel, i.e. it loads each language in par-
allel. The user interface runs in yet another thread,
so while the grammar is loading, the user can al-
ready start typing or uttering a sentence. In addi-
tion, we made it possible to load only those lan-
guages that are actually used, i.e. only two at a
time instead of all eight at once.

Parsing is a challenge in itself. As the grammars
grow bigger, there tends to be more and more need
for disambiguation. This is performed by a statis-
tical model, where each abstract syntax tree node
has weight. We used the method of Angelov and
Ljunglöf (2014) to find the best tree.

Moreover, since any sound grammar is likely to
fail on some input, there is need for robustness.
This has been solved by chunking the input into
maximal parsable bits. As a result, the translations
are not always grammatically correct, because de-

Bulgarian 26664 French 19570
Chinese 17050 German 9992
English 65009 Hindi 33841
Finnish 57036 Swedish 24550

Table 1: Lexical coverage (lemmas)

pendencies between chunks, such as agreement,
get lost. This kind of errors are familiar to anyone
who has used a statistical system such as Google
translate. In the GF system it is easy to avoid them,
provided the parse is complete.

3.2 The language component

The language-specific component of the app is the
PGF grammar, which contains both the grammars
proper and the probabilistic model of the abstract
syntax. The app can be adaptad to a different PGF
grammar by changing a few lines of the source
code. Hence any grammar written in GF is readily
usable as the language component of an app. But
here we focus on the large-scale grammar meant
for robust translation.

The core of the grammar is the GF Resource
Grammar Library (Ranta, 2009), which currently
covers 29 languages. Of these, 8 have been ex-
tended with more syntax rules (about 20% in ad-
dition to the standard library) and a larger lexi-
con. Table 1 shows the list of languages together
with the size of the lexicon for each of them. The
abstract syntax is based on English lemmas and
some split word senses of them. The other lan-
guages, having fewer words than English, are thus
incomplete. Unknown words are rendered by ei-
ther showing them in English (if included in the
English lexicon) or just returning them verbatim
(typical for named entities).

The lexicon has been bootstrapped from various
freely available sources, such as linked WordNets
and the Wiktionary. Parts of the lexicon have been
checked or completely written manually.

4 First results

The most striking advantage of the translation app
is its lean size: currently just 18Mb for the whole
set of 8 languages, allowing translation for 56
language pairs. This can be compared with the
size of about 200Mb for just one language pair
in Google’s translation app used off-line. The
Apertium off-line app is between these two, using
around 2MB per language pair.

43

The speed is still an issue. While the app
now loads smoothly on modern hardware (such
as Nexus 5 phones), translation is usually much
slower than in Google and Apertium apps. The
speed depends heavily on the complexity of the
source language, with Finnish and French the
worst ones, and on sentence length. Only with
short sentences (under ten words) from Bulgarian,
Chinese, English, and Swedish, does the translator
deliver satisfactory speed. On the other hand, long
sentences entered via speech are likely to con-
tain speech recognition errors, which makes their
translation pointless anyway.

Translating single words is based on a simpler
algorithm (dictionary lookup) and is therefore im-
mediate; together with the grammatical informa-
tion displayed, this makes single word translation
into the most mature feature of the app so far.

The translation quality and coverage are rea-
sonable in phrasebook-like short and simple sen-
tences. The app has exploited some idiomatic con-
structions of the earlier GF phrasebook (Détrez
and Enache, 2010), so that it can correctly switch
the syntactic structure and translate e.g. how old
are you to French as quel âge as-tu. In many other
cases, the results are unidiomatic word-to-word
translations but still grammatical. For instance,
hur mycket är klockan, which should give what is
the time, returns how mighty is the bell. Such short
idioms are typically correct in Google’s translation
app, and collecting them into the GF resources will
be an important future task.

On the plus side, grammar-based translation is
more predictable than statistical. Thus (currently)
when using Google translate from Swedish to En-
glish, both min far är svensk and its negation min
far är inte svensk come out as the positive sen-
tence my father is Swedish. With grammar-based
translation, such semantic errors can be avoided.

5 Conclusion

We have presented a platform for mobile transla-
tion apps based on GF grammars, statistical dis-
ambiguation, and chunking-based robustness, en-
hanced by Android’s off-the-shelf speech input
and output. The platform is demonstrated by a
system that translates fairly open text between 8
languages, with reasonable performance for short
sentences but slow parsing for longer ones, with
moreover lower quality due to more parse errors.

The processing modules, user interface, and the

language resources are available as open source
software and thereby usable for the community
for building other systems with similar function-
alities. As the app is a front end to a grammati-
cal language resource, it can also be used for other
language-aware tasks such as learning apps; this is
illustrated in the demo app by the display of inflec-
tion tables. The app and its sources are available
via http://www.grammaticalframework.org.

References
Tanel Alumäe and Kaarel Kaljurand. 2012. Open and

extendable speech recognition application architec-
ture for mobile environments. The Third Interna-
tional Workshop on Spoken Languages Technologies
for Under-resourced Languages (SLTU 2012), Cape
Town, South Africa.

Krasimir Angelov and Peter Ljunglöf. 2014. Fast
statistical parsing with parallel multiple context-free
grammars. In European Chapter of the Association
for Computational Linguistics, Gothenburg.

Krasimir Angelov, Björn Bringert, and Aarne Ranta.
2009. PGF: A Portable Run-Time Format for Type-
Theoretical Grammars. Journal of Logic, Language
and Information, 19(2), pp. 201–228.

Krasimir Angelov. 2011. The Mechanics of the Gram-
matical Framework. Ph.D. thesis, Chalmers Univer-
sity of Technology.

Björn Bringert. 2008. Speech translation with Gram-
matical Framework. In Coling 2008: Proceedings of
the workshop on Speech Processing for Safety Crit-
ical Translation and Pervasive Applications, pages
5–8, Manchester, UK, August. Coling 2008 Orga-
nizing Committee.

Grégoire Détrez and Ramona Enache. 2010. A frame-
work for multilingual applications on the android
platform. In Swedish Language Technology Confer-
ence.

Emil Djupfeldt. 2013. Grammatical framework on the
iphone using a C++ PGF parser. Technical report,
Chalmers Univerity of Technology.

Aarne Ranta, Krasimir Angelov, and Thomas Hallgren.
2010. Tools for multilingual grammar-based trans-
lation on the web. In Proceedings of the ACL 2010
System Demonstrations, ACLDemos ’10, pages 66–
71, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Aarne Ranta. 2009. The GF resource grammar library.
Linguistic Issues in Language Technology.

Aarne Ranta. 2011. Grammatical Framework: Pro-
gramming with Multilingual Grammars. CSLI Pub-
lications, Stanford. ISBN-10: 1-57586-626-9 (Pa-
per), 1-57586-627-7 (Cloth).

44

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 45–48,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

The New THOT Toolkit for Fully-Automatic and Interactive Statistical
Machine Translation

Daniel Ortiz-Martı́nez
Dpto. de Sist. Inf. y Comp.
Univ. Politéc. de Valencia

46071 Valencia, Spain
dortiz@dsic.upv.es

Francisco Casacuberta
Dpto. de Sist. Inf. y Comp.
Univ. Politéc. de Valencia

46071 Valencia, Spain
fcn@dsic.upv.es

Abstract

We present the new THOT toolkit for fully-
automatic and interactive statistical ma-
chine translation (SMT). Initial public ver-
sions of THOT date back to 2005 and did
only include estimation of phrase-based
models. By contrast, the new version of-
fers several new features that had not been
previously incorporated. The key innova-
tions provided by the toolkit are computer-
aided translation, including post-editing
and interactive SMT, incremental learn-
ing and robust generation of alignments
at phrase level. In addition to this, the
toolkit also provides standard SMT fea-
tures such as fully-automatic translation,
scalable and parallel algorithms for model
training, client-server implementation of
the translation functionality, etc. The
toolkit can be compiled in Unix-like and
Windows platforms and it is released un-
der the GNU Lesser General Public Li-
cense (LGPL).

1 Introduction

Open-source software constitutes a valuable re-
source for researchers or companies. Due to the
inherent difficulties of developing good quality
software (correct, efficient, modular, extensible,
well-documented, etc.), there are interesting re-
search ideas that not always receive enough atten-
tion from the open-source software community.

We present the THOT toolkit for statistical ma-
chine translation (SMT). The first public version
of THOT was initially created in 2005 (Ortiz et
al., 2005) and its functionality was restricted to
train phrase-based models (Koehn et al., 2003).
Here we present a new version of THOT which
includes several new features related to phrase-
based translation. More specifically, the set of fea-

tures provided by THOT can be classified into ad-
vanced features and standard features. Advanced
features correspond to sophisticated functionality
that has received poor or no attention in existing
SMT toolkits. By contrast, standard features cor-
respond to functionality already provided by pop-
ular tools such as Moses (Koehn et al., 2007). In
this regard, THOT neither is based on Moses nor
shares any source code with it.

THOT includes the following advanced features:

• Computer-aided translation, including post-
editing and interactive machine translation
(IMT). This functionality has been inte-
grated in a translation tool developed in the
CasMaCat project1 (the so-called CasMaCat
Workbench).

• Incremental estimation of all of the models
involved in the translation process.

• Robust generation of phrase-based align-
ments.

Computer-aided translation and more specifi-
cally two of its applications, post-editing and IMT,
constitute a field of increasing interest in SMT. In
particular, IMT has been studied in numerous re-
search papers during the last years. In spite of
this, this application has not previously been im-
plemented in open-source software tools.

Incremental (or online) learning is a hot re-
search topic in SMT due to the great interest of
quickly incorporating incoming data into exist-
ing translation systems. In spite of the fact that
the Moses toolkit already implements incremental
learning techniques, such techniques are designed
to work by incrementally processing large blocks
of data and not in a sentence-wise manner, as it is
pointed out in (Mirking and Cancedda, 2013). By

1http://www.casmacat.eu/

45

contrast, the incremental learning techniques im-
plemented by THOT allows to process new train-
ing samples individually in real time.

Finally, the necessity of generating phrase-level
alignments is present in a wide range of tasks,
from multisource SMT to discriminative training.
However, as far as we know this functionality also
is not included in existing SMT tools.

In addition to the above mentioned advanced
features, THOT offers a set of standard features:

• Phrase-based SMT decoder.

• Scalable training and search algorithms.

• Client-server implementation.

• Miscellaneous SMT tools

2 The THOT toolkit

THOT can be downloaded from GitHub2 and is
distributed under the GNU Lesser General Public
License (LGPL). It has been developed using C++
and shell scripting. The design principles that have
led the development process were:

• Modularity: The THOT code is organised
into separate packages for each main func-
tional component (training of phrase-based
and language models, decoding, etc.). Each
component can be treated as a stand-alone
tool and does not rely on the rest of the code.

• Extensibility: The functionality provided by
each package is structured into classes. Ab-
stract classes are used when appropriate to
define the basic behaviour of the functional
components of the toolkit, allowing us to eas-
ily extend the toolkit functionality.

• Scalability: THOT is able to train statisti-
cal models from corpora of an arbitrary size.
Moreover, the toolkit takes advantage of par-
allel and distributed computing to reduce the
time cost of the implemented algorithms. Ad-
ditionally, the parameters of the resulting
models can be pruned or accessed from disk
during the decoding process.

• Portability: It is known to compile on Unix-
like and Windows (using Cygwin) systems.

In the rest of the paper we give additional details
about the different toolkit features that have been
mentioned above.

2https://github.com/daormar/thot

3 Computer-Aided Translation

Current MT systems are not able to produce ready-
to-use texts. Indeed, they usually require hu-
man post-editing in order to achieve high-quality
translations. This motivates an alternative applica-
tion of MT in which the MT system collaborates
with the user to generate the output translations.
This alternative application receives the name of
computer-assisted translation (CAT).

CAT can be instantiated in different ways. The
THOT toolkit incorporates tools that are useful
in two different CAT instantations, namely, post-
editing and interactive machine translation.

3.1 Post-Editing

Post-editing (PE) involves making corrections and
amendments to machine generated translations
(see (TAUS, 2010) for a detailed study). In the
PE scenario, the user only edits the output of the
MT system without further system intervention.

3.2 Interactive Machine Translation

In the IMT framework (Foster et al., 1997;
Langlais et al., 2002), the user obtains her desired
translations in a series of interactions with an MT
system. Specifically, the system initially generates
a translation without human intervention and af-
ter that, the user validates a prefix of the transla-
tion and introduce the next correct character of it.
With this information, the IMT system returns the
suffix which best completes the user prefix. This
process is repeated until the user gets the sentence
she has in mind. In (Barrachina et al., 2009), SMT
techniques were embedded within the interactive
translation environment.

A common problem in IMT arises when the
user sets a prefix which cannot be explained by the
statistical models. This problem requires the in-
troduction of specific techniques to guarantee that
the suffixes can be generated. The majority of the
IMT systems described in the literature use error-
correcting techniques based on the concept of edit
distance to solve the coverage problems. Such
error-correction techniques, although they are not
included in the statistical formulation of the IMT
process, are crucial to ensure that the suffixes com-
pleting the user prefixes can be generated.

THOT implements an alternative formalisation
that introduces stochastic error-correction models
in the IMT statistical formulation. Such a formal-
isation was introduced in (Ortiz-Martı́nez, 2011)

46

and it generates the suffixes required in IMT by
partially aligning a prefix of the target hypotheses
with the user prefix. Once the partial alignment
is determined, the suffix is given by the unaligned
portion of the target sentence.

Experiments to test the above mentioned IMT
proposal were carried out using THOT. The re-
sults showed that the proposed IMT system out-
performs the results of other state-of-the-start IMT
systems that are based on word graphs (see (Ortiz-
Martı́nez, 2011) for more details).

3.3 Integration with the CasMaCat
Workbench

THOT can be combined with the CasMaCat Work-
bench3 that is being developed within the project
of the same name. The CasMaCat Workbench of-
fers novel types of assistance for human transla-
tors, using advanced computer aided translation
technology that includes PE and IMT.

4 Incremental Learning for SMT

Thot incorporates techniques to incrementally up-
date the parameters of the statistical models in-
volved in the translation process. Model updates
can be quickly executed in a sentence-wise man-
ner allowing the system to be used in a real time
scenario. For this purpose, a log-linear SMT
model where all its score components are incre-
mentally updateable is defined. The implemented
proposal uses the incremental version of the EM
algorithm (Neal and Hinton, 1998) and the spe-
cific details can be found in (Ortiz-Martı́nez et al.,
2010; Ortiz-Martı́nez, 2011).

Empirical results obtained with THOT and re-
ported in (Ortiz-Martı́nez et al., 2010; Ortiz-
Martı́nez, 2011) show that incremental learning al-
lows to significantly reduce the user effort in IMT
tasks with respect to that required by a conven-
tional IMT system.

Additionally, the incremental learning tech-
niques provided by THOT are currently being used
in other sophisticated applications such as active
learning for SMT (González-Rubio et al., 2012).

5 Generation of Phrase-Based
Alignments

The generation of phrase-level alignments is inter-
esting due to its utility in a wide range of appli-

3See installation instructions at http://www.casmacat.

eu/index.php?n=Workbench.Workbench

cations, including multi-source SMT, Viterbi-like
estimation of phrase-based models or discrimina-
tive training, just to name a few.

A very straightforward technique can be pro-
posed for finding the best phrase-alignment.
Specifically, the search process only requires a
regular SMT system which filters its phrase table
in order to obtain those target translations for the
source sentence that are compatible with the given
target sentence. Unfortunately, this technique has
no practical interest when applied on regular tasks
due to problems with unseen events.

To overcome the above-mentioned difficulty, an
alternative technique that is able to consider every
source phrase of the source sentence as a possi-
ble translation of every target phrase of the target
sentence can be defined. The THOT toolkit imple-
ments the proposal described in (Ortiz-Martı́nez et
al., 2008), which combines a specific search al-
gorithm with smoothing techniques to enable ef-
ficient exploration of the set of possible phrase-
alignments for a sentence pair.

Phrase-based alignment quality was difficult to
evaluate since there is not a gold standard for this
task. One way to solve this problem consists in re-
fining the phrase alignments to word alignments
and compare them with those obtained in exist-
ing shared tasks on word alignment evaluation.
Results obtained with THOT reported in (Ortiz-
Martı́nez et al., 2008) clearly show the efficacy of
the implemented method.

6 Standard Features

THOT incorporates a number of standard features
that are present in existing translation tools. Such
standard features are briefly enumerated and de-
scribed in the following paragraphs.

Phrase-Based SMT Decoder The toolkit im-
plements a state-of-the-art phrase-based SMT de-
coder. The decoder uses a log-linear model with
a complete set of components similar to those im-
plemented in other tools such as Moses. Results
reported in (Ortiz-Martı́nez, 2011) show that the
translation quality obtained by THOT is compara-
ble to that obtained by means of Moses.

Scalable Training and Search Algorithms
Due to the increasing availability of large train-
ing corpora, it is necessary to implement scalable
training and search algorithms. THOT incorpo-
rates tools to train statistical models from corpora

47

of an arbitrary size. Such tools can take advan-
tage of the availability of multiple processors or
computer clusters. The parameters of the result-
ing models can be pruned or accessed from disk
during the decoding stage.

Client-Server Implementation An important
part of the functionality provided by the toolkit can
be accessed using a client-server model. This is a
useful feature to build web applications offering
SMT services.

Miscellaneous SMT tools THOT reduces de-
pendencies with third-party software by integrat-
ing most critical components of a typical machine
translation pipeline, from the estimation of phrase-
based and language models to the generation of
translations and their automatic evaluation. The
estimation of word-alignment models using the in-
cremental EM algorithm is also implemented by
the toolkit.

7 Conclusions

THOT is an open-source toolkit for SMT de-
signed for its use in Unix-like and Windows sys-
tems. It has been developed using C++ and shell
scripting, and it is released under LGPL license.
THOT incorporates three advanced features that
have received little attention in previous publicly-
available SMT tools, namely, interactive machine
translation, incremental learning and generation of
phrase-based alignments. Additionally, THOT also
implements standard features such as training of
statistical models or decoding. The functionality
of the toolkit has been empirically tested, showing
its efficacy in different SMT-related tasks.

Acknowledgments

Work supported by the European Union 7th

Framework Program (FP7/2007-2013) under the
CasMaCat project (grant agreement no 287576),
by Spanish MICINN under grant TIN2012-31723,
and by the Generalitat Valenciana under grant
ALMPR (Prometeo/2009/014).

References
S. Barrachina, O. Bender, F. Casacuberta, J. Civera,

E. Cubel, S. Khadivi, A. L. Lagarda, H. Ney,
J. Tomás, E. Vidal, and J. M. Vilar. 2009. Statistical
approaches to computer-assisted translation. Com-
putational Linguistics, 35(1):3–28.

G. Foster, P. Isabelle, and P. Plamondon. 1997. Target-
text mediated interactive machine translation. Ma-
chine Translation, 12(1):175–194.

Jesús González-Rubio, Daniel Ortiz-Martı́nez, and
Francisco Casacuberta. 2012. Active learning for
interactive machine translation. In Procs. of the 13th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 245–254.

P. Koehn, F. J. Och, and D. Marcu. 2003. Statisti-
cal phrase-based translation. In Procs. of the Hu-
man Language Technology and North American As-
sociation for Computational Linguistics Conference,
pages 48–54, Edmonton, Canada, May.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,
and E. Herbst. 2007. Moses: Open source toolkit
for statistical machine translation. In Procs. of the
45th Annual Meeting of the Association for Compu-
tational Linguistics, pages 177–180, Prague, Czech
Republic, June.

P. Langlais, G. Lapalme, and M. Loranger. 2002.
Transtype: Development-evaluation cycles to boost
translator’s productivity. Machine Translation,
15(4):77–98.

S. Mirking and N. Cancedda. 2013. Assessing quick
update methods of statistical translation models. In
Procs. of International Workshop of Spoken Lan-
guage Translation, pages 264–271, Heidelberg, Ger-
many.

R.M. Neal and G.E. Hinton. 1998. A view of the
EM algorithm that justifies incremental, sparse, and
other variants. In Procs. of the NATO-ASI on Learn-
ing in graphical models, pages 355–368, Norwell,
MA, USA.

D. Ortiz, I. Garcı́a-Varea, and F. Casacuberta. 2005.
Thot: a toolkit to train phrase-based statistical trans-
lation models. In Machine Translation Summit,
pages 141–148, Phuket, Thailand, September.

D. Ortiz-Martı́nez, I. Garcı́a-Varea, and F. Casacuberta.
2008. Phrase-level alignment generation using a
smoothed loglinear phrase-based statistical align-
ment model. In Procs. of the European Association
for Machine Translation.

D. Ortiz-Martı́nez, I. Garcı́a-Varea, and F. Casacuberta.
2010. Online learning for interactive statistical ma-
chine translation. In Procs. of the 2010 Conference
of the North American Chapter of the Association
for Computational Linguistics, pages 546–554.

D. Ortiz-Martı́nez. 2011. Advances in Fully-
Automatic and Interactive Phrase-Based Statistical
Machine Translation. Ph.D. thesis, Universidad
Politécnica de Valencia.

TAUS. 2010. Postediting in practice. a TAUS report.
Technical report, March.

48

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 49–52,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

A Lightweight Terminology Verification Service for External Machine
Translation Engines

Alessio Bosca†, Vassilina Nikoulina‡, Marc Dymetman‡

†CELI, Turin, Italy
‡Xerox Research Centre Europe, Grenoble, France

†alessio.bosca@celi.it, ‡{first.last}@xrce.xerox.com

Abstract
We propose a demonstration of a domain-
specific terminology checking service
which works on top of any generic black-
box MT, and only requires access to a
bilingual terminology resource in the do-
main. In cases where an incorrect trans-
lation of a source term was proposed by
the generic MT service, our service locates
the wrong translation of the term in the tar-
get and suggests a terminologically correct
translation for this term.

1 Introduction

Today there exist generic MT services for a large
number of language pairs, which allow relatively
easily to make your domain-specific portal mul-
tilingual, and allow access to its documents for a
broad international public. However, applying a
generic MT service to domain-specific texts often
leads to wrong results, especially relative to the
translation of domain-specific terminology. Table
1 illustrates an example of a terminology inconsis-
tent translation provided by a generic MT system.

English Source: Farmers tend to implement a
broad non-focused weed-control strategy, on
the basis of broad spectrum products and mix-
tures of different products.
Bing1: Los agricultores tienden a aplicar una
estrategia amplia para control de malezas no
centrado, sobre la base de productos de am-
plio espectro y las mezclas de diferentes pro-
ductos.

Table 1: Example of the translation produced by
a generic MT model for a domain-specific docu-
ment. Source term : weed-control, official Span-
ish term translation: control de malas hierbas.

The importance of domain-specific terminology
for Machine Translation has been mentioned in

several previous works (eg. (Carl and Langlais,
2002; Skadins et al., 2013)). However, most of
these works handle the case where the terminology
is tightly integrated into the translation process.
This requires both a good expertise in SMT and
a large amount of both in-domain and generic par-
allel texts, which is often difficult, especially for
low-resourced languages like Turkish or Estonian.
Here, we are targeting the situation where the con-
tent provider is not willing to train a dedicated
translation system, for some reason such as lack of
technical skills or lack of necessary resources (par-
allel data or computational resources), but has at
his disposal a multilingual in-domain terminology
which could be helpful for improving the generic
translation provided by an external translation ser-
vice. We propose a demonstration of a multilin-
gual terminology verification/correction service,
which detects the wrongly translated terms and
suggests a better translation of these terms. This
service can be seen as an aid for machine transla-
tion post-editing focused on in-domain terminol-
ogy and as a tool for supporting the workflow of
practicing translators.

2 Related Work

There has recently been a growing interest for ter-
minology integration into MT models. Direct in-
tegration of terminology into the SMT model has
been considered, either by extending SMT train-
ing data (Carl and Langlais, 2002), or via adding
an additional term indicator feature (Pinnis and
Skadins, 2012; Skadins et al., 2013) into the trans-
lation model. However none of the above is possi-
ble when we deal with an external black-box MT
service.

(Itagaki and Aikawa, 2008) propose a post-
processing step for an MT engine, where a
wrongly translated term is replaced with a user-
provided term translation. The authors claim that
translating the term directly often gives a different

49

translation from the one obtained when translating
the term in context: for English-Japanese the out-
of-context term translation matches exactly the in
context term translation in 62% of cases only. In
order to address this problem the authors propose
15 simple context templates that induce the same
term translation as the one obtained in the initial
sentence context. Such templates include ”This
is TERM” or ”TERM is a ...”. The main prob-
lem with this approach is that these templates are
both language-pair and MT engine/model specific.
Thus a certain human expertise is required to de-
velop such templates when moving to a new lan-
guage pair or underlying MT engine.

Our approach is close to the (Itagaki and
Aikawa, 2008) approach, but instead of devel-
oping specific templates we propose a generic
method for wrong terminology translation detec-
tion. We do not aim at producing the final trans-
lation by directly replacing the wrongly translated
term — which can be tricky—, but rather perform
the term correction in an interactive manner, where
the user is proposed a better term translation and
may choose to use it if the suggestion is correct.

3 Terminology-checking service

We assume that the provider of the terminology-
checking service has a bilingual domain-specific
terminology D at his disposal, which he wishes
to use to improve the translation produced by a
generic MT service MT . Our method verifies
whether the terminology was translated correctly
by the MT service (terminology verification), and
if not, locates the wrong translation of the term and
suggests a better translation for it.

3.1 Terminology checking

The basic terminology verification procedure ap-
plied to the source sentence s and to its translation
MT (s) by the generic service is done through the
following steps:

1. For each term T = (Ts, Tt) in D check
whether its source part Ts is present in the
source sentence s.

2. If s contains Ts, check whether the target
part of the term Tt is present in the transla-
tion MT (s). If yes, and the number of oc-
currences of Ts in s is equal to that of Tt

in MT (s) : the term translation is consis-
tent with terminological base. Otherwise, we

attempt to locate the wrong term translation
and suggest a better translation to the user.

Both steps require a sub-string matching algo-
rithm which is able to deal with term detection
problems such as morphological variants or dif-
ferent term variants. We describe the approach we
take for efficient sub-string matching in more de-
tail in section 3.3.

3.2 Terminology correction
Once we have detected that there is a source term
Ts which has been incorrectly translated we would
like to suggest a better translation for this term.
This requires not only knowing a correct transla-
tion Tt of the source term Ts, but also its position
in the target sentence. To do that, we need to iden-
tify what was the incorrect translation proposed by
the MT engine for the term and to locate it in the
translation MT (s).

This can be seen as a sub-problem of the word-
alignment problem, which is usually solved us-
ing bilingual dictionaries or by learning statistical
alignment models out of bilingual corpora. How-
ever, in practice, these resources are not easily
available, especially for low-resourced language
pairs. In order to be able to locate the wrong term
translation in the target sentence without resort-
ing to such resources, our approach is to rely in-
stead on the same external MT engine that was
used for translating the whole source sentence in
the first place, an approach also taken in (Itagaki
and Aikawa, 2008).

To overcome the problem mentioned by (Ita-
gaki and Aikawa, 2008) of non-matching out-of-
context terms translations we propose to com-
bine out-of context term translation (MT (Ts)) and
context-extended term translation, as follows:

• Translate the term Ts extended with
its left and/or right n-gram context:
si−nsi−n+1...Ts...sj+n−1sj+n, where
Ts = si...sj ;

• Find a fuzzy match in MT (s) for the
translation of the context-extended term
MT (si−n...Ts...sj+n) using the same sub-
string matching algorithm as in the terminol-
ogy verification step.

Various combinations of out-of-context term
translation (MT (Ts)) and n-extended term trans-
lation (MT (si−n...Ts...sj+n)) are possible.

50

The term location is performed in a sequential
way: if the wrong term translation was not located
after the first step (out-of-context translation), at-
tempt the following step, extending size of the
context (n) until the term is located.

3.3 Implementation
The implementation of the terminology-checking
service that we demonstrate exploits Bing Trans-
lator2 as SMT service, refers to the Agricul-
ture domain and supports two terminology re-
sources: the multilingual ontology from the Or-
ganic.Edunet portal3 and Agrovoc, a multilingual
theasurus from FAO4. The presented prototype en-
ables terminology checking for all the language
pairs involving English, French, German, Italian,
Portoguese, Spanish and Turkish.

The component for matching the textual input
(i.e. either the source or the translation from the
SMT service) with elements from domain termi-
nologies is based on the open source search engine
Lucene5 and exploits its built-in textual search ca-
pabilities and indexing facilities. We created a
search index for each of the supported languages,
containing the textual representations of the ter-
minology elements in that language along with
their URI (unique for each terminology element).
The terms expressions are indexed in their origi-
nal form as well as in their lemmatized and POS
tagged ones; for Turkish, resources for morpho-
logical analysis were not available therefore stem-
ming has been used instead of lemmatization.

In order to find the terminological entries within
a textual input in a given language a two-steps pro-
cedure is applied:

• In a first step, the text is used as a query over
the search index (in that language) in order
to find a list of all the terminology elements
containing a textual fragment present in the
query.

• In a second step, in order to retain only the
domain terms with a complete match (no par-
tial matches) and locate them in the text, a
new search index is built in memory, con-
taining a single document, namely the orig-
inal textual input (lemmatized or stemmed
according to the resources available for that

2http://www.bing.com/translator
3http://organic-edunet.eu/
4http://aims.fao.org/standards/agrovoc/about
5https://lucene.apache.org

specific language). Then the candidate ter-
minology elements found in the first step are
used as queries over the in-memory index and
the “highlighter” component of the search en-
gine is exploited to locate them in the text
(when found). A longest match criterion is
used when the terminology elements found
refer to overlapping spans of text.

Following this procedure a list with terminology
elements (along with their URIs and the position
within the text) is generated for both the source
text and its translation. A matching strategy based
on the URI allows to pair domain terms from the
two collections. For domain terms in the source
text without a corresponding terminology element
in the translated text, the ”wrong” translation is
located in the text according to the approach de-
scribed in 3.2. The domain term is retranslated
with the same SMT (with context extension, if
needed) in order to obtain the ”wrong” translation
and the translated string is located within the trans-
lation text with the same approach used in the sec-
ond step of the procedure used for locating termi-
nological entries (with an in-memory search index
over the full text and the fragment used as query).

The service outputs two lists: one containing
the pairs of terminology elements found both in
the source and in the translation and another one
with the terminology elements without a ”correct”
translation (according to the domain terminology
used) and for each of those an alternative transla-
tion from the domain terminology is proposed. In
our demonstration a web interface allows users to
access and test the service.

4 Proof of concept evaluation

In order to evaluate the quality of locating the
wrong term translation, we applied the terminol-
ogy verification service to an SMT model trained
with Moses (Hoang et al., 2007) on the Europarl
(Koehn, 2005) corpus. This SMT model was used
for translating a test set in the Agricultural domain
from Spanish into English. In these settings we
have access to the internal sub-phrase alignment
provided by Moses, thus we know the exact loca-
tion of the wrong term translation, which allows
us to evaluate how good our locating technique is.

The test set consists of 100 abstracts in Spanish
from a bibliographical database of scientific publi-
cations in the Agriculture domain. These abstracts
were translated into English with our translation

51

model, and we then applied terminology verifi-
cation and terminology correction procedures to
these translations.

When applying terminology verification we de-
tected in total 171 terms in Spanish, 71 of them
being correctly translated into English (consistent
with terminology), and 100 being wrongly trans-
lated (not consistent with terminology).

We then attempted to locate these wrongly
translated terms in the system translation MT (s).

Matching the out-of-context term translation
with initial translation allowed to find a match for
82 wrongly translated terms (out of 100); Match-
ing 1 left/right word extended term translation
(MT (wi−1Tswj+1)) allowed to find a match for
16 more terms (out of 18 left).

Using the internal word alignments provided by
Moses, we also evaluated how precisely the bor-
ders of the wrongly translated term were recovered
by our term location procedure. This precision is
measured as follows:

• The target tokens identified by our procedure
(as described in 3) are: gT = t1, . . . , tj ;

• We then identify the reference target tokens
corresponding to the translation of the term
Ts using the Moses word alignment : rT =
{rt1 , . . . , rtk}.

We define term location precision p as p =
|tj∈rT∩gT |
|gT | . The precision of term location with

out-of-context term translation is of 0.92; the pre-
cision of term location with context-extended term
translation is 0.91.

Overall, our approach allows to match 98% of
the wrongly translated terms, with an overall lo-
cation precision of 0.91. Although these numbers
may vary for other language pairs and other MT
systems, this performance is encouraging.

5 Conclusion

We propose a demonstration of a terminology ver-
ification system that can be used as an aid for post-
editing machine translations explicitly focused on
bilingual terminology consistency. This system re-
lies on an external black-box generic MT engine
extended with available domain-specific terminol-
ogy. The location of the wrong term translation is
located via re-translation of the original term with
the same MT engine. We show that we partially
overcome the situation where the out-of-context

translation of the term differs from the original
translation of this term (in the full sentence) by
extending the term context with surrounding n-
grams. The terminology verification method is
both MT engine and language independent, does
not require any access to the internals of the MT
engine used, and is easily portable.

Acknowledgments

This work has been partially supported by
the Organic.Lingua project (http://www.organic-
lingua.eu/), funded by the European Commission
under the ICT Policy Support Programme.

References
Michael Carl and Philippe Langlais. 2002. An intel-

ligent terminology database as a pre-processor for
statistical machine translation. In COLING-02: Sec-
ond International Workshop on Computational Ter-
minology, pages 1–7.

Hieu Hoang, Alexandra Birch, Chris Callison-burch,
Richard Zens, Rwth Aachen, Alexandra Constantin,
Marcello Federico, Nicola Bertoldi, Chris Dyer,
Brooke Cowan, Wade Shen, Christine Moran, and
Ondej Bojar. 2007. Moses: Open source toolkit for
statistical machine translation. In ACL 2007 Demo
and Poster Sessions, pages 177–180.

Masaki Itagaki and Takako Aikawa. 2008. Post-mt
term swapper: Supplementing a statistical machine
translation system with a user dictionary. In LREC.

Philipp Koehn. 2005. Europarl: A Parallel Corpus for
Statistical Machine Translation. In MT Summit X,
pages 79–86, Phuket Thailand.

Marcis Pinnis and Raivis Skadins. 2012. Mt adapta-
tion for under-resourced domains - what works and
what not. In Baltic HLT, volume 247, pages 176–
184.

Raivis Skadins, Marcis Pinnis, Tatiana Gornostay, and
Andrejs Vasiljevs. 2013. Application of online ter-
minology services in statistical machine translation.
In MT Summit XIV, pages 281–286.

52

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 53–56,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

Finding Terms in Corpora for Many Languages with the Sketch Engine

Adam Kilgarriff
Lexical Computing Ltd., United Kingdom

adam.kilgarriff@sketchengine.co.uk

Miloš Jakubı́ček and Vojtěch Kovář and Pavel Rychlý and Vı́t Suchomel
Masaryk University, Czech Republic

Lexical Computing Ltd., United Kingdom
{xjakub, xkovar3, pary, xsuchom2}@fi.muni.cz

1 Overview

Term candidates for a domain, in a language,
can be found by
• taking a corpus for the domain, and a refer-

ence corpus for the language
• identifying the grammatical shape of a term

in the language
• tokenising, lemmatising and POS-tagging

both corpora
• identifying (and counting) the items in each

corpus which match the grammatical shape
• for each item in the domain corpus, compar-

ing its frequency with its frequency in the
refence corpus.

Then, the items with the highest frequency in the
domain corpus in comparison to the reference cor-
pus will be the top term candidates.

None of the steps above are unusual or innova-
tive for NLP (see, e. g., (Aker et al., 2013), (Go-
jun et al., 2012)). However it is far from trivial
to implement them all, for numerous languages,
in an environment that makes it easy for non-
programmers to find the terms in a domain. This
is what we have done in the Sketch Engine (Kil-
garriff et al., 2004), and will demonstrate. In this
abstract we describe how we addressed each of the
stages above.

2 The reference corpus

Lexical Computing Ltd. (LCL) has been build-
ing reference corpora for over a decade. Corpora
are available for, currently, sixty languages. They
were collected by LCL from the web. For the
world’s major languages (and some others), these
are in the billions of words, gathered using Spider-
Ling (Suchomel and Pomikálek, 2012) and form-
ing the TenTen corpus family (Jakubı́ček et al.,
2013).

3 The domain corpus
There are two situations: either the user already

has a corpus for the domain they are interested in,
or they do not. In the first case, there is a web in-
terface for uploading and indexing the corpus in
the Sketch Engine. In the second, we offer Web-
BootCaT (Baroni et al., 2006), a procedure for
sending queries of ‘seed terms’ to a commercial
search engine; gathering the pages that the search
engine identifies; and cleaning, deduplicating and
indexing them as a corpus (Baroni and Bernardini,
2004). (The question “how well does it work?”
is not easy to answer, but anecdotal evidence over
ten years suggests: remarkably well.)

4 Grammatical shape
We make the simplifying assumption that terms

are noun phrases (in their canonical form, without
leading articles: the term is base station, not the
base stations.) Then the task is to write a noun
phrase grammar for the language.

5 Tokenising, lemmatising, POS-tagging
For each language, we need processing tools.

While many in the NLP world make the case for
language-independent tools, and claim that their
tools are usable for any, or at least many, lan-
guages, we are firm believers in the maxim “never
trust NLP tools from people who don’t speak the
language”. While we use language-independent
components in some cases (in particular TreeTag-
ger,1 RFTagger2 and FreeLing3), we collaborate
with NLP experts in the language to ascertain what
the best available tools are, sometimes to assist

1http://www.cis.uni-muenchen.de/
˜schmid/tools/TreeTagger/

2http://www.cis.uni-muenchen.de/
˜schmid/tools/RFTagger/

3http://nlp.lsi.upc.edu/freeling/

53

in obtaining and customising them, and to verify
that they are producing good quality output. In
most cases these collaborators are also the people
who have written the sketch grammar and the term
grammar for the language.4

6 Identifying and counting candidates
Within the Sketch Engine we already have ma-

chinery for shallow parsing, based on a ’Sketch
Grammar’ of regular expressions over part-of-
speech tags, written in CQL (Corpus Query Lan-
guage, an extended version of the formalism de-
veloped in Stuttgart in the 1990s (Schulze and
Christ, 1996)). Our implementation is mature, sta-
ble and fast, processing million-word corpora in
seconds and billion-word corpora in a few hours.

The machinery has most often been used to find
<grammatical-relation, word1, word2> triples for
lexicography and related research. It was straight-
forward to modify it to find, and count, the items
having the appropriate shape for a term.

7 Comparing frequencies
The challenge of identifying the best candidate

terms for the domain, given their frequency in
the domain corpus and the reference corpus, is a
variant on the challenge of finding the keywords
in a corpus. As argued in (Kilgarriff, 2009), a
good method is simply to take the ratio of the nor-
malised frequency of the term in the domain cor-
pus to its normalised frequency in a reference cor-
pus. Before taking the ratio, we add a constant,
the ‘simple maths parameter’, firstly, to address
the case where the candidate is absent in the refer-
ence corpus (and we cannot divide by zero), and
secondly, because there is no one right answer:
depending on the user needs and on the nature
of the corpora, the constant can be raised to give
a list with more higher-frequency candidates, or
lowered to give more emphasis to lower-frequency
items.

Candidate terms are then presented to the user
in a sorted list, with the best candidates – those
with the highest domain:reference ratio – at the
top. Each item in the list is clickable: the user can
click to see a concordance for the term, in either
the domain or the reference corpus.

4Collaborators are typically credited on the ‘info’ page
for a reference corpus on the Sketch Engine website. The
collaborations are also often agreeable and fruitful in research
terms, resulting in many joint publications.

Figure 2: Term finding results for Japanese, WIPO format.

8 Current status
Languages currently covered by the terminolo-

gy finding system are sumarized in Table 1.

Language POS tagger Ref. corpus
Chinese simp. Stanford NLP zhTenTen11
Chinese trad. Stanford NLP zhTenTen11
English TreeTagger enTenTen08
French TreeTagger frTenTen12
German RFTagger deTenTen10
Japanese MeCab+Comainu jpTenTen11
Korean HanNanum koTenTen12
Portuguese Freeling ptTenTen11
Russian RFTagger ruTenTen11
Spanish Freeling esTenTen11

Table 1: Terminology support for languages in Sketch En-
gine in January 2014. POS tagger is mentioned as an im-
portant part of the corpus processing chain. The last column
shows the corresponding default reference corpus.

The display of term finding results is shown
in Figure 1 for English, for a bootcatted climate-
change corpus. Figure 2 shows a result set for
Japanese in the mobile telecommunications do-
main, prepared for the first users of the sys-
temm, the World Intellectual Property Organisa-
tion (WIPO), using their patents data, with their
preferred display format.

The user can modify various extraction related
options: Keyword reference corpus, term refer-
ence corpus, simple maths parameter, word length
and other word properties, number of top results
to display. The form is shown in Figure 3.

9 Current challenges
9.1 Canonical form: lemmas and word forms

In English one (almost) always wants to present
each word in the term candidate in its canonical,

54

Figure 1: Term finding result in the Sketch Engine – keywords on the left, multiword terms on the right. The values in paren-
theses represent keyness score and frequency in the focus corpus. The green coloured candidates were used in a WebBootCaT
run to build the corpus. The tickboxes are for specifying seed terms for iterating the corpus-building process.

Figure 3: Term finding settings form

dictionary form. But in French one does not. The
top term candidate in one of our first experiments,
using a French volcanoes corpus, was nuée ar-
dente. The problem here is that ardente is the
feminine form of the adjective, as required by the
fact that nuée is a feminine noun. Simply tak-
ing the canonical form of each word (masculine
singular, for adjectives) would flout the rule of
adjective-noun gender agreement. A gender re-
specting lemma turns out necessary in such cases.

Noun lemmas beginning with a capital letter
and gender respecting ending of adjectives had to
be dealt with to correctly extract German phrases.

In most of the languages we have been work-
ing on, there are also some terms which should be
given in the plural: an English example is current
affairs. This is a familiar lexicographic puzzle: for
some words, there are distinct meanings limited to
some part or parts of the paradigm, and this needs
noting. We are currently exploring options for this.

9.2 Versions of processing chains

If the version of the tools used for the reference
corpus is not identical to the version used on the

55

domain corpus, it is likely that the candidate list
will be dominated by cases where the two versions
treated the expression differently. Thus the two
analyses of the expression will not match and (in
simple cases), one of the analyses will have fre-
quency zero in each corpus, giving one very high
and one very low ratio. This makes the tool unus-
able if processing chains are not the same.

The reference corpus is processed in batch
mode, and we hope not to upgrade it more than
once a year. The domain corpus is processed
at runtime. Until the development of the term-
finding function, it did not greatly matter if dif-
ferent versions were used. For term-finding, we
have had to look carefully at the tools, separating
each out into an independent module, so that we
can be sure of applying the same versions through-
out. It has been a large task. (It also means that
solutions based on POS-tagging by web services,
where we do not control the web service, are not
viable, since then, an unexpected upgrade to the
web service will break our system.)

10 Evaluation
We have undertaken a first evaluation using the

GENIA corpus (Kim et al., 2003), in which all
terms have been manually identified.5

First, a plain-text version of GENIA was ex-
tracted and loaded into the system. Keyword and
term extraction was performed to obtain the top
2000 keywords and top 1000 multi-word terms.
Terms manually annotated in GENIA as well as
terms extracted by our tool were normalized be-
fore comparison (lower case, spaces and hyphens
removed) and then GENIA terms were looked up
in the extraction results. 61 of the top 100 GE-
NIA terms were found by the system. The terms
not found were not English words: most were
acronyms, e.g. EGR1, STAT-6.

Concerning the domain corpus size: Although
the extraction method works well even with very
small corpora (e.g. the sample environmental cor-
pus in 1 consists of 100,000 words), larger cor-
pora should be employed to cover more terms. An
early version of this extraction tool was used to
help lexicographers compile environment protec-
tion related terminology. A 50 million words cor-
pus was sufficient in that case. (Avinesh et al.,
2012) report 30 million words is enough.

5GENIA has also been used for evaluating term-finding
systems by (Zhang et al., 2008).

11 Conclusion
We have built a system for finding terms in a

domain corpus. It is currently set up for nine lan-
guages. In 2014 we shall extend the coverage of
languages and improve the system according to
further feedback from users.

Acknowledgement
This work has been partly supported by the

Ministry of Education of CR within the LINDAT-
Clarin project LM2010013.

References
[Aker et al.2013] A. Aker, M. Paramita, and

R. Gaizauskas. 2013. Extracting bilingual ter-
minologies from comparable corpora. In Proc.
ACL, pages 402–411.

[Avinesh et al.2012] PVS Avinesh, D. McCarthy,
D. Glennon, and J. Pomikálek. 2012. Domain
specific corpora from the web. In Proc. EURALEX.

[Baroni and Bernardini2004] M. Baroni and S. Bernar-
dini. 2004. Bootcat: Bootstrapping corpora and
terms from the web. In Proc. LREC.

[Baroni et al.2006] M. Baroni, A. Kilgarriff,
J. Pomikálek, and P. Rychlý. 2006. Webboot-
cat: instant domain-specific corpora to support
human translators. In Proc. EAMT, pages 247–252.

[Gojun et al.2012] A. Gojun, U. Heid, B. Weissbach,
C. Loth, and I. Mingers. 2012. Adapting and evalu-
ating a generic term extraction tool. In Proc. LREC,
pages 651–656.

[Jakubı́ček et al.2013] M. Jakubı́ček, A. Kilgarriff,
V. Kovář, P. Rychlý, and V. Suchomel. 2013. The
tenten corpus family. In Proc. Corpus Linguistics.

[Kilgarriff et al.2004] A. Kilgarriff, P. Rychlý, P. Smrž,
and D. Tugwell. 2004. The sketch engine. Proc.
EURALEX, pages 105–116.

[Kilgarriff2009] A. Kilgarriff. 2009. Simple maths for
keywords. In Proc. Corpus Linguistics.

[Kim et al.2003] J-D. Kim, T. Ohta, Y. Tateisi, and
J. Tsujii. 2003. Genia corpusa semantically an-
notated corpus for bio-textmining. Bioinformatics,
19(suppl 1):i180–i182.

[Schulze and Christ1996] B. M. Schulze and O. Christ.
1996. The CQP user’s manual. Univ. Stuttgart.

[Suchomel and Pomikálek2012] V. Suchomel and
J. Pomikálek. 2012. Efficient web crawling for
large text corpora. In Proc. WAC7, pages 39–43.

[Zhang et al.2008] Z. Zhang, J. Iria, C. A. Brewster, and
F. Ciravegna. 2008. A comparative evaluation of
term recognition algorithms. In Proc. LREC, pages
2108–2113.

56

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 57–60,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

A Graphical Interface for Automatic Error Mining in Corpora

Gregor Thiele Wolfgang Seeker Markus Gärtner Anders Björkelund Jonas Kuhn
Institute for Natural Language Processing

University of Stuttgart
{thielegr,seeker,gaertnms,anders,kuhn}@ims.uni-stuttgart.de

Abstract

We present an error mining tool that is de-
signed to help human annotators to find
errors and inconsistencies in their anno-
tation. The output of the underlying al-
gorithm is accessible via a graphical user
interface, which provides two aggregate
views: a list of potential errors in con-
text and a distribution over labels. The
user can always directly access the ac-
tual sentence containing the potential er-
ror, thus enabling annotators to quickly
judge whether the found candidate is in-
deed incorrectly labeled.

1 Introduction

Manually annotated corpora and treebanks are the
primary tools that we have for developing and
evaluating models and theories for natural lan-
guage processing. Given their importance for test-
ing our hypotheses, it is imperative that they are
of the best quality possible. However, manual an-
notation is tedious and error-prone, especially if
many annotators are involved. It is therefore desir-
able to have automatic means for detecting errors
and inconsistencies in the annotation.

Automatic methods for error detection in tree-
banks have been developed in the DECCA
project1 for several different annotation types, for
example part-of-speech (Dickinson and Meurers,
2003a), constituency syntax (Dickinson and Meur-
ers, 2003b), and dependency syntax (Boyd et al.,
2008). These algorithms work on the assumption
that two data points that appear in identical con-
texts should be labeled in the same way. While
the data points in question, or nuclei, can be single
tokens, spans of tokens, or edges between two to-
kens, context is usually modeled as n-grams over
the surrounding tokens. A nucleus that occurs

1http://www.decca.osu.edu

multiple times in identical contexts but is labeled
differently shows variation and is considered a po-
tential error.

Natural language is ambiguous and variation
found by an algorithm may be a genuine ambigu-
ity rather than an annotation error. Although we
can support an annotator in finding inconsisten-
cies in a treebank, these inconsistencies still need
to be judged by humans. In this paper, we present
a tool that allows a user to run automatic error de-
tection on a corpus annotated with part-of-speech
or dependency syntax.2 The tool provides the user
with a graphical interface to browse the variation
nuclei found by the algorithm and inspect their la-
bel distribution. The user can always switch be-
tween high-level aggregate views and the actual
sentences containing the potential error in order to
decide if that particular annotation is incorrect or
not. The interface thus brings together the output
of the error detection algorithm with a direct ac-
cess to the corpus data. This speeds up the pro-
cess of tracking down inconsistencies and errors
in the annotation considerably compared to work-
ing with the raw output of the original DECCA
tools. Several options allow the user to fine-tune
the behavior of the algorithm. The tool is part of
ICARUS (Gärtner et al., 2013), a general search
and exploration tool.3

2 The Error Detection Algorithm

The algorithm, described in Dickinson and Meur-
ers (2003a) for POS tags, works by starting from
individual tokens (the nuclei) by recording their
assigned part-of-speech over an entire treebank.
From there, it iteratively increases the context for
each instance by extending the string to both sides
to include adjacent tokens. It thus successively
builds larger n-grams by adding tokens to the left

2Generalizing the tool to support any kind of positional
annotation is planned.

3http://www.ims.uni-stuttgart.de/data/icarus.html

57

Figure 1: The variation n-gram view.

or to the right. Instances are grouped together if
their context is identical, i. e. if their token n-
grams match. Groups where all instances have
the same label do not show variation and are dis-
carded. The algorithm stops when either no vari-
ation nuclei are left or when none of them can be
further extended. All remaining groups that show
variation are considered potential errors. Erro-
neous annotations that do not show variation in the
data cannot be found by the algorithm. This limits
the usefulness of the method for very small data
sets. Also, given the inherent ambiguity of nat-
ural language, the algorithm is not guaranteed to
exclusively output errors, but it achieves very high
precision in experiments on several languages.

The algorithm has been extended to find errors
in constituency and dependency structures (Dick-
inson and Meurers, 2003b; Boyd et al., 2008),
where the definition of a nucleus is changed to
capture phrases and dependency edges. Context
is always modeled using n-grams over surround-
ing tokens, but see, e. g., Boyd et al. (2007) for
extensions.

3 Graphical Error Mining

To start the error mining, a treebank and an error
mining algorithm (part-of-speech or dependency)
must be selected. The algorithm is then executed
on the data to create the variation n-grams. The
user can choose between two views for browsing
the potential errors in the treebank: (1) a view
showing the list of variation n-grams found by the
error detection algorithm and (2) a view showing
label distributions over word forms.

3.1 The Variation N-Gram View

Figure 1 shows a screenshot of the view where the
user is presented with the list of variation n-grams
output by the error detection algorithm. The main
window shows the list of n-grams. When the user
selects one of the n-grams, information about the
nucleus is displayed below the main window. The
user can inspect the distribution over labels (here
part-of-speech tags) with their absolute frequen-
cies. Above the main window, the user can adjust
the length of the presented n-grams, sort them, or
search for specific strings.

For example, Figure 1 shows a part of the vari-
ation n-grams found in the German TiGer corpus
(Brants et al., 2002). The minimum and maximum
length was restricted to four, thus the list contains
only 4-grams. The 4-gram so hoch wie in was se-
lected, which contains wie as its nucleus. In the
lower part, the user can see that wie occurs with
four different part-of-speech tags in the treebank,
namely KOKOM, PWAV, KON, and KOUS. Note
that the combination with KOUS occurs only once
in the entire treebank.

Double clicking on the selected 4-gram in the
list will open up a new tab that displays all sen-
tences that contain this n-gram, with the nucleus
being highlighted. The user can then go through
each of the sentences and decide whether the an-
notated part-of-speech tag is correct. Each time
the user clicks on an n-gram, a new tab will be
created, so that the user can jump back to previous
results without having to recreate them.

A double click on one of the lines in the lower
part of the window will bring up all sentences that
contain that particular combination of word form

58

Figure 2: The label distribution view.

and part-of-speech tag. The fourth line will, for
example, show the one sentence where wie has
been tagged as KOUS, making it easy to quickly
judge whether the tag is correct. In this case, the
annotation is incorrect (it should have been PWAV)
and should thus be marked for correction.

3.2 The Label Distribution View

In addition to the output of the algorithm by Dick-
inson and Meurers (2003a), the tool also provides
a second view, which displays tag distributions of
word forms to the user (see Figure 2). To the left,
a list of unique label combinations is shown. Se-
lecting one of them displays a list of word forms
that occur with exactly these tags in the corpus.
This list is shown below the list of label combina-
tions. To the right, the frequencies of the differ-
ent labels are shown in a bar chart. The leftmost
bar for each label always shows the total frequency
summed over all word forms in the set. Selecting
one or more in the list of word forms adds addi-
tional bars to the chart that show the frequencies
for each selected word form.

As an example, Figure 2 shows the tag combi-
nation [VVINF][VVIZU], which are used to tag in-
finitives with and without incorporated zu in Ger-
man. There are three word forms in the cor-
pus that occur with these two part-of-speech tags:
hinzukommen, aufzulösen, and anzunähern. The
chart on the right shows the frequencies for each
word form and part-of-speech tag, revealing that
hinzukommen is mostly tagged as VVINF but once
as VVIZU, whereas for the other two word forms it
is the other way around. This example is interest-
ing if one is looking for annotation errors in the

TiGer treebank, because the two part-of-speech
tags should have a complementary distribution (a
German verb either incorporates zu or it does not).

Double clicking on the word forms in the list in
the lower left corner will again open up a tab that
shows all sentences containing this word form, re-
gardless of their part-of-speech tag. The user may
then inspect the sentences and decide whether the
annotations are erroneous or not. If the user wants
to see a specific combination, which is more use-
ful if the total number of sentences is large, she
can also click on one of the bars in the chart to get
all sentences matching that combination. In the
example, the one instance of hinzukommen being
tagged as VVIZU is incorrect,4 and the instances of
the two other verbs tagged as VVINF are as well.

3.3 Dependency Annotation Errors

As mentioned before, the tool also allows the user
to search for errors in dependency structures. The
error mining algorithm for dependency structures
(Boyd et al., 2008) is very similar to the one for
part-of-speech tags, and so is the interface to the
n-gram list or the distribution view. Dependency
edges are therein displayed as triples: the head,
the dependent, and the edge label with the edge’s
direction. As with the part-of-speech tags, the user
can always jump directly to the sentences that con-
tain a particular n-gram or dependency relation.

4Actually, the word form hinzukommen can belong to two
different verbs, hinzu-kommen and hin-kommen. However,
the latter, which incorporates zu, does not occur in TiGer.

59

4 Error Detection on TiGer

We ran the error mining algorithm for part-of-
speech on the German TiGer Treebank (the de-
pendency version by Seeker and Kuhn (2012)) and
manually evaluated a small sample of n-grams in
order to get an idea of how useful the output is.

We manually checked 115 out of the 207 vari-
ation 6-grams found by the tool, which amounts
to 119 different nuclei. For 99.16% of these nu-
clei, we found erroneous annotations in the asso-
ciated sentences. 95.6% of these are errors where
we are able to decide what the right tag should
be, the remaining ones are more difficult to disam-
biguate because the annotation guidelines do not
cover them.

These results are in line with findings by Dick-
inson and Meurers (2003a) for the Penn Treebank.
They show that even manually annotated corpora
contain errors and an automatic error mining tool
can be a big help in finding them. Furthermore,
it can help annotators to improve their annotation
guidelines by pointing out phenomena that are not
covered by the guidelines, because these phenom-
ena will be more likely to show variation.

5 Related Work

We are aware of only one other graphical tool that
was developed to help with error detection in tree-
banks: Ambati et al. (2010) and Agarwal et al.
(2012) describe a graphical tool that was used in
the annotation of the Hindi Dependency Treebank.
To find errors, it uses a statistical and a rule-based
component. The statistical component is recall-
oriented and learns a MaxEnt model, which is used
to flag dependency edges as errors if their proba-
bility falls below a predefined threshold. In or-
der to increase the precision, the output is post-
processed by the rule-based component, which is
tailored to the treebank’s annotation guidelines.
Errors are presented to the annotators in tables,
also with the option to go to the sentences di-
rectly from there. Unlike the algorithm we im-
plemented, this approach needs annotated training
data for training the classifier and tuning the re-
spective thresholds.

6 Conclusion

High-quality annotations for linguistic corpora are
important for testing hypotheses in NLP and lin-
guistic research. Automatically marking potential

annotation errors and inconsistencies are one way
of supporting annotators in their work. We pre-
sented a tool that provides a graphical interface for
annotators to find and evaluate annotation errors
in treebanks. It implements the error detection al-
gorithms by Dickinson and Meurers (2003a) and
Boyd et al. (2008). The user can view errors from
two perspectives that aggregate error information
found by the algorithm, and it is always easy to
go directly to the actual sentences for manual in-
spection. The tool is currently extended such that
annotators can make changes to the data directly
in the interface when they find an error.

Acknowledgements

We thank Markus Dickinson for his comments.
Funded by BMBF via project No. 01UG1120F,
CLARIN-D, and by DFG via SFB 732, project D8.

References
Rahul Agarwal, Bharat Ram Ambati, and Anil Kumar

Singh. 2012. A GUI to Detect and Correct Errors in
Hindi Dependency Treebank. In LREC 2012, pages
1907–1911.

Bharat Ram Ambati, Mridul Gupta, Samar Husain, and
Dipti Misra Sharma. 2010. A High Recall Error
Identification Tool for Hindi Treebank Validation.
In LREC 2010.

Adriane Boyd, Markus Dickinson, and Detmar Meur-
ers. 2007. Increasing the Recall of Corpus Annota-
tion Error Detection. In TLT 2007, pages 19–30.

Adriane Boyd, Markus Dickinson, and Detmar Meur-
ers. 2008. On Detecting Errors in Dependency
Treebanks. Research on Language and Computa-
tion, 6(2):113–137.

Sabine Brants, Stefanie Dipper, Silvia Hansen-Shirra,
Wolfgang Lezius, and George Smith. 2002. The
TIGER treebank. In TLT 2002, pages 24–41.

Markus Dickinson and W. Detmar Meurers. 2003a.
Detecting Errors in Part-of-Speech Annotation. In
EACL 2003, pages 107–114.

Markus Dickinson and W. Detmar Meurers. 2003b.
Detecting Inconsistencies in Treebanks. In TLT
2003, pages 45–56.

Markus Gärtner, Gregor Thiele, Wolfgang Seeker, An-
ders Björkelund, and Jonas Kuhn. 2013. ICARUS
– An Extensible Graphical Search Tool for Depen-
dency Treebanks. In ACL: System Demonstrations,
pages 55–60.

Wolfgang Seeker and Jonas Kuhn. 2012. Making El-
lipses Explicit in Dependency Conversion for a Ger-
man Treebank. In LREC 2012, pages 3132–3139.

60

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 61–64,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

DKIE: Open Source Information Extraction for Danish

Leon Derczynski
University of Sheffield
leon@dcs.shef.ac.uk

Camilla Vilhelmsen Field
University of Southern Denmark

cafie13@student.sdu.dk

Kenneth S. Bøgh
Aarhus University

ksb@cs.au.dk

Abstract

Danish is a major Scandinavian language
spoken daily by around six million peo-
ple. However, it lacks a unified, open set
of NLP tools. This demonstration will in-
troduce DKIE, an extensible open-source
toolkit for processing Danish text. We im-
plement an information extraction archi-
tecture for Danish within GATE, including
integrated third-party tools. This imple-
mentation includes the creation of a sub-
stantial set of corpus annotations for data-
intensive named entity recognition. The
final application and dataset is made are
openly available, and the part-of-speech
tagger and NER model also operate in-
dependently or with the Stanford NLP
toolkit.

1 Introduction

Danish is primarily spoken in the northern hemi-
sphere: in Denmark, on the Faroe islands, and on
Greenland. Having roots in Old Norse, Danish
bears similarities to other Scandinavian languages,
and shares features with English and German.

Previous tools and language resources for Dan-
ish have suffered from license restrictions, or from
using small or non-reusable datasets. As a result,
it is often difficult to use Danish language tech-
nologies, if anything is available at all. In cases
where quality tools are available, they often have
disparate APIs and input/output formats, making
integration time-consuming and prone to error.

To remedy this, this paper presents an open-
source information extraction toolkit for Danish,
using the established and flexible GATE text pro-
cessing platform (Cunningham et al., 2013). To
this end, there are three main goals:

Adaptation: The application adapts to collo-
quial and formal Danish.

Interoperability: DKIE is internally consistent
and adopts unified, well-grounded solutions to the
problems of processing Danish. Where possible,
DKIE re-uses existing components, and strives for
compatibility with major text processing architec-
tures.

Portability: It is preferable for developed com-
ponents to be readily movable within the chosen
architecture, GATE, and without, usable indepen-
dently.

Openness: The resultant application, and cor-
pora and annotations developed in its creation, are
as freely-available as possible.

The remainder of this paper first discusses con-
siderations specific to the language and prior
work, then introduces the information extraction
pipeline, followed by an evaluation of the tools
provided.

2 Processing Danish

There are a few representational issues for Danish
that are not solved in a unified fashion across exist-
ing technological issues. DKIE builds upon major
standards in general linguistic annotation and in
Danish to unify these solutions.

Danish is written using the Latin alphabet, with
the addition of three vowels: æ, ø and å, which
may be transliterated as ae, oe and aa respectively.
It is similar to English in terms of capitalisation
rules and character set.

Over time, the orthography of Danish has
shifted. Among other things, a spelling reform
in 1948 removed the capitalisation of nouns, and
introduced the three vowel characters to repre-
sent existing vowel digraphs. There were also
spelling shifts in this reform (e.g. kjærlighed to
kærlighed). In addition, some towns and mu-
nicipalities have changed the spelling of their
name. For example, Denmarks second-largest city
Aarhus changed its name to Århus with the 1948

61

Figure 1: The ANNIE-based information extraction pipeline for Danish

reform, although Aalborg and Aabenraa did not.
Later, in 2011, the city reverted from Århus to
Aarhus. The city’s university retained the Aarhus
spelling throughout this period.

The effect of these relatively recent changes is
that there exist digitised texts using a variety of or-
thographies not only to represent the same sound,
as also in English, but also the same actual word.
A language processing toolkit for Danish must ex-
hibit sensitivity to these variances.

In addition, Danish has some word bound-
ary considerations. Compound nouns are com-
mon (e.g. kvindehåndboldlandsholdet for “the
women’s national handball team”), as are hyphen-
ated constructions (fugle-fotografering for “bird
photography”) which are often treated as single to-
kens.

Finally, abbreviations are common in Danish,
and its acronyms can be difficult to disambiguate
without the right context and language resource
(e.g. OB for Odense Boldklub, a football club).

3 Background

The state of the art in Danish information extrac-
tion is not very interoperable or open compared to
that for e.g. English. Previous work, while high-
performance, is not available freely (Bick, 2004),
or domain-restricted.1 This makes results diffi-
cult to reproduce (Fokkens et al., 2013), and leads
to sub-optimal interoperability (Lee et al., 2010).
Even recent books focusing on the topic are heav-
ily licensed and difficult for the average academic
to access. Further, prior tools are often in the form
of discrete components, hard to extend or to inte-
grate with other systems.

Some good corpus resources are available, most
recently the Copenhagen Dependency Treebank

1E.g. CST’s non-commercial-only anonymisation tool, at
http://cst.dk/online/navnegenkender/

(CDT) (Buch-Kromann and Korzen, 2010), which
built on and included previously-released corpora
for Danish. This 200K-token corpus is taken
from news articles and editorials, and includes
document structure, tokenisation, lemma, part-of-
speech and dependency relation information.

The application demonstrated, DKIE, draws
only on open corpus resources for annotation, and
the annotations over these corpora are released
openly. Further, the application is also made open-
source, with each component having similar or
better performance when compared with the state-
of-the-art.

4 Information Extraction Pipeline

This section details each step in the DKIE
pipeline. A screenshot of the tool is shown in Fig-
ure 1.

4.1 Tokeniser
We adopt the PAROLE tokenisation scheme (Ke-
son and Norling-Christensen, 1998). This makes
different decisions from Penn Treebank in some
cases, concatenating particular expressions as sin-
gle tokens. For example, the two word phrase i alt
– meaning in total – is converted to the single to-
ken i alt. A set list of these group formations is
given in the Danish PAROLE guidelines.

Another key difference is in the treatment of
quoted phrases and hyphenation. Phrases con-
nected in this way are often treated as single to-
kens. For example, the phrase “Se og hør”-
læserne (readers of “See and Hear”, a magazine)
is treated as a single token under this scheme.

4.2 Part-of-Speech tagger
We use a machine-learning based tag-
ger (Toutanova et al., 2003) for Danish part-
of-speech labelling. The original PAROLE

62

Tagger Token accuracy % Sentence acc. %
DKIE 95.3 49.1
TnT 96.2 39.1

Table 1: Part-of-speech labelling accuracy in
DKIE

scheme introduces a set of around 120 tags, many
of which are used only rarely. The scheme com-
prises tags built up of up to nine features. These
features are used to describe information such
as case, degree, gender, number, possessivity,
reflexivity, mood, tense and so on (Keson and
Norling-Christensen, 1998).

The PAROLE data includes morphological en-
coding in tags. We separate this data out in
our corpus, adding morphological features distinct
from part-of-speech data. This data may then be
used by later work to train a morphological anal-
yser, or by other tools that rely on morphological
information.

We combine PAROLE annotations with the re-
duced tagset employed by the Danish Dependency
Treebank (DDT) (Kromann, 2003). This has 25
tags. We adapted the tagger to Danish by in-
cluding internal automatic mapping of æ, ø and
å to two-letter diphthongs when both training and
labelling, by adding extra sets of features for
handling words and adjusting our unknown word
threshold to compensate for the small corpus (as
in Derczynski et al. (2013)), and by specifying the
closed-class tags for this set and language. We
also prefer a CRF-based classifier in order to get
better whole-sequence accuracy, providing greater
opportunities for later-stage tools such as depen-
dency parsers to accurately process more of the
corpus.

Results are given in Table 1, comparing token-
and sentence-level accuracy to other work using
the DDT and the TnT tagger (Brants, 2000). State-
of-the-art performance is achieved, with whole-
sentence tagging accuracy comparable to that of
leading English taggers.

4.3 Gazetteers

High precision entity recognition can be achieved
with gazetteer-based named entity recognition.
This is a low-cost way of quickly getting decent
performance out of existing toolkits. We include
two special kinds of gazetteer for Danish. Firstly,
it is important to annotation the names of enti-
ties specific to Denmark (e.g. Danish towns).

id expression interpretation
-- ---------- --------------
3 igaa ADD(DCT,day,-1)
13 Num._jul ADD(DATE_MONTH_DAY(DCT, 12, 24),

day, TOKEN(0))

Figure 2: Example normalisation rules in TIMEN.
“DCT” refers to the document creation time.

Secondly, entities outside of Denmark sometimes
have different names specific to the Danish lan-
guage (e.g. Lissabon for Lisboa / Lisbon).

As well as a standard strict-matching gazetteer,
we include a “fuzzy” gazetteer specific to Dan-
ish that tolerates vowel orthography variation and
the other changes introduced in the 1948 spelling
reform. For locations, we extracted data for
names of Danish towns from DBpedia and a lo-
cal gazetteer, and from Wikipedia the Danish-
language versions of the world’s 1 000 most popu-
lous cities. For organisations, we used Wikipedia
cross-language links to map the international or-
ganisations deemed notable in Wikipedia to their
Danish translation and acroynm (e.g. the United
Nations is referred to as FN). The major Danish
political parties were also added to this gazetteer.
For person names, we build lists of both notable
people,2 and also populated GATE’s first and last
name lists with common choices in Denmark.

4.4 Temporal Expression Annotation
We include temporal annotation for Danish in this
pipeline, making DKIE the first temporal anno-
tation tool for Danish. We follow the TimeML
temporal annotation standard (Pustejovsky et al.,
2004), completing just the TIMEX3 part.

Danish is interesting in that it permits flexible
temporal anchors outside of reference time (Re-
ichenbach, 1947) and the default structure of a cal-
endar. For example, while in English one may use
numbers to express a distance in days (two days
from now) or into a month (the second of March),
Danish permits these offsets from any agreed time.
As a result, it is common to see expressions of the
form 2. juledag, which in this case is the second
christmas day and refers to 26th December.

For this pipeline, we use finite state transducers
to define how Danish timexes may be recognised.
We then use the general-purpose TIMEN (Llorens
et al., 2012) timex normalisation tool to provide
calendar or TIMEX3 values for these expressions.
Example rules are shown in Figure 2.

2See https://en.wikipedia.org/wiki/List of Danes, minus
musicians due to stage names

63

4.5 Named entities

In addition to gazetteers, we present a machine
learning-based approach to entity recognition and
classification in Danish. We annotated the Copen-
hagen Dependency Treebank for person, location
and organisation entities, according to the ACE
guidelines (or as close as possible). This led
to a total of 100 000 extra tokens annotated for
NEs in Danish, doubling the previously-available
amount. We used three annotators, achieving
inter-annotator agreement of 0.89 on the first
100 000 tokens; annotation is an ongoing effort.

The data was used to learn a model tuned to
Danish with an existing NER tool (Finkel et al.,
2005). We removed word shape conjunctions fea-
tures from the default configuration in an effort to
reduced sensitivities introduced by the group noun
tokenisation issue. This model, and the Stanford
NER tool, were then wrapped as a GATE process-
ing resource, contributing general-purpose Danish
NER to the toolkit.

5 Conclusion

We will demonstrate a modern, interoperable,
open-source NLP toolkit for information extrac-
tion in Danish. The released resources are: a
GATE pipeline for Danish; tools for temporal ex-
pression recognition and normalisation for Dan-
ish; part-of-speech and named entity recognition
models for Danish, that also work in the Stanford
NLP architecture; and named entity corpus an-
notations over the Copenhagen Dependency Tree-
bank.

Acknowledgments

This work was supported by EU funding un-
der grant FP7-ICT-2013-10-611233, Pheme, and
grant agreement No. 296322, AnnoMarket. We
are grateful to Anders Søgaard of Copenhagen
University for comments on an earlier draft and
kind help with gazetteers. The first author would
also like to thank Aarhus University for their kind
provision of research facilities.

References
E. Bick. 2004. A named entity recognizer for Danish.

In Proceedings of LREC.

T. Brants. 2000. TnT: a statistical part-of-speech tag-
ger. In Proceedings of the sixth conference on Ap-

plied natural language processing, pages 224–231.
ACL.

M. Buch-Kromann and I. Korzen. 2010. The unified
annotation of syntax and discourse in the Copen-
hagen Dependency Treebanks. In Proceedings of
the Fourth Linguistic Annotation Workshop, pages
127–131. ACL.

H. Cunningham, V. Tablan, A. Roberts, and
K. Bontcheva. 2013. Getting More Out of
Biomedical Documents with GATE’s Full Lifecycle
Open Source Text Analytics. PLoS computational
biology, 9(2):e1002854.

L. Derczynski, A. Ritter, S. Clark, and K. Bontcheva.
2013. Twitter Part-of-Speech Tagging for All: Over-
coming Sparse and Noisy Data. In Proceedings of
Recent Advances in Natural Language Processing.
Association for Computational Linguistics.

J. R. Finkel, T. Grenager, and C. Manning. 2005. In-
corporating non-local information into information
extraction systems by Gibbs sampling. In Proceed-
ings of the 43rd Annual Meeting on Association for
Computational Linguistics, pages 363–370. ACL.

A. Fokkens, M. van Erp, M. Postma, T. Pedersen,
P. Vossen, and N. Freire. 2013. Offspring from
reproduction problems: What replication failure
teaches us. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1691–1701. Association for Computa-
tional Linguistics.

B. Keson and O. Norling-Christensen. 1998.
PAROLE-DK. The Danish Society for Language
and Literature.

M. T. Kromann. 2003. The Danish Dependency Tree-
bank and the DTAG treebank tool. In Proceedings
of the Second Workshop on Treebanks and Linguistic
Theories, page 217.

K. Lee, L. Romary, et al. 2010. Towards interoperabil-
ity of ISO standards for Language Resource Man-
agement. Proc. ICGL 2010.

H. Llorens, L. Derczynski, R. J. Gaizauskas, and E. Sa-
quete. 2012. TIMEN: An Open Temporal Ex-
pression Normalisation Resource. In LREC, pages
3044–3051.

J. Pustejovsky, B. Ingria, R. Sauri, J. Castano,
J. Littman, and R. Gaizauskas. 2004. The Specifica-
tion Language TimeML. In The Language of Time:
A Reader, pages 545–557. Oxford University Press.

H. Reichenbach. 1947. The tenses of verbs. In Ele-
ments of Symbolic Logic. Macmillan.

K. Toutanova, D. Klein, C. D. Manning, and Y. Singer.
2003. Feature-rich part-of-speech tagging with a
cyclic dependency network. In Proceedings of the
2003 Conference of the North American Chapter
of the Association for Computational Linguistics,
pages 173–180. ACL.

64

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 65–68,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

Event Extraction for Balkan Languages

Vanni Zavarella, Dilek Küçük, Hristo Tanev
European Commission
Joint Research Centre

Via E. Fermi 2749
21027 Ispra (VA), Italy

first.last@jrc.ec.europa.eu

Ali Hürriyetoğlu
Center for Language Studies

Radboud University Nijmegen
P.O. Box 9103

NL-6500 HD Nijmegen
a.hurriyetoglu@let.ru.nl

Abstract

We describe a system for real-time detec-
tion of security and crisis events from on-
line news in three Balkan languages: Turk-
ish, Romanian and Bulgarian. The system
classifies the events according to a fine-
grained event type set. It extracts struc-
tured information from news reports, by
using a blend of keyword matching and
finite-state grammars for entity recogni-
tion. We apply a multilingual methodol-
ogy for the development of the system’s
language resources, based on adaptation
of language-independent grammars and on
weakly-supervised learning of lexical re-
sources. Detailed performance evaluation
proves that the approach is effective in de-
veloping real-world semantic processing
applications for relatively less-resourced
languages.

1 Introduction

We describe a real-time event extraction system
for three less-resourced languages: Bulgarian, Ro-
manian and Turkish1. The goal of event extraction
is to identify instances of a specified set of event
types in natural language texts, and to retrieve
database-like, structured information about event
participants and attributes: these are the entities
that are involved in the event and fill type-specific
event roles (Ashish et al., 2006). For example,
in the fragment “Three workers were injured in
a building collapse”, the phrase “three workers”
will be assigned a semantic role Injured of the
event type ManMadeDisaster template.

Gathering and tracking such information over
time from electronic news media plays a crucial

1While belonging to three distant language families,
namely Slavic, Romance and Turkic, respectively, they are
spoken in the same geopolitical area, the Balkans.

role for the development of open-source intelli-
gence systems, particularly in the context of global
news monitoring of security threats, mass emer-
gencies and disease outbreaks (Yangarber et al.,
2005). In this view, it has been proved that be-
ing able to rely on highly multilingual text mining
tools and language resources is of paramount im-
portance, in order to achieve an unbiased coverage
of global news content (Steinberger, 2012).

The system language components include fi-
nite state-based entity extraction grammars and
domain-specific semantic lexica. These are
adapted to the target language from existing
language-independent resources or built by using
semi-supervised machine learning algorithms, re-
spectively. Most importantly, the lexical acquisi-
tion methods we put into place neither make use
of any language knowledge nor require to have an-
notated corpora available.

Section 2 outlines the main processing stages of
the application. In Section 3 we describe the meth-
ods applied to acquire and adapt the system’s lan-
guage knowledge bases. Finally, in Section 4 we
report on an evaluation on event type classification
and on the extraction of slot fillers for event tem-
plates, and we briefly discuss system performance
and prospective improvements.

2 System Architecture

As depicted in Figure 1 (Tanev et al., 2009), first
news feeds are clustered, upstream of the event
extraction engine, by applying similarity metrics
over meta data (named entities, locations, cate-
gories) extracted from single articles by dedicated,
multilingual software.

Event extraction begins by preprocessing the ti-
tle and first three sentences of each article within
a cluster. This encompasses: fine-grained tok-
enization, sentence splitting, domain-specific dic-
tionary look-up (i.e. matching of key terms in-
dicating numbers, quantifiers, person titles, per-

65

Meta-Data Creation

Real Time Clusterer

Geo-Locating

Core Linguistic Analysis

Cascaded Event
Extraction Grammar

Application

Entity Role
Disambiguator

Victim
Arithmetic

Event Type
Classifier

Event Description
Assembly

NewsNewsNewsNewsNews

Figure 1: Event extraction processing chain

son groups descriptors like civilians, policemen
and Shiite), and finally morphological analysis,
simply consisting of lexicon look-up on large
domain-independent morphological dictionaries
from the MULTEXT project (Erjavec, 2004). Sub-
sequently, a multi-layer cascade of finite-state ex-
traction grammars in the ExPRESS formalism
(Piskorski, 2007) is applied on such more ab-
stract representation of the article text, in order
to: a)identify entity referring phrases, such as
persons, person groups, organizations, weapons,
etc. b) assign them to event specific roles by lin-
ear combination with event triggering surface pat-
terns. For example, in the text “Iraqi policemen
shot dead an alleged suicide bomber” the gram-
mar should extract the phrase “Iraqi policemen”
and assign to it the semantic role Perpetrator,
while the phrase “alleged suicide bomber” should
be extracted as Dead. We use a “lexicon” of 1/2-
slot patterns of the form:
<DEAD[Per]> was shot by <PERP>
<KIDNAP[Per]> has been taken hostage

where each slot position is assigned an event-
specific semantic role and includes a type restric-
tion (e.g. Person) on the entity which may fill
the slot.

Finally, we aggregate and validate information
extracted locally from each single article in the
same cluster, such as entity role assignment, vic-
tim counts and event type.

We categorize the main event from each cluster
with respect to a fine-grained event type set, shown
in Table 1.

The event classification module consists of a
blend of keyword matching, event role detection

and a set of rules controlling their interaction.
First, for each event type, we deploy: a) a list
of weighted regular expression keyword patterns:
each pattern match is awarded the corresponding
weight, and an event type is triggered when the
weight sum exceeds a defined threshold; b) a set of
boolean pattern combinations: OR pattern lists are
combined by the AND operator, each pattern is a
restricted regular expression and conjunctions are
restricted by proximity constraints. For example
in order to detect TerroristAttack we use the fol-
lowing combination (translated here in English):
(“bomb” OR “explosion” OR....) AND (“terrorist”
OR “Al Qaida” OR..).

Besides the event TYPE, the other main
slots of an output event frame include:
TYPE, DEAD, DEAD-COUNT, ARRESTED,
ARRESTED-COUNT, PERPETRATOR, WEAPON,
etc.

The system will be demonstrated using a KML-
aware earth browser2. Figure 2 shows a sample
output event template.

3 Development of language resources

The system’s language components are:

Event grammar rules They consist of regular
expressions over flat feature structures whose el-
ements include, among the others, semantic types
from the domain lexica. We use them to locally
parse semantic entities such as person names, per-
son group descriptions, and their clausal combi-
nation with verbal event patterns (see Section 2).
Grammars in target languages are compiled by
adapting the existing rules from source languages,
such as English, while the bulk of grammar devel-
opment mostly consists of providing suitable lexi-
cal resources.

Semantic dictionaries Domain-specific lexica,
listing a number of (possibly multi-word) expres-
sions sub-categorized into semantic classes rel-
evant for the event domain, with limited or no
linguistic annotation, are used by entity recogni-
tion grammar rules. Such lexica were created us-
ing the weakly supervised terminology extraction
algorithm LexiClass (Ontopopulis), described in
(Tanev et al., 2009). In order to enforce syntactic

2E.g. Google Earth. Notice that Geocoding is cur-
rently performed at the level of article text by a language-
independent algorithm which is not yet integrated within the
event detection process, while Document Creation Date is
currently used as the event Date slot filler.

66

Figure 2: A sample output template of the system

constraints (e.g. Case) into event clause rules for
Romanian language, we have enriched learnt lex-
ical entries for the semantic classes with morpho-
logical annotations, using MULTEXT resources.
For Turkish, as we do not currently perform mor-
phological analysis, we have rather included com-
mon inflected forms of the applicable lexical en-
tries, resulting in larger lexica.

Event triggering patterns They are also ac-
quired semi-automatically, starting with a set of
seed examples and an article clustering, by deploy-
ing the paraphrase learning algorithm described in
(Tanev et al., 2008). For Bulgarian, the grammar,
semantic dictionaries and event patterns were cre-
ated simultaneously, following a semi-automatic
approach, described in (Tanev and Steinberger,
2013). In particular, we learned a list of terms
referring to people, institutions and organizations
and the corresponding pre- and post-modifiers
(about 5000 terms). In the same manner, we
learned about 550 surface patterns for killing, in-
juring, kidnapping and arresting actions, together
with a 4 level grammar cascade.

Keyword terms The keyword sets used in the
event type definitions, namely the OR lists in
the boolean pattern combinations (see Section 2
above), can be viewed as instances of some more
abstract semantic classes, that a domain expert
uses to model a target event scenario. These
classes are semi-automatically acquired using the
LexiClass algorithm, and then manually com-

Table 1: Event type set
AirMissileAttack Landslide
ArmedConflict LightningStrike
Arrest ManMadeDisaster
Assassination MaritimeAccident
Avalanche PhysicalAttack
BioChemicalAttack Robbery
Bombing Shooting
Disorder/Protest/Mutiny Stabbing
Earthquake Storm
Execution TerroristAttack
Explosion TropicalStorm
Floods Tsunami
HeatWave Vandalism
HeavyWeaponsFire VolcanicEruption
HostageVideoRelease Wildfire
HumanitarianCrisis WinterStorm
Kidnapping NONE

bined. As Turkish is an agglutinative language,
we have frequently added wildcards at the ends of
keywords to cover possible inflected forms.

4 Experiments and Evaluation

System performance is evaluated on three differ-
ent extractive tasks, carried out on the titles and
first three sentences of single news articles: event
type classification, event role name/description ex-
traction and victim counting.

We collected test corpora of 52, 126 and 115
news articles for Bulgarian, Romanian and Turk-
ish, respectively, spanning over a time range of 2
months3. For each article in the gold standard, we

3Articles were manually selected using news aggregators
such as Google News. Type distribution resulted in zeroes for

67

Table 2: System performance in single article extraction mode.
Lang

Type Dead Injured Arrested Kidnapped Perpetrator Weapon
MRR mF MF MSE mF MF MSE mF MF MSE mF MF MSE mF MF mF MF

BG 0.34 0.27 0.68 17.08 0.44 0.6 108.82 0.22 1.0 7.69 0.4 0.5 0.71 0.0 0.0 0.39 1.0
RO 0.22 0.48 0.73 36.53 0.46 0.97 18.57 0.39 0.82 80.5 0.2 1.0 2.14 0.07 0.67 0.1 0.2
TR 0.66 0.73 0.79 16.41 0.85 0.91 0.24 0.31 0.36 52.17 0.4 0.33 0.82 0.25 0.67 0.77 1.0

annotated: a list of applicable types, ordered by
relevance, for the main event reported in the arti-
cle; the set of all the names/descriptions occurring
in the text for each applicable event role, merging
morphological variants; the cumulative count for
the roles Dead, Injured, Kidnapped and Arrested.

Event type classification is evaluated by apply-
ing an adapted version of the mean reciprocal rank
(MRR) score, used in Information Retrieval to
evaluate processes producing a list of relevance or-
dered query responses. In our case, the MRR for a
set of N articles is:

MRR =
1

|N |
N∑

i=1

1
ranki

where rank is the rank of the system type re-
sponse within the gold standard type list for each
article.

For each role name/description extraction sepa-
rately, we compute standard Precision, Recall and
F1-measure on system responses, based on partial,
n-gram match with gold standard responses, ignor-
ing morphological suffixes.

Finally, we record the root Mean Squared Er-
ror (MSE) of system output victim count values
against gold standard, over all applicable roles.

Table 2 summarizes the evaluation results. mF
and MF columns for each role description task
represent respectively the micro and macro aver-
age F1-measure over the test set.

Overall, the performance figures are in line with
previous evaluations on other languages (Tanev et
al., 2009). This proves the methodology is ef-
fective on adapting the system to new languages
even with little lexical and syntactical proximity.
Turkish system consistently outperforms the oth-
ers, and it also underwent the most resource devel-
opment cycles: this suggests that applying learn-
ing iterations, alternated with human filtering, to
the language resources, can increase system ac-
curacy, eventually making it usable for real-world
applications. System accuracy is still unreliable
for victim counting. One of the main reasons for
large errors in victim counting is that the system

some less frequent event types.

interprets historical victim statistics reported in ar-
ticles as event instances. We are currently imple-
menting temporal and discourse heuristics to mit-
igate this problem.

Acknowledgments

This study is supported in part by a postdoctoral
research grant from TÜBİTAK and by the Dutch
national program COMMIT.

References
Naveen Ashish, Doug Appelt, Dayne Freitag, and

Dmitry Zelenko. 2006. Proceedings of the work-
shop on event extraction and synthesis. Technical
report, AAAI.

Tomaz Erjavec. 2004. MULTEXT-East morphosyn-
tactic specifications.

Jakub Piskorski. 2007. ExPRESS–extraction pattern
recognition engine and specification suite. In Pro-
ceedings of the International Workshop Finite-State
Methods and Natural language Processing.

Ralf Steinberger. 2012. A survey of methods to ease
the development of highly multilingual text mining
applications. Language Resources and Evaluation,
46(2):155–176.

Hristo Tanev and Josef Steinberger. 2013. Semi-
automatic acquisition of lexical resources and gram-
mars for event extraction in Bulgarian and Czech. In
Proceedings of the 4th Biennial International Work-
shop on Balto-Slavic Natural Language Processing,
pages 110–118.

Hristo Tanev, Jakub Piskorski, and Martin Atkinson.
2008. Real-time news event extraction for global
crisis monitoring. In E. Kapetanios, V. Sugumaran,
and M. Spiliopoulou, editors, Natural Language and
Information Systems, volume 5039 of Lecture Notes
in Computer Science, pages 207–218.

Hristo Tanev, Vanni Zavarella, Jens Linge, Mijail
Kabadjov, Jakub Piskorski, Martin Atkinson, and
Ralf Steinberger. 2009. Exploiting Machine Learn-
ing Techniques to Build an Event Extraction Sys-
tem for Portuguese and Spanish. Linguamática,
1(2):55–66.

Roman Yangarber, Lauri Jokipii, Antti Rauramo, and
Silja Huttunen. 2005. Extracting information about
outbreaks of infectious epidemics. In Proceedings
of the HLT/EMNLP.

68

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 69–72,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

Anaphora – Clause Annotation and Alignment Tool

Borislav Rizov
Department of Computational

Linguistics, IBL-BAS
52 Shipchenski Prohod Blvd., bl. 17

1113 Sofia, Bulgaria
boby@dcl.bas.bg

Rositsa Dekova
Department of Computational

Linguistics, IBL-BAS
52 Shipchenski Prohod Blvd., bl. 17

1113 Sofia, Bulgaria
rosdek@dcl.bas.bg

Abstract

The paper presents Anaphora – an OS and
language independent tool for clause
annotation and alignment, developed at the
Department of Computational Linguistics,
Institute for Bulgarian Language, Bulgarian
Academy of Sciences. The tool supports
automated sentence splitting and alignment
and modes for manual monolingual annotation
and multilingual alignment of sentences and
clauses. Anaphora has been successfully
applied for the annotation and the alignment of
the Bulgarian-English Sentence- and Clause-
Aligned Corpus (Koeva et al. 2012a) and a
number of other languages including French
and Spanish.

1 Introduction

For years now corpus annotation has played an
essential part in the development of various NLP
technologies. Most of the language resources,
however, do not include clause annotation and
alignment which are considered quite useful in
recent research on Machine Translation (MT)
and parallel text processing (Piperidis et al.,
2000; Sudoh et al., 2010; Ramanathan et al.,
2011).

Aiming to facilitate and improve the process
of clause annotation and alignment of
multilingual texts, we developed Anaphora.

The tool is OS and language independent and
supports automated sentence splitting and
alignment, manual sentence and clause splitting,
validation, correction and alignment, selection
and annotation of conjunctions (including
compounds (MWE)), and identification of the
type of relation between pairs of syntactically
connected clauses.

2 User Interface and Functionalities

Anaphora supports two kinds of operating modes:
a monolingual and a multilingual one.

The monolingual mode is designed for manual
editing and annotation of each part of the parallel
corpus. The window consists of three active
panes (Fig. 1): Text view (top pane), Sentence
view (bottom left-hand pane) and Clause view
and annotation (bottom right-hand pane).

Figure 1. Anaphora – monolingual mode.

69

In this mode the user may chose a file for
verification and post-editing of the automatically
performed sentence alignment. The individual
monolingual texts which are part of an aligned
pair are selected by the file tabs.

The monolingual mode offers the following
functionalities:

• sentence splitting;

• clause splitting;

• correction of wrong splitting (merging of
split sentences/clauses);

• annotation of conjunctions;

• selection of compounds;

• identification of the type of relation
between pairs of syntactically connected
clauses.

The end of a sentence may be changed by
choosing the last word of the sentence and
marking it using the End button from the top
menu. Thus, the selection of the word as a
sentence end is toggled and if it was marked as
an End word, it is no longer such and the
following sentence is automatically merged to
the current one. If the word has not been already
marked as an end, it is thus marked as one and
the sentence is automatically split.

Clicking on any word of a sentence in the Text
view pane results in the sentence appearing in the
Sentence view pane, where clause segmentation
and choice of conjunction are performed. The
user defines the boundaries of clauses by
selecting the words in them. This is achieved by
marking the particular fragment of the text in the
Sentence view pane with the mouse and pressing
the 'space' key. This operation toggles the
selection. Thus, a repeated use causes deselection.
Marking a disconnected clause is done by
marking the block of text containing it and
unmarking the unnecessary words. When a
clause is defined, it is listed in the bottom right-
hand pane in a new color following the surface
order of the sentence. Selection of a clause
within another clause is also possible. Then the

inner clause is listed directly after the split clause
while the order of the split clause in the Clause
view pane depends on the position of its first
word in the sentence.

Once the clauses are defined, the user may
annotate the conjunction of two clauses, also
referred to as a marker. The marker may consist
of one or more words or an empty word. Empty
words (w="====") are artificial elements
automatically introduced at the beginning of a
potential new clause. An empty word may be
selected as a marker when the conjunction is not
explicit or the clauses are connected by means of
a punctuation mark (for simplicity of annotation
punctuation marks are not identified as
independent tokens but are attached to the
preceding token). When a word or a
compound from one clause is selected in the
Sentence view pane the user chooses another
clause from the Clause view pane to create a pair
of syntactically linked clauses. Then the relation
for the pair is identified by selecting its type with
the grey buttons N_N (coordination), N_S
(subordinated clause following the main clause),
S_N (subordinated clause preceding the main
clause), etc.

The multilingual mode is selected with the
align tab. In this mode annotators can create,
validate and correct the alignment of the parallel
units – sentences and/or clauses.

The window (Fig. 2) has two parallel Text
view panes (on the top) and two parallel List
view panes (in the bottom). Depending on the
chosen menu (Clause or Sentence) the bottom
panes show lists of aligned clauses or sentences.

Figure 2. Anaphora – multilingual mode.

70

The multilingual mode uses the output of the
monolingual sentence and clause splitting and
supports the following functionalities:

• automated sentence alignment;

• manual sentence alignment;

• manual clause alignment.

Automated sentence alignment is available as
a menu command (Auto Sentence Align) in the
multilingual mode.

Тo switch to manual sentence or clause
alignment the corresponding menu commands
are used – Sentence and Clause.

In the sentence menu the two bottom panes
show lists of aligned sentences, each pair in a
distinct color. The user may correct the
alignment by choosing one or more sentences in
each of the bottom panes and pressing the 'space'
button to create a new alignment bead.

In the clause menu, when a sentence is
selected in one of the two Text panes, its clauses
are listed in the respective bottom pane. The
corresponding aligned sentence appears in the
parallel top pane with its clauses listed in the
bottom. Alignment is performed when the user
chooses one or more clauses from each of the
bottom panes and then presses the 'space' button.
Thus a new clause alignment bead is created.

3 Applications

Anaphora was successfully used for the
annotation and the alignment of the Bulgarian-
English Sentence- and Clause-Aligned Corpus
(Koeva et al. 2012a) which was created as a
training and evaluation data set for automatic
clause alignment in the task of exploring the
effect of clause reordering on the performance of
SMT (Koeva et al., 2012b).

Since its development the tool is continuously
used for annotation and clause alignment of
different parts of the Bulgarian-X language
Parallel Corpus (Koeva et al. 2012c) covering a
number of languages including French and
Spanish.

4 Implementation

Anaphora was designed as a self-sufficient
module for annotation and clause alignment
within the multi-functional platform Chooser
(Koeva et al. 2008) which supports various NLP
tasks that involve corpora annotation.

The tool is a stand-alone single user
application implemented in Python and it uses
the standard GUI library tkinter (the Tcl/Tk
python binding) which makes it highly OS
independent.

5 Data Processing and Representation

5.1 Input Data

The used format is a flat xml with root
element text. The text is a list of word elements
with several attributes like ‘w’ – wordform, ‘l’ –
lemma, ‘u’ – annotator, ‘t’ – timestamp, ‘e’ –
sentence end, etc.

Special attributes are responsible for marking
the compounds (MWE) and clauses. The words
that are members of a compound share a
common value for the attribute ‘p’ (parent).
Similarly, the words in a clause share a common
value for clause – ‘cl’.

This format is compatible with the other
modules of the Chooser platform. Thus, one file
can be annotated with several different types of
annotation like POS, semantic annotation, etc.

The system provides import scripts for two
formats – plain text and the output of the
Bulgarian Language Processing Chain (Koeva
and Genov, 2011) – a TSV/CSV family format,
where the text is tokenized and lemmatized.

Sentence splitting depends on the format of
the input text. If it is a plain text, sentence
splitting is based on the presence of end of
sentence punctuation (full stop, exclamation
mark, and question mark) followed by a capital
letter. When the file is of the TSV/CSV family
format sentence splitting is part of the Language
Processing Chain.

71

5.2 Automated Sentence Alignment

The automated sentence alignment is
performed using the Gale-Church aligning
algorithm (Gale and Church, 1993).

6 Conclusions and Future Work

We believe that, based on its design and
functionalities, Anaphora can be easily used and
it will perform well for any given pair of
languages, that is, it is to a great extent language
independent. The system can also be applied as it
is for phrase segmentation and word and phrase
alignment. However, if we want to include
simultaneous alignment of words, phrases, and
clauses the system needs to be adopted.

We work on including additional functionalities
to facilitate corpora annotation and parallel text
processing such as anaphora annotation.

Our future intentions include also publishing it as
an Open Source code so that it can serve the NLP
community.

Acknowledgments

The present paper was prepared within the
project Integrating New Practices and
Knowledge in Undergraduate and Graduate
Courses in Computational Linguistics
(BG051PO001-3.3.06-0022) implemented with
the financial support of the Human Resources
Development Operational Programme 2007-2013
co-financed by the European Social Fund of the
European Union. The authors take full
responsibility for the content of the present paper
and under no conditions can the conclusions
made in it be considered an official position of
the European Union or the Ministry of Education,
Youth and Science of the Republic of Bulgaria.

References

William A. Gale and Kenneth W. Church. 1993. A
Program for Aligning Sentences in Bilingual
Corpora, Computational Linguistics 19(1): 75–102.

Svetla Koeva and Angel Genov. 2011. Bulgarian
Language Processing Chain. In: Proceeding to The
Integration of multilingual resources and tools in

Web applications Workshop in conjunction with
GSCL 2011, University of Hamburg.

Svetla Koeva, Borislav Rizov, Svetlozara Leseva.
2008. Chooser - A Multi-Task Annotation Tool. In:
Proceedings of the Sixth International Conference
on Language Resources and Evaluation (LREC'08),
Marrakech, ELRA electronic publication, 728-734.

Svetla Koeva, Borislav Rizov, Ekaterina
Tarpomanova, Tsvetana Dimitrova, Rositsa
Dekova, Ivelina Stoyanova, Svetlozara Leseva,
Hristina Kukova, Angel Genov. 2012a. Bulgarian-
English Sentence- and Clause-Aligned Corpus. In
Proceedings of the Second Workshop on
Annotation of Corpora for Research in the
Humanities (ACHR-2), Lisboa: Colibri, 51-62.

Svetla Koeva, Borislav Rizov, Ekaterina
Tarpomanova, Tsvetana Dimitrova, Rositsa
Dekova, Ivelina Stoyanova, Svetlozara Leseva,
Hristina Kukova, and Angel Genov. 2012b.
Application of clause alignment for statistical
machine translation. In Proceedings of the Sixth
Workshop on Syntax, Semantics and Structure in
Statistical Translation (SSST-6), Korea, 2012.

Svetla Koeva, Ivelina Stoyanova, Rositsa Dekova,
Borislav Rizov, and Angel Genov. 2012c.
Bulgarian X-language parallel corpus. In
Proceedings of the Eighth International
Conference on Language Resources and
Evaluation (LREC'12). N. Calzolari et al. (Eds.)
Istanbul: ELRA, 2480-2486.

Stelios Piperidis, Harris Papageorgiou, and Sotiris
Boutsis. 2000. From sentences to words and
clauses. In J. Veronis, editor, Parallel Text
Processing, Alignment and Use of Translation
Corpora, Kluwer Academic Publishers, 117–138.

Ananthakrishnan Ramanathan, Pushpak
Bhattacharyya, Karthik Visweswariah, Kushal
Ladha and Ankur Gandhe. 2011. Clause-based
reordering constraints to improve statistical
machine translation. In Proceedings of the 5th
International Joint Conference on NLP, Thailand,
November 8-13, 2011, 1351–1355.

Katsuhito Sudoh, Kevin Duh, Hajime Tsukada,
Tsutomu Hirao, Masaaki Nagata. 2010. Divide and
translate: improving long distance reordering in
statistical machine translation. In Proceedings of
the Joint 5thWorkshop on SMT and Metrics
MATR, 418–427.

72

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 73–76,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

SPARSAR: An Expressive Poetry Reader

Rodolfo Delmonte & Anton Maria Prati

Department of Language Studies & Department of Computer Science
Ca’ Foscari University - 30123, Venezia, Italy

delmont@unive.it

Abstract

We present SPARSAR, a system for the auto-
matic analysis of poetry(and text) style which
makes use of NLP tools like tokenizers, sen-
tence splitters, NER (Name Entity Recogni-
tion) tools, and taggers. In addition the system
adds syntactic and semantic structural analysis
and prosodic modeling. We do a dependency
mapping to analyse the verbal complex and de-
termine Discourse Structure. Another impor-
tant component of the system is a phonological
parser to account for OOVWs, in the process
of grapheme to phoneme conversion of the
poem. We also measure the prosody of the
poem by associating mean durational values in
msecs to each syllable from a database of syl-
lable durations; to account for missing sylla-
bles we built a syllable parser with the aim to
evaluate durational values for any possible syl-
lable structure. A fundamental component for
the production of emotions is the one that per-
forms affective and sentiment analysis. This is
done on a line by line basis. Lines associated to
specific emotions are then marked to be pro-
nounced with special care for the final module
of the system, which is reponsible for the pro-
duction of expressive reading by a TTS modu-
le, in our case the one made available by Apple
on their computers. Expressive reading is al-
lowed by the possibility to interact with the
TTS.

1 Introduction

We present SPARSAR, a system for poetry (and
text) style analysis by means of parameters de-
rived from deep poem (and text) analysis. We
use our system for deep text understanding called
VENSES(XXX,2005) for that aim. SPAR-
SAR(XXX,2013a) works on top of the output
provided by VENSES and is organized in three
main modules which can be used also to analyse
similarities between couples of poems by the
same or different poet and similarities between
collections of poems by a couple of poets. In ad-
dition to what is usually needed to compute text

level semantic and pragmatic features, poetry
introduces a number of additional layers of
meaning by means of metrical and rhyming de-
vices. For these reasons more computation is
required in order to assess and evaluate the level
of complexity that a poem objectively contains.
We use prosodic durational parameters from a
database of English syllables we produced for a
prosodic speech recognizer (XXX,1990). These
parameters are used to evaluate objective pre-
sumed syllable and feet prosodic distribution at
line level. The sum of all of these data is then
used to create a parameterized version of the po-
em to be read by a TTS, with an appropriate ex-
pressivity. Expressive reading is generated by
combining syntactic, semantic, lexical and pro-
sodic information. It is a well-known fact that
TTS systems are unable to produce utterances
with appropriate prosody(van Santen et
al.,2003)1. Besides the general problems related
to TTS reading normal texts, when a poem is
inputted to the TTS the result is worsened by the
internal rules which compute stanza boundaries
as sentence delimiters. So every time there are
continuations or enjambements from one stanza
to the next the TTS will not be able to see it, and
will produce a long pause. The TTS is also blind
to line boundaries. More importantly, the TTS
reads every sentence with the same tone, thus
contributing an unpleasant repeated overall bor-
ing sense which does not correspond to the con-
tents read. This is why sentiment analysis can be
of help, together with semantic processing at dis-
course level.
As regards affective or emotional reading, then,
the prosody of current TTS systems is neutral,
and generally uses flat intonation contours. Pro-
ducing “expressive” prosody will require mo-
difying rhythm, stress patterns and intonation as
described in section 4(see Kao & Jurafsky,2012).

1 as he puts it, “The wrong words are emphasized, phrase
boundaries are not appropriately indicated, and there is no
prosodic structure for longer stretches of speech. As a result,
comprehension is difficult and the overall listening expe-
rience is disconcerting…” (ibid.,1657).

73

The paper is organized as follows: here below a
subsection contains a short state of the art limited
though to latest publications; section 2 shortly
presents SPARSAR; section 3 is dedicated to
Prosody, Rhyming and Metrical Structure; a
short state of the art of expressive reading is pre-
sented in section 4, which is devoted to TextTo-
Speech and parameters induction from the analy-
sis. Eventually we present an evaluation, a con-
clusion and work for the future.

2 PARSAR - Automatic Analysis of Po-
etic Structure and Rhythm with Syn-
tax, Semantics and Phonology

SPARSAR[8] produces a deep analysis of each
poem at different levels: it works at sentence le-
vel at first, than at line level and finally at stanza
level. The structure of the system is organized as
follows: at first syntactic, semantic and gramma-
tical functions are evaluated. Then the poem is
translated into a phonetic form preserving its vi-
sual structure and its subdivision into lines and
stanzas. Phonetically translated words are asso-
ciated to mean duration values taking into ac-
count position in the word and stress. Taking into
account syntactic and semantic information, we
then proceed to “demote” word stress of depen-
dent or functional words. At the end of the analy-
sis of the poem, the system can measure the fol-
lowing parameters: mean verse length in terms of
msec. and in number of feet. The latter is derived
by a line and stanza representation of metrical
structure. More on this topic below.
Another important component of the analysis of
rhythm is constituted by the algorithm that
measures and evaluates rhyme schemes at stanza
level and then the overall rhyming structure at
poem level. As regards syntax, we build chunks
and dependency structures. To complete our
work, we introduce semantics at two levels. On
the one hand, we isolate verbal complex in order
to verify propositional properties, like presence
of negation, computing factuality from a
crosscheck with modality, aspectuality – that we
derive from our lexica – and tense. We also clas-
sify referring espressions by distinguishing con-
crete from abstract nouns, identifying highly am-
biguous from singleton concepts (from number
of possible meanings from WordNet and other
similar repositories). Eventually, we carry out a
sentiment analysis of every poem, thus contribu-
ting a three-way classification: neutral, negative,
positive that can be used as a powerful tool for
expressive purposes.

3 Rhetoric Devices, Metrical and Pro-
sodic Structure

The second module takes care of rhetorical de-
vices, metrical structure and prosodic structure.
This time the file is read on a line by line level
by simply collecting strings in a sequence and
splitting lines at each newline character. In a
subsequent loop, whenever two newlines charac-
ters are met, a stanza is computed. In order to
compute rhetorical and prosodic structure we
need to transform each word into its phonetic
counterpart, by accessing the transcriptions
available in the CMU dictionary. The Carnegie
Mellon Pronouncing Dictionary is freely avai-
lable online and includes American English pro-
nunciation2. We had available a syllable parser
which was used to build the VESD database of
English syllables (XXX, 1999a) (Venice English
Syllable Database) to be used in the Prosodic
Module of SLIM, a system for prosodic self-
learning activities(XXX,2010), which we use
whenever we have a failure of our pronunciation
dictionary which covers some 170,000 entries.
Remaining problems to be solved are related to
ambiguous homographs like “import” (verb) and
“import” (noun) and are treated on the basis of
their lexical category derived from previous tag-
ging; and Out Of Vocabulary Words (OOVW). If
a word is not found in the dictionary, we try dif-
ferent capitalizations, as well as breaking apart
hyphenated words, and then we check with sim-
ple heuristics, differences in spelling determined
by British vs. American pronunciation. Then we
proceed by morphological decomposition, split-
ting at first the word from its prefix and if that
still does not work, its derivational suffix. As a
last resource, we use an orthographically based
version of the same dictionary to try and match
the longest possible string in coincidence with
our OOVW. Some words we had to reconstruct
are: wayfare, gangrened, krog, copperplate,
splendor, filmy, seraphic, unstarred, shrive, slip-
stream, fossicking, unplotted, corpuscle, thither,
wraiths, etc. In some cases, the problem that
made the system fail was the syllable which was
not available in our database of syllable dura-
tions, VESD3. This problem has been coped with

2 It is available online at
<http://www.speech.cs.cmu.edu/cgi-bin/cmudict/>.
3 In VESD, syllables have been collected from WSJCAM,
the Cambridge version of the continuous speech recognition
corpus produced from the Wall Street Journal, distributed
by the Linguistic Data Consortium (LDC). We worked on a
subset of 4165 sentences, with 70,694 words which consti-

74

by launching the syllable parser and then compu-
ting durations from the component phonemes, or
from the closest similar syllable available in the
database. We only had to add 12 new syllables
for a set of approximately 500 poems that we
computed to test the system.

3.1 Computing Metrical Structure and
Rhyming Scheme

Any poem can be characterized by its rhythm
which is also revealing of the poet's peculiar
style. In turn, the poem's rhythm is based mainly
on two elements: meter, that is distribution of
stressed and unstressed syllables in the verse,
presence of rhyming and other poetic devices
like alliteration, assonance, consonance, en-
jambements, etc. which contribute to poetic form
at stanza level.
We follow Hayward (1991) to mark a poetic
foot by a numerical sequence that is an alterna-
tion of 0/1: “0” for unstressed and “1” for stres-
sed syllables. The sequence of these sings makes
up the foot and depending on number of feet one
can speak of iambic, trochaic, anapestic, dactylic,
etc. poetic style. But then we deepen our analysis
by considering stanzas as structural units in
which rhyming plays an essential role. Secondly
we implement a prosodic acoustic measure to get
a precise definition of rhythm. Syllables are not
just any combination of sounds, and their internal
structure is fundamental to the nature of the poet-
ic rhythm that will ensue. The use of duration has
allowed our system to produce a model of a poet-
ry reader that we implement by speech synthesis.
To this aim we assume that syllable acoustic
identity changes as a function of three parame-
ters:
- internal structure in terms of onset and rhyme
which is characterized by number consonants,
consonant clusters, vowel or diphthong
- position in the word, whether beginning, end or
middle
- primary stress, secondary stress or unstressed

4 TTS and Modeling Poetry Reading

The other important part of the work regards us-
ing the previous analyses to produce intelligible,

tute half of the total number of words in the corpus amoun-
ting to 133,080. We ended up with 113,282 syllables and
287,734 phones. The final typology is made up of 44 pho-
nes, 4393 syllable types and 11,712 word types. From word-
level and phoneme-level transcriptions we produced sylla-
bles automatically by means of a syllable parser. The result
was then checked manually.

correct, appropriate and possibly pleasant or
catchy poetry reading by a TextToSpeech sys-
tem. In fact, the intention was more ambitious
and was producing an “expressive” reading of a
poem in the sense also intended by work reported
in Ovesdotter & Sprout(2005), Ovesdotter(2005),
Scherer(2003). In Ovesdotter & Sprout(2005),
the authors present work on fairy tales, intended
to use positive vs negative classification of sen-
tences to produce a better reading. To that aim
they used a machine learning approach, based on
the manual annotation of some 185 children sto-
ries4. They reported accuracy results around 63%
and F-score around 70%, which they explain
may be due to a very low interannotator agree-
ment, and to the fact that the dataset was too
small. In Ovesdotter(2005) the author presents
work on the perception of emotion based again
on fairy tales reading by human readers. The ex-
periment had the goal of checking the validity of
the association of acoustic parameters to emotion
types. Global acoustic features included F0, in-
tensity, speech rate in number of words, feet,
syllables per minute, fluency, i.e. number of
pauses or silences. The results show some con-
tradictory data for ANGRY state, but fully com-
pliant data for HAPPY5. These data must be re-
garded as tendencies and are confirmed by ex-
periments reported also in Scherer(2003) and
Schröder(2001). However, it must be underlined
that all researchers confirm the importance of
semantic content, that is the meaning as a means
for transmitting affective states.
The TTS we are now referring to is the one
freely available under Mac OSX in Apple’s de-
vices. In fact, the output of our system can be
used to record .wav or .mpeg files that can then
be played by any sound player program. The in-
formation made available by the system is suffi-
ciently deep to allow for Mac TTS interactive
program to adapt the text to be read and model it

4 Features used to learn to distinguish “emotional” from
“neutral” sentences, include (ibid., 582): first sentence in the
story; direct speech; thematic story type (animal tale, ordi-
nary folk-tale, jokes and anecdotes); interrogative and ex-
clamative punctuation marks; sentence length in words;
ranges of story progress; percent of semantic words (JJ, N,
V, RB); V count in sentence, excluding participles; positive
and negative words; WordNet emotion words; interjections
and affective words; content BOW: N,V,JJ,RB words by
POS.
5 In particular, “angry” was associated with “decreased F0”
and “decreased speech rate”, but also an increased “paus-
ing”. On the contrary, “happy” showed an “increased F0,
intensity, pausing” but a “decreased speech rate”. “Happy”
is similar to “surprised”, while “angry” is similar to “sad”.

75

accurately. We used the internal commands
which can modify sensibly the content of the text
to be read. The voices now available are pleasant
and highly intelligible. We produced a set of
rules that take into account a number of essential
variables and parameter to be introduced in the
file to be read. Parameters that can be modified
include: Duration as Speaking Rate; Intonation
from first word marked to a Reset mark; Silence
introduced as Durational value; Emphasis at
word level increasing Pitch; Volume from first
word marked to a Reset mark, increasing intensi-
ty. We discovered that Apple’s TTS makes mis-
takes when reading some specific words, which
we then had to input to the system in a phonetic
format, using the TUNE modality.
The rules address the following information:
- the title
- the first and last line of the poem
- a word is one of the phonetically spelled out words
- a word is the last word of a sentence and is followed
by an exclamation/interrogative mark
- a word is a syntactic head (either at constituency or
dependency level)
- a word is a quantifier, or marks the beginning of a
quantified expression
- a word is a SUBJect head
- a word marks the end of a line and is (not) followed
by punctuation
- a word is the first word of a line and coincides with
a new stanza and is preceded by punctuation
- a line is part of a sentence which is a frozen or a
formulaic expression with specific pragmatic content
specifically encoded
- a line is part of a sentence that introduces new Top-
ic, a Change, Foreground Relevance as computed by
semantics and discourse relations
- a line is part of a sentence and is dependent in Dis-
course Structure and its Move is Down or Same Level
- a discourse marker indicates the beginning of a sub-
ordinate clause

5 Evaluation, Conclusion and Future
Work

We have done a manual evaluation by analysing
a randomly chosen sample of 50 poems out of
the 500 analysed by the system. The evaluation
has been made by a secondary school teacher of
English literature, expert in poetry6. We asked
the teacher to verify the following four levels of
analysis: 1. phonetic translation; 2. syllable divi-
sion; 3. feet grouping; 4. metrical rhyming struc-
ture. Results show a percentage of error which is

6 I here acknowledge the contribution of XXX and thank her
for the effort.

around 5% as a whole, in the four different levels
of analysis. A first prototype has been presented
in(XXX,2013a), and improvements have been
done since then; but more work is needed to tune
prosodic parameters for expressivity rendering
both at intonational and rhythmic level. The most
complex element to control seems to be varia-
tions at discourse structure which are responsible
for continuation intonational patterns vs. begin-
ning of a new contour.

Reference
XXX. 1999. "Prosodic Modeling for Syllable Structures

from the VESD - Venice English Syllable Database",
in Atti 9° Convegno GFS-AIA, Venezia, 161-168.

XXX. 2008. "Speech Synthesis for Language Tutoring Sys-
tems", in V.Melissa Holland & F.Pete Fisher(eds.),
(2008), The Path of Speech Technologies in Computer
Assisted Language Learning, Routledge - Taylor and
Francis Group-, New York, 123-150.

XXX, 2010. "Prosodic tools for language learning", Inter-
national Journal of Speech Technology. 12(4):161-
184.

XXX, 2013a. SPARSAR: a System for Poetry Automatic
Rhythm and Style AnalyzeR, SLATE 2013, Demon-
stration Track.

XXX. 2005. "VENSES – a Linguistically-Based System for
Semantic Evaluation", in J. Quiñonero-Candela et
al.(eds.), 2005. Machine Learning Challenges. LNCS,
Springer, Berlin, 344-371.

M. Hayward. 1991. "A connectionist model of poetic me-
ter". Poetics, 20, 303-317.

Justine Kao and Dan Jurafsky. 2012. "A Computational
Analysis of Style, Affect, and Imagery in Contempo-
rary Poetry". in Proc. NAACL Workshop on Computa-
tional Linguistics for Literature.

Cecilia Ovesdotter Alm, Richard Sproat, 2005. "Emotional
sequencing and development in fairy tales", In Procee-
dings of the First International Conference on Affective
Computing and Intelligent Interaction, ACII ’05.

Cecilia Ovesdotter Alm, 2005. "Emotions from text: Ma-
chine learning for text-based emotion prediction", In
Proceedings of HLT/EMNLP, 347-354.

Jan van Santen, Lois Black, Gilead Cohen, Alexander Kain,
Esther Klabbers,Taniya Mishra, Jacques de Villiers, and
Xiaochuan Niu. 2003. "Applications of Computer Gene-
rated Expressive Speech for Communication Disor-
ders", in Proc. Eurospeech, Geneva, 1657-1660.

K. R. Scherer. 2003. “Vocal communication of emotions: a
review of research paradigms”, Speech Communication,
40(1-2):227-256.

76

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 77–80,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

Annotating by Proving using SemAnTE

Assaf Toledo1 Stavroula Alexandropoulou1 Sophie Chesney2

Robert Grimm1 Pepijn Kokke1 Benno Kruit3

Kyriaki Neophytou1 Antony Nguyen1

1 - Utrecht University 2 - University College London 3 - University of Amsterdam
{a.toledo,s.alexandropoulou,y.winter}@uu.nl

sophie.chesney.10@ucl.ac.uk, {pepijn.kokke,bennokr}@gmail.com
{r.m.grimm,k.neophytou,a.h.nguyen}@students.uu.nl

Yoad Winter1

Abstract

We present SemAnTE, a platform for
marking and substantiating a semantic an-
notation scheme of textual entailment ac-
cording to a formal model. The plat-
form introduces a novel approach to an-
notation by providing annotators immedi-
ate feedback whether the data they mark
are substantiated: for positive entailment
pairs, the system uses the annotations to
search for a formal logical proof that val-
idates the entailment relation; for negative
pairs, the system verifies that a counter-
model can be constructed. By integrating
a web-based user-interface, a formal lexi-
con, a lambda-calculus engine and an off-
the-shelf theorem prover, this platform fa-
cilitates the creation of annotated corpora
of textual entailment. A corpus of several
hundred annotated entailments is currently
in preparation using the platform and will
be available for the research community.

1 Introduction

The Recognizing Textual Entailment (RTE) chal-
lenges (Dagan et al., 2006) advance the devel-
opment of systems that automatically determine
whether an entailment relation obtains between a
naturally occurring text T and a manually com-
posed hypothesis H. The RTE corpus (Bar Haim
et al., 2006; Giampiccolo et al., 2008), which is

currently the only available resource of textual en-
tailments, marks entailment candidates as posi-
tive/negative.1 For example:
Example 1
• T: The book contains short stories by the fa-

mous Bulgarian writer, Nikolai Haitov.
• H: Nikolai Haitov is a writer.2

• Entailment: Positive
This categorization does not indicate the linguistic
phenomena that underlie entailment or their con-
tribution to inferential processes. In default of
a gold standard identifying linguistic phenomena
triggering inferences, entailment systems can be
compared based on their performance, but the in-
ferential processes they employ to recognize en-
tailment are not directly accessible and conse-
quently cannot be either evaluated or improved
straightforwardly.

We address this problem by elucidating some
of the central inferential processes underlying en-
tailments in the RTE corpus, which we model for-
mally within a standard semantic theory. This al-
lows us not only to indicate linguistic phenomena
that are involved in the recognition of entailment
by speakers, but also to provide formal proofs that
substantiate the annotations and explain how the

1Pairs of sentences in RTE 1-3 are categorized in two
classes: yes- or no-entailment; pairs in RTE 4-5 are cate-
gorized in three classes: entailment, contradiction and un-
known. We label the judgments yes-entailment from RTE 1-3
and entailment from RTE 4-5 as positive, and the other judg-
ments as negative.

2Pair 622 from the development set of RTE 2.

77

modeled phenomena interact and contribute to the
recognition process. In this sense the we adopt an
Annotating by Proving approach to textual entail-
ment annotation.

The annotation work is done using the Se-
mAnTE (Semantic Annotation of Textual Entail-
ment) platform, which incorporates a web-based
user-interface, a formal lexicon, a lambda-calculus
engine and an off-the-shelf theorem prover. We
are currently using this platform to build a new
corpus of several hundred annotated entailments
comprising both positive and negative pairs. We
decided to focus on the semantic phenomena of
appositive, restrictive and intersective modifica-
tion as these semantic phenomena are prevalent in
the RTE datasets and can be annotated with high
consistency, and as their various syntactic expres-
sions can be captured by a limited set of concepts.3

In the future, we plan to extend this sematic model
to cover other, more complex phenomena.

2 Semantic Model

To model entailment in natural language, we as-
sume that entailment describes a preorder on sen-
tences. Thus, any sentence trivially entails itself
(reflexivity); and given two entailments T1 ⇒ H1

and T2 ⇒ H2 where H1 and T2 are identical sen-
tences, we assume T1 ⇒ H2 (transitivity). We
use a standard model-theoretical extensional se-
mantics, based on the simple partial order on the
domain of truth-values. Each model M assigns
sentences a truth-value in the set {0, 1}. Such a
Tarskian theory of entailment is considered ade-
quate if the intuitive entailment preorder on sen-
tences can be described as the pairs of sentences
T and H whose truth-values [[T]]M and [[H]]M sat-
isfy [[T]]M ≤ [[H]]M for all models M .

We use annotations to link between textual
representations in natural language and model-
theoretic representations. This link is established
by marking the words and structural configura-
tions in T and H with lexical items that encode
semantic meanings for the linguistic phenomena
that we model. The lexical items are defined for-
mally in a lexicon, as illustrated in Table 1 for ma-
jor lexical categories over type:s e for entities, t
for truth-values, and their functional compounds.

3This conclusion is based on an analysis of RTE 1-4, in
which these modification phenomena were found to occur in
80.65% of the entailments and were annotated with cross-
annotator agreement of 68% on average.

Category Type Example Denotation
Proper Name e Dan dan
Indef. Article (et)(et) a A

Def. Article (et)e the ι
Copula (et)(et) is IS

Noun et book book
Intrans. verb et sit sit
Trans. verb eet contain contain
Pred. Conj. (et)((et)(et)) and AND

Res. Adj. (et)(et) short Rm(short)
Exist. Quant. (et)(et)t some SOME

Table 1: Lexicon Illustration

Denotations that are assumed to be arbitrary are
given in boldface. For example, the intransitive
verb sit is assigned the type et, which describes
functions from entities to a truth-values, and its
denotation sit is an arbitrary function of this type.
By contrast, other lexical items have their denota-
tions restricted by the given model M . As illus-
trated in Figure 1, the coordinator and is assigned
the type (et)((et)(et)) and its denotation is a func-
tion that takes a function A of type et and returns
a function that takes a function B, also of type et,
and returns a function that takes an entity x and
returns 1 if and only if x satisfies both A and B.

A = IS = λAet.A

ι = λAet.

{
a A = (λxe.x = a)

undefined otherwise

WHOA = λAet.λxe.ι(λy.y = x ∧A(x))
Rm = λM(et)(et).λAet.λxe.M(A)(x) ∧A(x)
SOME = λAet.λBet.∃x.A(x) ∧B(x)
AND = λAet.λBet.λxe.A(x) ∧B(x)

Figure 1: Functions in the Lexicon

By marking words and syntactic constructions
with lexical items, annotators indicate the under-
lying linguistic phenomena in the data. Further-
more, the formal foundation of this approach al-
lows annotators to verify that the entailment re-
lation (or lack thereof) that obtains between the
textual forms of T and H also obtains between
their respective semantic forms. This verification
guarantees that the annotations are sufficient in the
sense of providing enough information for recog-
nizing the entailment relation based on the seman-
tic abstraction. For example, consider the simple
entailment Dan sat and sang⇒Dan sang and as-
sume annotations of Dan as a proper name, sat
and sang as intransitive verbs and and as predi-
cate conjunction. The formal model can be used
to verify these annotations by constructing a proof
as follows: for each model M :

78

[[Dan [sat [and sang]]]]M

= ((AND(sing))(sit))(dan) analysis
= (((λAet.λBet.λxe.A(x) ∧
B(x))(sing))(sit))(dan)

def. of AND

= sit(dan) ∧ sing(dan) func. app. to sing,
sit and dan

≤ sing(dan) def. of ∧
= [[Dan sang]]M analysis

3 Platform Architecture

The platform’s architecture is based on a client-
server model, as illustrated in Figure 2.

Figure 2: Platform Architecture

The user interface (UI) is implemented as a
web-based client using Google Web Toolkit (Ol-
son, 2007) and allows multiple annotators to ac-
cess the RTE data, to annotate, and to substanti-
ate their annotations. These operations are done
by invoking corresponding remote procedure calls
at the server side. Below we describe the system
components as we go over the work-flow of anno-
tating Example 1.

Data Preparation: We extract T -H pairs from
the RTE datasets XML files and use the Stanford
CoreNLP (Klein and Manning, 2003; Toutanova
et al., 2003; de Marneffe et al., 2006) to parse each
pair and to annotate it with part-of-speech tags.4

Consequently, we apply a naive heuristic to map
the PoS tags to the lexicon.5 This process is called

4Version 1.3.4
5This heuristic is naive in the sense of not disambiguating

verbs, adjectives and other types of terms according to their
semantic features. It is meant to provide a starting point for
the annotators to correct and fine-tune.

as part of the platform’s installation and when an-
notators need to simplify the original RTE data in
order to avoid syntactic/semantic phenomena that
the semantic engine does not support. For exam-
ple, the bare plural short stories is simplified to
some short stories as otherwise the engine is un-
able to determine the quantification of this noun.

Annotation: The annotation is done by mark-
ing the tree-leaves with entries from the lexicon.
For example, short is annotated as a restrictive
modifier (MR) of the noun stories, and contains
is annotated as a transitive verb (V 2). In addition,
annotators manipulate the tree structure to fix pars-
ing mistakes and to add leaves that mark semantic
relations. For instance, a leaf that indicates the ap-
position between the famous Bulgarian writer and
Nikolai Haitov is added and annotated as WHOA.
The server stores a list of all annotation actions.
Figure 3 shows the tree-view, lexicon, prover and
annotation history panels in the UI.

Proving: When annotating all leaves and ma-
nipulating the tree structures of T and H are done,
the annotators use the prover interface to request
a search for a proof that indicates that their anno-
tations are substantiated. Firstly, the system uses
lambda calculus reductions to create logical forms
that represent the meanings of T and H in higher-
order logic. At this stage, type errors may be re-
ported due to erroneous parse-trees or annotations.
In this case an annotator will fix the errors and re-
run the proving step. Secondly, once all type er-
rors are resolved, the higher-order representations
are lowered to first order and Prover9 (McCune,
2010) is executed to search for a proof between
the logical expressions of T and H .6 The proofs
are recorded in order to be included in the corpus
release. Figure 4 shows the result of translating T
and H to an input to Prover9.

4 Corpus Preparation

We have so far completed annotating 40 positive
entailments based on data from RTE 1-4. The an-
notation is a work in progress, done by four Master
students of Linguistics who are experts in the data
and focus on entailments whose recognition re-
lies on a mixture of appositive, restrictive or inter-
sective modification. As we progress towards the
compilation of a corpus of several hundred pairs,
we extend the semantic model to support more in-
ferences with less phenomena simplification.

6Version 2009-11A

79

Figure 3: User Interface Panels: Annotation History, Tree-View, Prover Interface and Lexicon Toolbox

formulas(assumptions).
all x0 (((writer(x0) & bulgarian(x0)) &
famous writer bulgarian(x0))↔ x0=c1).
all x0 (((stories(x0) & short stories(x0)) & exists x1 (by
stories short stories(x1, x0) & (x1=c1 & x1=Nikolai
Haitov)))↔ x0=c2). all x0 (book(x0)↔ x0=c3).
contains(c2, c3).
end of list.
formulas(goals).
exists x0 (writer(x0) & x0=Nikolai Haitov).
end of list.

Figure 4: Input for Theorem Prover

5 Conclusions

We introduced a new concept of an annotation
platform which implements an Annotating by
Proving approach. The platform is currently in
use by annotators to indicate linguistic phenomena
in entailment data and to provide logical proofs
that substantiate their annotations. This method
guarantees that the annotations constitute a com-
plete description of the entailment relation and can
serve as a gold-standard for entailment recogniz-
ers. The new corpus will be publicly available.

Acknowledgments

The work of Stavroula Alexandropoulou, Robert
Grimm, Sophie Chesney, Pepijn Kokke, Benno
Kruit, Kyriaki Neophytou, Antony Nguyen, Assaf
Toledo and Yoad Winter was supported by a VICI
grant number 277-80-002 by the Netherlands Or-
ganisation for Scientific Research (NWO).

References
Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro,

Danilo Giampiccolo, Bernardo Magnini, and Idan

Szpektor. 2006. The second pascal recognising
textual entailment challenge. In Proceedings of the
Second PASCAL Challenges Workshop on Recognis-
ing Textual Entailment.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment
challenge. Machine Learning Challenges. Evaluat-
ing Predictive Uncertainty, Visual Object Classifi-
cation, and Recognising Tectual Entailment, pages
177–190.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating Typed
Dependency Parses from Phrase Structure Parses. In
Proceedings of the IEEE / ACL 2006 Workshop on
Spoken Language Technology. The Stanford Natural
Language Processing Group.

Danilo Giampiccolo, Hoa Trang Dang, Bernardo
Magnini, Ido Dagan, and Elena Cabrio. 2008. The
fourth pascal recognising textual entailment chal-
lenge. In TAC 2008 Proceedings.

Dan Klein and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of the
41st Annual Meeting on Association for Computa-
tional Linguistics - Volume 1, ACL ’03, pages 423–
430, Stroudsburg, PA, USA. ACL.

William McCune. 2010. Prover9 and Mace4. http:
//www.cs.unm.edu/˜mccune/prover9/.

Steven Douglas Olson. 2007. Ajax on Java. O’Reilly
Media.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology
- Volume 1, NAACL ’03, pages 173–180, Strouds-
burg, PA, USA. ACL.

80

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 81–84,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

Answering List Questions using Web as a corpus

Patrı́cia Nunes Gonçalves, António Branco
University of Lisbon

Edifı́cio C6, Departamento de Informática
Faculdade de Ciências, Universidade de Lisboa

Campo Grande, 1749-016 Lisboa, Portugal
{patricia.nunes, antonio.branco}@di.fc.ul.pt

Abstract

This paper supports the demo of LX-
ListQuestion, a Web Question Answering
System that exploit the redundancy of in-
formation available in the Web to answer
List Questions in the form of Word Cloud.

1 Introduction

The combination of web growth and improve-
ments in Information Technology has reignited the
interest in Question Answering (QA) systems. QA
is a type of information retrieval combined with
natural language processing techniques that aims
at finding exact answers to natural language ques-
tions. In a search engine, the user inserts a few
keywords and gets as a result links and snippets.
The task of finding the desired answer among the
results that were returned then falls on the user.
From the point of view of QA, in turn, the users
use a question in natural language and the system
searches within the documents for the answers.

Questions have various levels of complexity.
When thinking about questions immediately come
to mind factual questions (eg: When did Nel-
son Mandela die?), however, the QA area has
expanded beyond factual questions towards more
complex questions. One of the most common
types of complex factual is list questions. The list
questions are questions for which there is a list
of answers, e.g., In which countries Portuguese
is an official language? List answers: Angola,
Brazil, Cape Verde, Guine Bissau, Mozambique,
Portugal, Macau, Sao Tome and Principe and East
Timor.

When the information that is needed is non-
trivial and it is found spread over several texts, a
lot of human effort is required to gather the vari-
ous separate pieces of data into the desired result,
which is not an easy task. Ideally, they would pre-
fer to quickly get a precise answer and go on to

make use of it instead of spending time searching
and compiling the answer from pieces spread over
several documents.

Our purpose is to provide better QA solutions to
users, who desire direct answers to their queries,
using approaches that deal with the complex prob-
lem of extracting answers found spread over sev-
eral documents and use them to compile a list
of answers that are the most accurate possible.
The LX-ListQuestion development is guided by
the circumstance that answers may appear redun-
dantly in many places and in many forms. Our
approach to address the problem of answering list
questions is to explore this redundancy. To build
on this redundancy, we use techniques that will be
explained in section 4.

2 Related Work

List QA is an emerging topic and few approaches
have been developed. The most common approach
is to take a QA system for factoid questions and
extend it to answer List questions. Some pioneer-
ing systems using this approach are (Gaizauskas et
al., 2005) and (Wu and Strzalkowski, 2006), which
show a low performance. Other systems explore
NLP tools and linguistic resources (Hickl et al.,
2006) (Yang et al., 2003). This approach seems
to have achieved competitive results. However the
time required for processing is very high and the
performance of these systems depend on the per-
formance of the supporting NLP tools.

Other approaches resort to statistical and ma-
chine learning approaches. The system developed
in (Whittaker et al., 2006) is based on a statisti-
cal model. The system developed by (Yang and
Chua, 2004) employ classification techniques to
find complete and distinct answers. The system
proposed by (Razmara and Kosseim, 2008) an-
swers List questions using a clustering method to
group candidate answers that co-occur more often
in the collection.

81

Systems that take advantage from semantic con-
tent to answer List questions (Cardoso et al.,
2009), (Hartrumpf and Leveling, 2010), (Dor-
nescu, 2009) achieved good results although all
information should be stored in the database. This
approach seems suitable to QA system that focus
on a specific domain where the information source
can be limited and more easily stored.

3 List Question

In the context of QA research, list questions may
appear in three basic forms: (1) a question starting
with an interrogative pronoun, (2) a request using
an imperative verb and (3) other forms: without
interrogative pronoun or imperative verb (usually
a complex noun phrase). Table 1 shows some ex-
amples.

Type of Example
List Question
Interrogative What European Union countries
Pronoun have national parks in the Alps?
Imperative Name rare diseases with dedicated
Form research centers in Europe.
Other Chefs born in Austria who have

received a Michelin Star.

Table 1: Examples of List questions

Another important topic in QA is to identify the
so called question target. Our study shows that tar-
get can be expressed by a named entity, a common
noun or be multiple targets. Most List Questions
have named entities as target question, e.g. Which
cities in Germany have more than one university?.
Common noun is not so frequent as target question
but it can show up, e.g. Typical food of the Cape
Verde cuisine. Multiples target can be of named
entities or common nouns, e.g. Newspapers, mag-
azines and other periodicals of Macau.

The list answers (for a list question) may appear
in many places and in many forms. They can be in
the same document; when the answer is already a
list, e.g., list of cities in Portugal: Lisbon, Coim-
bra, Porto e Faro; or the answers can be spread
over multiple documents; e.g., (document A): Lis-
bon is the capital of Portugal. (document B) Porto
is a very important city in Portugal. In the latter
case, a QA system able to answer List questions
has to deal with this diversity and find all answers
of several texts and compose the final list of an-
swers.

Our system focuses on answering List questions
where the answers are extracted from several doc-
uments from the Web.

4 LX-ListQuestion Architecture

LX-ListQuestion System seeks to answer List
questions through the use of the techniques of
Question Answering running over the Web of Por-
tuguese pages, while ensuring that the Final An-
swer List is as correct and complete as possible.
This system has three main modules: Question
Processing, Passage Retrieval and Answer Extrac-
tion. Figure 1 shows its architecture.

Figure 1: Question Answering System Architec-
ture

The Question Processing module is responsible
for converting a natural language question into a
form that a computer is capable of handling and
extracting the information that will be passed and
used by the subsequent modules. Question Anal-
ysis task is responsible to clean the questions,
i.e. removing question marks, interrogative pro-
noun and imperative verbs. Besides identifing
each meaningful element of the question, the sys-
tem annotate each word with their part-of-speech
tag. The following information are set apart: main
verb, question target, named entity.

The Passage Retrieval module is responsible for
searching web pages using the keywords into the
question and save them into local files for post-
processing. This version of the system is work-
ing with 10 downloaded files.This module is also
responsible for cleaning the HTML files and sav-
ing into local files only the content information.
We use a relevance score based on the average of
the number of words in the question to preserves
the original idea of the question. After the content
is saved into a file, the system will select the rel-
evant sentences based on matching and counting
the keywords in the sentences.

The Answer Extraction Module aims at identi-
fying and extracting relevant answers and presents
them in the form the a list. This module has
two main tasks: Candidate Answer Identification
and Building the List Answer. Candidate Answer
Identification task extracts all words tagged with

82

the proper name tag (in this version of the sys-
tem version we are assuming that all answers are
proper names).

The process of Building the List Answers based
on frequency and word occur rules. The process
based on frequency uses two lists: Premium List
and Work List. The Premium List is composed
by candidates extracted from sentences previously
classified as highly relevant and will serve to guide
the rest of the processing. If we were to consider
only these elements, the list of answers would
probably contain correct items. However, the list
may be incomplete and lack elements. Then, con-
tinuing in the same vein of our strategy, the Work
List is build with candidates extracted from sen-
tences classified as medium and low. This list will
be used to confirm and expand the elements in
the list. The word occur rules take advantage of
the title of web page, of sentences that perfectly
matches with the question and of candidate verb
that matches with the question verb.

4.1 Results

For the experiments we used a set of 10 questions1

that require List Answers:
Q1: Instrumentos musicais de origem africana
comuns no Brasil. African musical instruments
common in Brazil.
Q2: Parques do Rio de Janeiro que têm ca-
choeiras. Parks of Rio de Janeiro that have
waterfalls.
Q3: Igrejas em Macau. Churches in Macau.
Q4: Cidades que fizeram parte do domı́nio por-
tuguês na Índia. Cities in India that were under
Portuguese rule.
Q5: Parques nacionais de Moçambique. National
parks in Mozambique
Q6: Ilhas de Moçambique. Islands of Mozam-
bique
Q7: Movimentos culturais surgidos no nordeste
do Brasil. Cultural movements that emerged n the
northeast of Brazil.
Q8: Dioceses católicas de Moçambique. Catholic
dioceses in Mozambique.
Q9: Candidatos a alguma das eleições presiden-
ciais na Guiné-Bissau. Candidates for any of the
presidential elections in Guinea-Bissau.
Q10: Capitais das provı́ncias de Angola. Capitals
of the provinces in Angola.

1These questions were based on Pagico:
www.linguateca.pt/Pagico

Table 2 shows the metric evaluation of the LX-
ListQuestion. The metrics used are: recall, preci-
sion and F-measure. These metrics take into con-
sideration two lists: a reference list (correct an-
swers expected) and the system list (answers re-
turned by the QA system). Precision: C is the
number of common elements between reference
and system lists and S is the number of elements
given by the system.
Precision = C

S
Recall: C is the number of common elements be-
tween reference and system lists and L is the num-
ber of elements in reference list.
Recall = C

L
F-measure: its the combination between Recall
and Precision.
F −measure = 2∗Recall∗Precision

Recall+Precision

Table 2: Metric Evaluation.
Question Precision Recall F-Measure

Q1 0.15 0.36 0.21
Q2 0.08 0.50 0.14
Q3 0.13 0.35 0.18
Q4 0.14 0.23 0.17
Q5 0.10 0.75 0.18
Q6 0.13 0.42 0.20
Q7 0.05 0.20 0.08
Q8 0.15 0.71 0.24
Q9 0.05 0.25 0.09
Q10 0.38 0.42 0.40

AVERAGE 0.14 0.38 0.20

We observe from Table 2 that the system an-
swered all questions. It achieved better recall for
the questions Q5 and Q8. The Question Q10 ob-
tained better precision and also f-measure. Over-
all, the system scores 0.38 of recall, which is a
very competitive result for the current state-of-art.
Exploring the redundancy of information seems to
be a good approach to this task, but it alone cannot
handle all problems. The word occur rules imple-
mented was important step to enrich the system.

4.2 User interface

LX-ListQuestion is available on the web:
http://nlxserv.di.fc.ul.pt/lxlistquestion/
In our tests, the response time ranged between 16
and 28 seconds of processing from submitting the
question and getting the list of answers. We chose
to use word cloud instead of a traditional list as
presentation of results because the final list an-

83

swers evidence not only the correct answers but
of the possibly relevant words related to the ques-
tion. The confidence that the system has a given
answer is based on the frequency of words found
in the texts collected from the web. The most fre-
quent words are represented in the word cloud us-
ing a greater font size. The word cloud also helps
the user to understand the context in which the
answers may be embedded. Figure 2 shows LX-
ListQuestion online GUI.

Figure 2: LX-ListQuestion online GUI

5 Concluding remarks

LX-ListQuestion is a fully-fledged Web based QA
system that generates answers to list questions and
presents them in a word cloud. The system ex-
ploits the redundancy of information available in
the Web and combine with word occur rules to
improve QA accuracy. This version handles Por-
tuguese Language. The next version will be ex-
tended to provide answers to other languages as
well. This work has being developed as the sub-
ject of a progressing doctoral thesis and new im-
provements will be implemented.

References
Nuno Cardoso, David Batista, Francisco J. López-

Pellicer, and Mário J. Silva. 2009. Where in the
wikipedia is that answer? the xldb at the giki-
clef 2009 task. In Carol Peters, Giorgio Maria Di
Nunzio, Mikko Kurimo, Djamel Mostefa, Anselmo
Peñas, and Giovanna Roda, editors, CLEF, volume
6241 of Lecture Notes in Computer Science, pages
305–309. Springer.

Iustin Dornescu. 2009. Semantic qa for encyclopaedic
questions: Equal in gikiclef. In Carol Peters,
Giorgio Maria Di Nunzio, Mikko Kurimo, Djamel
Mostefa, Anselmo Peñas, and Giovanna Roda, edi-
tors, CLEF, volume 6241 of Lecture Notes in Com-
puter Science, pages 326–333. Springer.

Robert J. Gaizauskas, Mark A. Greenwood, Henk
Harkema, Mark Hepple, Horacio Saggion, and
Atheesh Sanka. 2005. The university of sheffield s
trec 2005 q&a experiments. In Ellen M. Voorhees
and Lori P. Buckland, editors, Proceedings of the
Fourteenth Text REtrieval Conference, TREC 2005,
Gaithersburg, Maryland, November 15-18, 2005,
volume Special Publication 500-266. National Insti-
tute of Standards and Technology (NIST).

Sven Hartrumpf and Johannes Leveling. 2010.
GIRSA-WP at GikiCLEF: Integration of structured
information and decomposition of questions. In
10th Workshop of the Cross-Language Evaluation
Forum, CLEF 2009, Corfu, Greece, September 30-
October 2, Revised Selected Papers, Lecture Notes
in Computer Science (LNCS). Springer. (to appear).

Andrew Hickl, John Williams, Jeremy Bensley, Kirk
Roberts, Ying Shi, and Bryan Rink. 2006. Question
answering with lcc’s chaucer at trec 2006. In TREC.

Majid Razmara and Leila Kosseim. 2008. Answer-
ing list questions using co-occurrence and cluster-
ing. In Proceedings of the International Confer-
ence on Language Resources and Evaluation, LREC
2008, 26 May - 1 June 2008, Marrakech, Morocco.
European Language Resources Association.

Edward W. D. Whittaker, Josef R. Novak, Pierre
Chatain, and Sadaoki Furui. 2006. Trec 2006
question answering experiments at tokyo institute
of technology. In Ellen M. Voorhees and Lori P.
Buckland, editors, Proceedings of the Fifteenth Text
REtrieval Conference, TREC 2006, Gaithersburg,
Maryland, November 14-17, 2006, volume Special
Publication 500-272. National Institute of Standards
and Technology (NIST).

Min Wu and Tomek Strzalkowski. 2006. Utilizing co-
occurrence of answers in question answering. In
ACL 2006, 21st International Conference on Com-
putational Linguistics and 44th Annual Meeting of
the Association for Computational Linguistics, Pro-
ceedings of the Conference, Sydney, Australia, 17-21
July 2006. The Association for Computer Linguis-
tics.

Hui Yang and Tat-Seng Chua. 2004. Web-based list
question answering. In COLING ’04: Proceed-
ings of the 20th international conference on Com-
putational Linguistics, page 1277, Morristown, NJ,
USA. Association for Computational Linguistics.

Hui Yang, Hang Cui, Mstislav Maslennikov, Long Qiu,
Min-Yen Kan, and Tat-Seng Chua. 2003. Qualifier
in trec-12 qa main task. In TREC, pages 480–488.

84

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 85–88,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

Designing Language Technology Applications:
A Wizard of Oz Driven Prototyping Framework

S. Schlögl
MCI Management Center Innsbruck
Management, Communication & IT

Innsbruck, AUSTRIA
schlogl@mci.edu

P. Milhorat∗, G. Chollet∗, J. Boudy†
Institut Mines-Télécom

∗Télécom ParisTech & †Télécom SudParis
Paris, FRANCE

milhorat@telecom-paristech.fr

Abstract
Wizard of Oz (WOZ) prototyping employs
a human wizard to simulate anticipated
functions of a future system. In Natural
Language Processing this method is usu-
ally used to obtain early feedback on di-
alogue designs, to collect language cor-
pora, or to explore interaction strategies.
Yet, existing tools often require complex
client-server configurations and setup rou-
tines, or suffer from compatibility prob-
lems with different platforms. Integrated
solutions, which may also be used by de-
signers and researchers without technical
background, are missing. In this paper
we present a framework for multi-lingual
dialog research, which combines speech
recognition and synthesis with WOZ. All
components are open source and adaptable
to different application scenarios.

1 Introduction

In recent years Language Technologies (LT) such
as Automatic Speech Recognition (ASR), Ma-
chine Translation (MT) and Text-to-Speech Syn-
thesis (TTS) have found their way into an increas-
ing number of products and services. Technolog-
ical advances in the field have created new possi-
bilities, and ubiquitous access to modern technol-
ogy (i.e. smartphones, tablet computers, etc.) has
inspired novel solutions in multiple application ar-
eas. Still, the technology at hand is not perfect and
typically substantial engineering effort (gathering
of corpora, training, tuning) is needed before pro-
totypes involving such technologies can deliver a
user experience robust enough to allow for poten-
tial applications to be evaluated with real users.
For graphical interfaces, well-known prototyping
methods like sketching and wire-framing allow for
obtaining early impressions and initial user feed-
back. These low-fidelity prototyping techniques

do not, however, work well with speech and nat-
ural language. The Wizard of Oz (WOZ) method
can be employed to address this shortcoming. By
using a human ‘wizard’ to mimic the functional-
ity of a system, either completely or in part, WOZ
supports the evaluation of potential user experi-
ences and interaction strategies without the need
for building a fully functional product first (Gould
et al., 1983). It furthermore supports the collection
of domain specific language corpora and the easy
exploration of varying dialog designs (Wirén et al.,
2007). WOZ tools, however, are often application
dependent and built for very specific experimental
setups. Rarely, are they re-used or adapted to other
application scenarios. Also, when used in combi-
nation with existing technology components such
as ASR or TTS, they usually require complex soft-
ware installations and server-client configurations.
Thus, we see a need for an easy ‘out-of-the-box’
type solution. A tool that does not require great
technical experience and therefore may be used by
researchers and designers outside the typical NLP
research and development community. This demo
is the result of our recent efforts aimed at building
such an integrated prototyping tool.

We present a fully installed and configured
server image that offers multi-lingual (i.e. English,
German, French, Italian) ASR and TTS integrated
with a web-based WOZ platform. All components
are open-source (i.e. adaptable and extendable)
and connected via a messaging server and a num-
ber of Java programs. When started the framework
requires only one single script to be executed (i.e.
there is a separate script for each language so that
the components are started using the right param-
eters) in order to launch a WOZ driven system en-
vironment. With such a pre-configured setup we
believe that also non-NLP experts are able to suc-
cessfully conduct extended user studies for lan-
guage technologies applications.

85

2 Existing Comparable Tools

Following the literature, existing tools and frame-
works that support prototyping of language tech-
nology applications can be separated into two cat-
egories. The first category consists of so-called
Dialogue Management (DM) tools, which focus
on the evaluation of Language Technologies (LTs)
and whose primary application lies in the areas of
NLP and machine learning. Two well-known ex-
amples are the CSLU toolkit (Sutton et al., 1998)
and the Olympus dialogue framework (Bohus et
al., 2007). Others include the Jaspis dialogue man-
agement system (Turunen and Hakulinen, 2000)
and the EPFL dialogue platform (Cenek et al.,
2005). DM tools explore the language-based inter-
action between a human and a machine and aim at
improving this dialogue. They usually provide an
application development interface that integrates
different LTs such as ASR and TTS, which is then
used by an experimenter to specify a pre-defined
dialogue flow. Once the dialogue is designed, it
can be tested with human participants. The main
focus of these tools lies on testing and improving
the quality of the employed technology compo-
nents and their interplay. Unlike DM tools, rep-
resentatives from the second category, herein af-
ter referred to as WOZ tools, tend to rely entirely
on human simulation. This makes them more in-
teresting for early feedback, as they better sup-
port the aspects of low-fidelity prototyping. While
these applications often offer more flexibility, they
rarely integrate actual working LTs. Instead, a hu-
man mimics the functions of the machine, which
allows for a less restrictive dialogue design and
facilitates the testing of user experiences that are
not yet supported by existing technologies. Most
WOZ tools, however, should be categorized as
throwaway applications i.e. they are built for one
scenario and only rarely re-used in other settings.
Two examples that allow for a more generic ap-
plication are SUEDE (Klemmer et al., 2000) and
Richard Breuer’s WOZ tool1.

While both DM and WOZ tools incorporate
useful features, neither type provides a full range
of support for low-fidelity prototyping of LT ap-
plications. DM tools lack the flexibility of ex-
ploring aspects that are currently not supported by
technology, and pure WOZ applications often de-
pend too much on the actions of the wizard, which
can lead to unrealistic human-like behaviour and

1http://www.softdoc.de/woz/index.html

inconsistencies with its possible bias on evalua-
tion results. A combination of both types of tools
can outweigh their deficiencies and furthermore
allow for supporting different stages of prototyp-
ing. That is, a wizard might complement exist-
ing technology on a continuum by first taking on
the role of a ‘controller’ who simulates technol-
ogy. Then, in a second stage one could act as a
‘monitor’ who approves technology output, before
finally moving on to being a ‘supervisor’ who only
overrides output in cases where it is needed (Dow
et al., 2005). However, to allow for such variation
an architecture is required that on the one hand
supports a flexible use of technology components
and on the other hand offers an interface for real-
time human intervention.

3 Integrated Prototyping Framework

In order to offer a flexible and easy to use pro-
totyping framework for language technology ap-
plications we have integrated a number of exist-
ing technology components using an Apache AC-
TIVEMQ messaging server2 and several Java pro-
grams. Our framework consists of the JULIUS

Large Vocabulary Continuous Speech Recogni-
tion engine3, an implementation of the GOOGLE

SPEECH API4, the WEBWOZ Wizard of Oz
Prototyping Platform5 and the MARY Text-to-
Speech Synthesis Platform6. All components are
fully installed and connected running on a VIR-
TUAL BOX server image7 (i.e. Ubuntu 12.04 LTS
Linux Server). Using this configuration we offer
a platform that supports real-time speech recogni-
tion as well as speech synthesis in English, French,
German and Italian. Natural Language Under-
standing (NLU), Dialog Management (DM), and
Natural Language Generation (NLG) is currently
performed by the human ‘wizard’. Respective
technology components may, however, be inte-
grated in future versions of the framework. The
following sections describe the different compo-
nents in some more detail and elaborate on how
they are connected.

2http://activemq.apache.org/
3http://julius.sourceforge.jp/en index.php
4http://www.google.com/intl/en/chrome/demos/speech.html
5https://github.com/stephanschloegl/WebWOZ
6http://mary.dfki.de/
7https://www.virtualbox.org/

86

3.1 Automatic Speech Recognition

The JULIUS open-source Large Vocabulary Con-
tinuous Speech Recognition engine (LVCSR) uses
n-grams and context-dependent Hidden Markov
Models (HMM) to transform acoustic input into
text output (Lee et al., 2008). Its recognition
performance depends on the availability of lan-
guage dependent resources i.e. acoustic models,
language models, and language dictionaries. Our
framework includes basic language resources for
English, German, Italian and French. As those
resources are still very limited we have also in-
tegrated online speech recognition for these four
languages using the Google Speech API. This al-
lows for conducting experiments with users while
at the same time collecting the necessary data for
augmenting and filling in JULIUS language re-
sources.

3.2 Text-to-Speech Synthesis

MARY TTS is a state-of-the-art, open source
speech synthesis platform supporting a variety
of different languages and accents (Schröder and
Trouvain, 2003). For the here presented multi-
lingual prototyping framework we have installed
synthesized voices for US English (cmu-slt-
hsmm), Italian (istc-lucia-hsmm), German (dfki-
pavoque-neutral) as well as French (enst-dennys-
hsmm). Additional voices can be downloaded and
added through the MARY component installer.

3.3 Wizard of Oz

WebWOZ is a web-based prototyping platform for
WOZ experiments that allows for a flexible inte-
gration of existing LTs (Schlögl et al., 2010). It
was implemented using modern web technologies
(i.e. Java, HTML, CSS) and therefore runs in any
current web browser. It usually uses web services
to integrate a set of pre-configured LT components
(i.e. ASR, MT, TTS). For the presented prototyp-
ing framework, however, we have integrated Web-
WOZ with our ASR solution (i.e. the combined
Google/JULIUS engine) and MARY TTS. Conse-
quently ASR output is displayed in the top area
of the wizard interface. A wizard is then able to
select an appropriate response from a set of pre-
viously defined utterances or use a free-text field
to compose a response on the fly. In both cases
the utterance is sent to the MARY TTS server and
spoken out by the system.

3.4 Messaging Server and Gluing Programs

In order to achieve the above presented integration
of ASR, WOZ and TTS we use an Apache AC-
TIVEMQ messaging server and a number of Java
programs. One of these programs takes the output
from our ASR component and inserts it into the
WebWOZ input stream. In addition it publishes
this output to a specific ASR ActiveMQ queue so
that other components (e.g. potentially an NLU
component) may also be able to process it. Once
an ASR result is available within WebWOZ, it is
up to the human wizard to respond. WebWOZ
was slightly modified so that wizard responses are
not only sent to the internal WebWOZ log, but
also to a WIZARD ActiveMQ queue. A second
Java program then takes the wizard responses from
the WIZARD queue and pushes them to a sepa-
rate MARY queue. While it may seem unneces-
sary to first take responses from one queue just to
publish them to another queue, it allows for the
easy integration of additional components. For
example, we have also experimented with a dis-
tinct NLG component. Putting this component
between the WIZARD and the MARY queue we
were able to conduct experiments where a wiz-
ard instead of sending entire text utterance would
rather send text-based semantic frames (i.e. a se-
mantically unified representation of a user’s in-
put). Such shows the flexibility of using the de-
scribed queue architecture. Finally we use a third
Java program to take text published to the MARY
queue (i.e. either directly coming from the wiz-
ard or produced by an NLG component as with
one of our experimental settings) and send it to the
MARY TTS server. Figure 1 illustrates the differ-
ent framework components and how they are con-
nected to each other.

4 Demo Setup

The optimal setup for the demo uses two computer
stations, one for a wizard and one for a test user.
The stations need to be connected via a LAN con-
nection. The test user station runs the prototyping
framework, which is a fully installed and config-
ured Virtual Box software image (Note: any com-
puter capable of running Virtual Box can serve as a
test user station). The wizard station only requires
a modern web browser to interact with the test user
station. A big screen size (e.g. 17 inch) for the
wizard is recommended as such eases his/her task.
Both stations will be provided by the authors.

87

Figure 1: Prototyping Framework Components.

5 Summary and Future Work

This demo presents an integrated prototyping
framework for running WOZ driven language
technology application scenarios. Gluing together
existing tools for ASR, WOZ and TTS we have
created an easy to use environment for spoken di-
alog design and research. Future work will focus
on adding additional language technology compo-
nents (e.g. NLU, DM, NLG) and on improving the
currently limited ASR language resources.

Acknowledgments

The presented research is conducted as part of the
vAssist project (AAL-2010-3-106), which is par-
tially funded by the European Ambient Assisted
Living Joint Programme and the National Funding
Agencies from Austria, France and Italy.

References
D. Bohus, A. Raux, T. K. Harris, M. Eskenazi, and A. I.

Rudnicky. 2007. Olympus: An open-source frame-
work for conversational spoken language interface
research. In Proc. of NAACL-HLT, pages 32–39.

P. Cenek, M. Melichar, and M. Rajman. 2005. A
framework for rapid multimodal application design.
In Proceedings of TSD, pages 393–403.

S. Dow, B. Macintyre, J. Lee, C. Oezbek, J. D. Bolter,
and M. Gandy. 2005. Wizard of oz support through-
out an iterative design process. IEEE Pervasive
Computing, 4(4):18–26.

J. D. Gould, J. Conti, and T. Hovanyecz. 1983. Com-
posing letters with a simulated listening typewriter.
Communications of the ACM, 26(4):295–308.

S. R. Klemmer, A. K. Sinha, J. Chen, J. A. Landay,
N. Aboobaker, and A. Wang. 2000. SUEDE: A wiz-
ard of oz prototyping tool for speech user interfaces.
In Proc. of UIST, pages 1–10.

C. Lee, S. Jung, and G. G. Lee. 2008. Robust dia-
log management with n-best hypotheses using di-
alog examples and agenda. In Proc. of ACL-HLT,
pages 630–637.

S. Schlögl, G. Doherty, N. Karamanis, and S Luz.
2010. WebWOZ: a wizard of oz prototyping frame-
work. In Proc. of the ACM EICS Symposium on En-
gineering Interactive Systems, pages 109–114.

M. Schröder and J. Trouvain. 2003. The German
text-to-speech synthesis system MARY: A tool for
research, development and teaching. International
Journal of Speech Technology.

S. Sutton, R. Cole, J. de Vielliers, J. Schalkwyk, P. Ver-
meulen, M. Macon, Y. Yan, E. Kaiser, B. Rundle,
K. Shobaki, P. Hosom, A. Kain, J. Wouters, D. Mas-
saro, and M. Cohen. 1998. Universal speech tools:
The CSLU toolkit.

M. Turunen and J. Hakulinen. 2000. Jaspis- a frame-
work for multilingual adaptive speech applications.
In Proc. of ICSLP, pages 719–722.

M. Wirén, R. Eklund, F. Engberg, and J. Westermark.
2007. Experiences of an In-Service Wizard-of-
Oz Data Collection for the Deployment of a Call-
Routing Application. In Proc. of NAACL-HLT,
pages 56–63.

88

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 89–92,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

RelationFactory: A Fast, Modular and Effective System for Knowledge
Base Population

Benjamin Roth† Tassilo Barth† Grzegorz Chrupała* Martin Gropp† Dietrich Klakow†
†Spoken Language Systems, Saarland University, 66123 Saarbrücken, Germany

*Tilburg University, PO Box 90153, 5000 LE Tilburg, The Netherlands
†{beroth|tbarth|mgropp|dietrich.klakow}@lsv.uni-saarland.de

*g.chrupala@uvt.nl

Abstract

We present RelationFactory, a highly ef-
fective open source relation extraction sys-
tem based on shallow modeling tech-
niques. RelationFactory emphasizes mod-
ularity, is easily configurable and uses a
transparent pipelined approach.

The interactive demo allows the user to
pose queries for which RelationFactory re-
trieves and analyses contexts that contain
relational information about the query en-
tity. Additionally, a recall error analy-
sis component categorizes and illustrates
cases in which the system missed a correct
answer.

1 Introduction and Overview

Knowledge base population (KBP) is the
task of finding relational information in large
text corpora, and structuring and tabulariz-
ing that information in a knowledge base.
Given an entity (e.g. of type PERSON) with
an associated relational schema (a set of re-
lations, e.g. city of birth(PERSON,
CITY), schools attended(PERSON,
ORGANIZATION), spouse(PERSON,
PERSON)), all relations about the entity that
are expressed in a text corpus would be rele-
vant, and the correct answers would have to be
extracted.

The TAC KBP benchmarks1 are an effort to for-
malize this task and give researchers in the field
the opportunity to evaluate their algorithms on a
set of currently 41 relations. In TAC KBP, the
task and evaluation setup is established by well-
defined information needs about query entities of
types PERSON and ORGANIZATION (e.g. who is
the spouse of a person, how many employees

1http://www.nist.gov/tac/about/

does an organization have). A perfect system
would have to return all relevant information (and
only this) contained in the text corpus. TAC KBP
aims at giving a realistic picture of not only pre-
cision but also recall of relation extraction sys-
tems on big corpora, and is therefore an advance-
ment over many other evaluations done for rela-
tion extraction that are often precision oriented
(Suchanek et al., 2007) or restrict the gold key to
answers from a fixed candidate set (Surdeanu et
al., 2012) or to answers contained in a data base
(Riedel et al., 2010). Similar to the classical TREC
evaluation campaigns in document retrieval, TAC
KBP aims at approaching a true recall estimate by
pooling, i.e. merging the answers of a timed-out
manual search with the answers of all participat-
ing systems. The pooled answers are then evalu-
ated by human judges.

It is a big advantage of TAC KBP that the end-
to-end setup (from the query, through retrieval of
candidate contexts and judging whether a relation
is expressed, to normalizing answers and putting
them into a knowledge base) is realistic. At the
same time, the task is very complex and may in-
volve too much work overhead for researchers
only interested in a particular step in relation ex-
traction such as matching and disambiguation of
entities, or judging relational contexts. We there-
fore introduce RelationFactory, a fast, modular
and effective relation extraction system, to the re-
search community as open source software.2 Rela-
tionFactory is based on distantly supervised classi-
fiers and patterns (Roth et al., 2013), and was top-
ranked (out of 18 systems) in the TAC KBP 2013
English Slot-filling benchmark (Surdeanu, 2013).

In this demo, we give potential users the possi-
bility to interact with the system and to get a feel
for use cases, strengths and limitations of the cur-
rent state of the art in knowledge base population.

2https://github.com/beroth/
relationfactory

89

The demo illustrates how RelationFactory arrives
at its conclusions and where future potentials in
relation extraction lie. We believe that Relation-
Factory provides an easy start for researchers in-
terested in relation extraction, and we hope that
it may serve as a baseline for new advances in
knowledge base population.

2 System Philosophy and Design
Principles

The design principles of RelationFactory conform
to what is known as the Unix philosophy.3 For Re-
lationFactory this philosophy amounts to a set of
modules that solve a certain step in the pipeline
and can be run (and tested) independently of the
other modules. For most modules, input and out-
put formats are column-based text representations
that can be conveniently processed with standard
Linux tools for easy diagnostics or prototyping.
Data representation is compact: the system is de-
signed in a way that each module ideally outputs
one new file. Because of modularization and sim-
ple input and output formats, RelationFactory al-
lows for easy extensibility, e.g. for research that
focuses solely on novel algorithms at the predic-
tion stage.

The single modules are connected by a make-
file that controls the data flow and allows for easy
parallelization. RelationFactory is highly config-
urable: new relations can be added without chang-
ing any of the source code, only by changing con-
figuration files and adding or training respective
relational models.

Furthermore, RelationFactory is designed to be
highly scalable: Thanks to feature hashing, large
amounts of training data can be used in a memory-
friendly way. Predicting relations in real-time is
possible using shallow representations. Surface
patterns, ngrams and skip-ngrams allow for highly
accurate relational modeling (Roth et al., 2013),
without incurring the cost of resource-intensive
processing, such as parsing.

3One popular set of tenets (Gancarz, 2003) summarizes
the Unix philosophy as:

1. Small is beautiful.
2. Make each program do one thing well.
3. Build a prototype as soon as possible.
4. Choose portability over efficiency.
5. Store data in flat text files.
6. Use software leverage to your advantage.
7. Use shell scripts to increase leverage and portability.
8. Avoid captive user interfaces.
9. Make every program a filter.

Figure 1: TAC KBP: Given a set of queries, return
a correct, complete and non-redundant response
with relevant information extracted from the text
corpus.

Figure 2: Data flow of the relation extraction sys-
tem: The candidate generation stage retrieves pos-
sible relational contexts. The candidate validation
stage predicts whether relations actually hold and
produces a valid response.

3 Component Overview

A simplified input and output to RelationFactory
is shown in Figure 1. In general, the pipeline
is divided in a candidate generation stage, where
documents are retrieved and candidate sentences
are identified, and the candidate validation stage,
which predicts and generates a response from the
retrieved candidates (see Figure 2).

In a first step, the system generates aliases for
the query using statistical and rule-based expan-
sion methods, for example:
Query Expansion
Adam Gadahn Azzam the American, Adam Yahiye Gadahn, Gadahn
STX Finland Kvaerner Masa Yards, Aker Finnyards, STX Finland Ltd

The expansions are used for retrieving docu-
ments from a Lucene index. All those sen-

90

tences are retained where the query (or one of
the query aliases) is contained and the named-
entity tagger has identified another entity with
the type of a potential answer for one of the
sought relations. The system is easily con-
figurable to include matching of non-standard
named-entity types from lists. RelationFac-
tory uses lists obtained from Freebase (www.
freebase.com) to match answer candidates
for the types CAUSE-OF-DEATH, JOB-TITLE,
CRIMINAL-CHARGES and RELIGION.

The candidate sentences are output line-by-line
and processed by one of the validation modules,
which determine whether actually one of the rela-
tions is expressed. RelationFactory currently uses
three standard validation modules: One based on
SVM classifiers, one based on automatically in-
duced and scored patterns, and one based on man-
ually crafted patterns. The validation modules
function as a filter to the candidates file. They
do not have to add a particular formatting or con-
form to other requirements of the KBP task such
as establishing non-redundancy or finding the cor-
rect offsets in the text corpus. This is done by
other modules in the pipeline, most notably in
the post-processing step, where statistical meth-
ods and heuristics are applied to produce a well-
formed TAC KBP response.

4 User Perspective

From a user perspective, running the system is as
easy as calling:
./run.sh system.config
The configuration file contains all information

about the general run configuration of the system,
such as the query file to use, the format of the re-
sponse file (e.g. TAC 2012 or TAC 2013 format),
the run directory that will contain the response,
and the Lucene index with the corpus. Optional
configuration can control non-standard validation
modules, and special low or high-recall query ex-
pansion schemes.

The relevant parts of the configuration file for a
standard 2013 TAC KBP run would look like the
following:
query /TAC_EVAL/2013/query.xml
goal response2013
rundir /TAC_RUNS/run2013/
index /TAC_CORPORA/2013/index
rellist /CFG/rellist2013
relations.config /CFG/relations2013.config

The last two lines refer to relation-specific con-

figuration files: The list of relations to use and in-
formation about them. Changing these files (and
adding respective models) allows for inclusion of
further relations. The relation-specific configura-
tion file contains information about the query en-
tity type, the expected answer named-entity tag
and whether a list of answers is expected (com-
pared to relations with just one correct answer):

per:religion enttype PER
per:religion argtag RELIGION
per:religion listtype false
org:top_members_employees enttype ORG
org:top_members_employees argtag PERSON
org:top_members_employees listtype true

RelationFactory comes with batteries included:
The models and configurations for TAC KBP 2013
work out-of-the-box and can easily be used as a
relation extraction module in a bigger setting or as
a baseline for new experiments.4

5 Illustrating RelationFactory

In TAC KBP 2013, 6 out of 18 systems achieved
an F1 score of over 30%. RelationFactory as
the top-performing system achieved 37.28% com-
pared to 68.49% achieved by human control an-
notators (Surdeanu, 2013). These numbers clearly
show that current systems have just gone halfway
toward achieving human-like performance on an
end-to-end relation extraction task.

The aim of the RelationFactory demo is to il-
lustrate what the current challenges in TAC KBP
are. The demonstration interface therefore not
only shows the answers generated for populating
a potential knowledge base, but also what text was
used to justify the extraction.

The real-time performance of RelationFactory
allows for trying arbitrary queries and changing
the configuration files and immediately seeing the
effects. Different expansion schemes, validation
modules and patterns can be turned on and off, and
intuitions can be obtained about the bottlenecks
and error sources of relation extraction. The demo
also allows for seeing the effect of extracting infor-
mation from different corpora: a Wikipedia corpus
and different TAC KBP corpora, such as newswire
and web text.

4Training models for new relations requires is a bigger
effort and includes generation of distant supervision train-
ing data by getting argument pairs from relational patterns
or a knowledge base like Freebase. RelationFactory includes
some training scripts but since they are typically run once
only, they are significantly less documented.

91

Figure 3: Screenshot of the RelationFactory demo user interface.

RelationFactory contains a number of diagnos-
tic tools: With a gold key for a set of queries, error
classes can be broken down and examples for cer-
tain error classes can be shown. For example, the
diagnostic tool for missed recall performs the fol-
lowing checks:

1. Is document retrieved?
2. Is query matched? This determines whether a sen-

tence is considered for further processing.

3. Is answer in query sentence? Whether the answer is
in one of the sentences with the query. Our system only
can find answers when this is the case, as there is no co-
reference module included.

4. Do answer tags overlap with gold answer?
5. Do they overlap exactly?
6. Other (validation). If all previous checks are passed,

the candidate has correctly been generated by the can-
didate generation stage, but the validation modules
have failed to predict the relation.

On the TAC KBP 2013 queries, the resulting re-
call error analysis is:

error class missing recall
Doc not retrieved 5.59%
Query not matched 10.37%
Answer not in query sentence 16.63%
Answer tag inexact 5.36%
Answer not tagged 24.85%
Other (validation) 37.17%

The demonstration tool allows for inspection of
instances of each of the error classes.

6 Conclusion

This paper illustrates RelationFactory, a modular
open source knowledge-base population system.
We believe that RelationFactory will become es-
pecially valuable for researchers in the field of re-
lation extraction that focus on one particular prob-
lem of knowledge-base-population (such as entity

expansion or relation prediction) and want to inte-
grate their algorithms in an end-to-end setting.

Acknowledgments

Benjamin Roth is a recipient of the Google Europe
Fellowship in Natural Language Processing, and
this research is supported in part by this Google
Fellowship. Tassilo Barth was supported in part
by IARPA contract number W911NF-12-C-0015.

References
Mike Gancarz. 2003. Linux and the Unix philosophy.

Digital Press.

Sebastian Riedel, Limin Yao, and Andrew McCal-
lum. 2010. Modeling relations and their men-
tions without labeled text. In Machine Learning and
Knowledge Discovery in Databases, pages 148–163.
Springer.

Benjamin Roth, Tassilo Barth, Michael Wiegand, Mit-
tul Singh, and Dietrich Klakow. 2013. Effective slot
filling based on shallow distant supervision methods.
In Proceedings of the Sixth Text Analysis Conference
(TAC 2013).

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowl-
edge. In Proceedings of the 16th international con-
ference on World Wide Web, pages 697–706. ACM.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati,
and Christopher D Manning. 2012. Multi-instance
multi-label learning for relation extraction. In Pro-
ceedings of the 2012 Conference on Empirical Meth-
ods in Natural Language Processing and Natural
Language Learning (EMNLP-CoNLL), pages 455–
465. ACL.

Mihai Surdeanu. 2013. Overview of the tac2013
knowledge base population evaluation: English slot
filling and temporal slot filling. In Proceedings of
the Sixth Text Analysis Conference (TAC 2013).

92

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 93–96,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

MMAX2 for coreference annotation

Mateusz Kopeć
Institute of Computer Science, Polish Academy of Sciences,

Jana Kazimierza 5, 01-248 Warsaw, Poland
m.kopec@ipipan.waw.pl

Abstract

This article presents major modifications
in the MMAX2 manual annotation tool,
which were implemented for the corefer-
ence annotation of Polish texts. Among
other, a new feature of adjudication is de-
scribed, as well as some general insight
into the manual annotation tool selection
process for the natural language process-
ing tasks.

1 Introduction

Recently published Polish Coreference Corpus
(PCC) (Ogrodniczuk et al., 2013) contains a large
number of Polish texts annotated manually with
coreference. During the initial stage of this project
in 2011, a tool had to be selected for the manual
text annotation with coreference.

First issue considered during the selection was
the alternative of desktop versus online annota-
tion tool. Recently, online annotation tools are
becoming increasingly popular (see for example
BRAT (Stenetorp et al., 2012)), with their advan-
tages such as the possibility to monitor the current
state of annotation and make changes to the anno-
tation tool easily, without the need to communi-
cate with the annotators. However, in our opinion
the choice should be made mainly based on the
annotators’ preferences, as their work efficiency is
crucial for the cost of the task.

10 linguists (which were annotators in previ-
ous projects conducted by the authors of this pa-
per) were asked in anonymous survey to choose
one of following three options: 1) that they pre-
fer an online annotation tool (not requiring any
installation), 2) a desktop tool with the possibil-
ity to work without constant internet access, 3)
that they do not have preference. Only one per-
son chose online tool and one person chose the
third option, leaving no choice for the annota-

tion task organizers other than to prepare a desk-
top application. The drawback of this approach
was the need to manage text distribution among
the annotators, as all the work was done on lo-
cal computers. Distribution was controlled by
the DistSys application, available at the webpage
zil.ipipan.waw.pl/DistSys.

After some analysis of the features required
by the project’s scope, the choice was narrowed
to only two tools: MMAX2 (Müller and Strube,
2006) and Palinka (Orăsan, 2003). The problem
with the latter was that is was not error-prone, and
lack of publicly available sources did not allow
to make project-specific corrections. Therefore
MMAX2 environment was chosen for the man-
ual coreference annotation. It is a general purpose
cross-platform desktop annotation tool (written in
Java), created to be configurable for many natural
language annotation efforts. It’s source is publicly
available at the webpage mmax2.net. MMAX2
interface consists of the main window with the
text being annotated (see for example figure 5) and
several smaller windows facilitating various tasks
(all the other figures).

2 Annotation scope

The annotation scope of the Polish Coreference
Corpus project consisted of several subtasks for
an annotator to perform for each text. Because the
automatic preannotation was used, annotator’s job
consisted not only of addition of new markables,
but also removal and correction of existing ones.
Subtasks to perform were to:

• mark all mentions,

• mark each mention’s semantic head (choose
one word the mention consists of),

• cluster coreferent mentions,

• mark dominant expression of each cluster,

93

• mark quasi-identity links.

MMAX2 was easy to configure for most of the
subtasks, except the dominant expressions (there
is no possibility to define attributes of clusters,
only markables) and the choice of semantic head
(available types of attributes did not include a pos-
sibility to define a mention-dependent attribute).

Because an estimate of inter-annotator agree-
ment had to be calculated for the corpus, some
texts were annotated independently by two anno-
tators. Agreement measures were then calculated,
but as single gold standard annotation was needed
for the corpus, they also had to be merged into sin-
gle version by the adjudicator. This feature was
also not present in MMAX2.

3 New features

Even with it’s great number of features, there
was no possibility to use MMAX2 without any
changes in it’s source code. Some changes were
the result of project’s scope requirements, some
were added in response to annotator requests. New
implemented features include:

1. Internationalization – the interface of the tool
is available in English and Polish and can be
easily translated to other languages. Polish
version was used by the annotators, but for
international articles about the tool (such as
this one) the English interface was used.

2. Semantic head selection – a dropdown list
allows to choose one of the tokens mention
consists of as it’s semantic head. This head is
also underlined in markable browser.

3. Storing user setting – which windows are
opened, where are they located, what is the
font and it’s size – these and other user set-
tings are saved and automatically restored
when the application is reopened.

4. Dominant expressions – clusters can have
their attribute: a dominant expression, which
can be selected as one of the mentions from
the cluster or any other expression entered by
the user.

5. Undo button, reverting last action – very use-
ful feature to revert the last change, regard-
less of it’s nature.

Figure 1: Adjudication of mentions

Figure 2: Adjudication of clustering

6. Merge two mentions – user can merge two
mentions into one with a single click, sum-
ming their words and merging their clusters.
Very useful feature when for example one is
correcting automatic annotation, which failed
to recognize a long named entity name and
instead created two entities, each in it’s sepa-
rate cluster.

7. Improved browser operability – browsers al-
low to operate on mentions, links and clus-
ters, not only to view them.

8. Adjudication feature – it will be covered in
detail in the next section.

4 Adjudication feature

Adjudication feature of the new Superannotation
plugin allows to compare two versions of anno-
tation of the same text and merge them into one,
adjudicated version. The design is based on the
original MMAX2 Diff plugin, which allowed to
see the differences between two annotations, yet
it was not possible to merge them into one. The
readability of the differences was also limited and
it was improved in our tool.

The adjudication process starts with opening
one annotation in standard way and then the other
via the menu in Superannotation plugin and con-
sist of several steps, each merging particular layer:

94

1. Mentions – first we need to merge mention
annotations. Differences between the two an-
notations are shown in the figure 1. First col-
umn shows the mention content (and this is
constant in all steps of adjudication), second
shows if that mention is in the first annota-
tion, third column shows if it is in the second
annotation ("+" if yes, "-" if not). Single click
at "+" or the first column highlights given
span in the main window. Double click at one
of the last two columns selects the clicked
version as the proper one and changes the an-
notation in the other file to match the clicked
version. After such double click, the differ-
ence disappears and that row vanishes. After
all rows from that step are gone, mention an-
notations in both versions are the same and
we can proceed to the next step.

2. Comments – this time first column again
shows each mention, for which there is a
difference in comments in both annotations.
Double clicking at 2nd or 3rd column re-
solves the difference in given row.

3. Heads – similar to comments, by double-
clicking we can adjudicate differences in
head annotation.

4. Links – analogously as with heads, we merge
near-identity links annotations.

5. Clusters – this is the most complex adjudi-
cation task. At this point we surely have the
same set of mentions in both annotations, but
they may be clustered differently. Figure 2
presents how differences in clustering are vi-
sualized. Mentions with the same color in
one column are in the same cluster (they have
also the same cluster number). For example,
two occurrences of mention gorzką czekoladę
are in the same cluster according to the first
annotation, and are singletons according to
the second annotation. Single click on any of
these options will show it in the main applica-
tion window, while double click will choose
the clicked version as the gold one and update
the other to match it.

6. Dominating expressions – as the clusters are
now the same, the only annotation left con-
siders cluster attributes: dominating expres-
sions.

Figure 3: Mention attributes – original MMAX2

Figure 4: Mention attributes – simplified

Key point of the adjudication procedure is to
merge all differences at a given level before pro-
ceeding to the next one. This way, after we resolve
all differences in the dominating expressions, we
are certain that our annotations are fully merged
and in fact the same.

5 Removed features

Because MMAX2 is a generic tool, the first im-
pression is that it is very complicated. Numer-
ous options, many windows and menus are over-
whelming and could increase the time of creating
a manual for the annotators (often writing a lot of
text only to inform which options should not be
changed). Therefore we removed many options
and simplified the interface to leave only the fea-
tures required by our annotation task. Compare for
example the mention attribute window from the
original MMAX2 in figure 4 and in our version
in figure 3. Removed features included:

• Distinction of multiple annotation levels –
scope of the project considers only one level,
and the need to explicitly select it in many
places (for example in markable browser) is
unnecessary.

• Possibility to edit the base text – as we per-

95

Figure 5: Unnecessary arcs

formed the inter-annotator agreement analy-
sis, the base text could not be changed.

• Arcs between coreferent mentions in cluster
(see figure 5 for original visualization) – from
our experience, they decrease the readability
of the cluster annotation. As the mentions
in cluster are already highlighted, there is no
need to show the arcs connecting them (the
arcs are not clickable as in BRAT).

• MMAX Query Language – MMAX2 facili-
tates a query language to search for the an-
notations fulfilling given properties. In our
opinion this feature seems more appropriate
for an analyst, not an annotator. Moreover,
results of such querying would be more in-
formative for a collection of texts, not a sin-
gle document.

• Kappa statistic and coincidence matrix calcu-
lation for multiple annotations of a single text
– again, this feature seems more appropriate
for an analyst and for the whole corpus, not a
single text.

6 Conclusion

Every unnecessary action, which has to be re-
peated numerous times by a human annotator, has
a significant cost in terms of time and money.
We claim that annotation efforts are more effi-
cient when there is a step of tool customization
(or even design and implementation from scratch)
beforehand and also during the process, based on
the feedback from the annotators. Using general-
purpose tools has a clear benefit of cheap and
fast initialization of the project, but also there
are major drawbacks: a compromise between the
project needs and the tool capabilities. As we have
seen, even a tool with great customization options
such as MMAX2 doesn’t have all the features one
would need.

Experience of the PCC project shows, that in-
stead of trying to provide a general, configurable
annotation tool (which is very complex due to its
wide application possibilities), another way to pro-
ceed is to create simple, well designed tool fo-
cused on specific task. Such tool can be then
customized or extended by qualified programmers
without much effort and then provide great effi-
ciency of the annotation process.

Presented version of MMAX2 with its source
code is available at http://zil.ipipan.
waw.pl/MMAX4CORE webpage. We encourage
it’s use and modification for other coreference an-
notation projects.

Acknowledgments

The work reported here was cofounded by the
Computer-based methods for coreference resolu-
tion in Polish texts project financed by the Pol-
ish National Science Centre (contract number
6505/B/T02/2011/40) and by the European Union
from resources of the European Social Fund.
Project PO KL „Information technologies: Re-
search and their interdisciplinary applications”.

References
Christoph Müller and Michael Strube. 2006. Multi-

level annotation of linguistic data with mmax2. In
Sabine Braun, Kurt Kohn, and Joybrato Mukher-
jee, editors, Corpus Technology and Language Ped-
agogy: New Resources, New Tools, New Methods,
pages 197–214. Peter Lang, Frankfurt a.M., Ger-
many.

Maciej Ogrodniczuk, Katarzyna Głowińska, Mateusz
Kopeć, Agata Savary, and Magdalena Zawisławska.
2013. Polish coreference corpus. In Zygmunt Ve-
tulani, editor, Proceedings of the 6th Language &
Technology Conference: Human Language Tech-
nologies as a Challenge for Computer Science
and Linguistics, pages 494–498, Poznań, Poland.
Wydawnictwo Poznańskie, Fundacja Uniwersytetu
im. Adama Mickiewicza.

Constantin Orăsan. 2003. PALinkA: a highly cus-
tomizable tool for discourse annotation. In Proceed-
ings of the 4th SIGdial Workshop on Discourse and
Dialog, pages 39 – 43, Sapporo, Japan, July, 5 -6.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. brat: a web-based tool for nlp-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107, Avignon, France, April. Association
for Computational Linguistics.

96

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 97–100,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

The GATE Crowdsourcing Plugin: Crowdsourcing Annotated Corpora
Made Easy

Kalina Bontcheva, Ian Roberts, Leon Derczynski, Dominic Rout
University of Sheffield

{kalina,ian,leon,d.rout}@dcs.shef.ac.uk

Abstract

Crowdsourcing is an increasingly popu-
lar, collaborative approach for acquiring
annotated corpora. Despite this, reuse
of corpus conversion tools and user in-
terfaces between projects is still problem-
atic, since these are not generally made
available. This demonstration will intro-
duce the new, open-source GATE Crowd-
sourcing plugin, which offers infrastruc-
tural support for mapping documents to
crowdsourcing units and back, as well as
automatically generating reusable crowd-
sourcing interfaces for NLP classification
and selection tasks. The entire work-
flow will be demonstrated on: annotating
named entities; disambiguating words and
named entities with respect to DBpedia
URIs; annotation of opinion holders and
targets; and sentiment.

1 Introduction

Annotation science (Hovy, 2010; Stede and
Huang, 2012) and general purpose corpus anno-
tation tools (e.g. Bontcheva et al. (2013)) have
evolved in response to the need for creating high-
quality NLP corpora. Crowdsourcing is a popu-
lar collaborative approach that has been applied
to acquiring annotated corpora and a wide range
of other linguistic resources (Callison-Burch and
Dredze, 2010; Fort et al., 2011; Wang et al., 2012).
Although the use of this approach is intensifying,
especially paid-for crowdsourcing, the reuse of an-
notation guidelines, task designs, and user inter-
faces between projects is still problematic, since
these are generally not made available, despite
their important role in result quality (Khanna et
al., 2010).

A big outstanding challenge for crowdsourc-
ing projects is that the cost to define a single

annotation task remains quite substantial. This
demonstration will introduce the new, open-source
GATE Crowdsourcing plugin, which offers in-
frastructural support for mapping documents to
crowdsourcing units, as well as automatically gen-
erated, reusable user interfaces1 for NLP classi-
fication and selection tasks. Their use will be
demonstrated on annotating named entities (selec-
tion task), disambiguating words and named enti-
ties with respect to DBpedia URIs (classification
task), annotation of opinion holders and targets
(selection task), as well as sentiment (classifica-
tion task).

2 Crowdsourcing Stages and the Role of
Infrastructural Support

Conceptually, the process of crowdsourcing anno-
tated corpora can be broken down into four main
stages, within which there are a number of largely
infrastructural steps. In particular, data prepara-
tion and transformation into CrowdFlower units,
creation of the annotation UI, creation and upload
of gold units for quality control, and finally map-
ping judgements back into documents and aggre-
gating all judgements into a finished corpus.

The rest of this section discusses in more de-
tail where reusable components and infrastructural
support for automatic data mapping and user inter-
face generation are necessary, in order to reduce
the overhead of crowdsourcing NLP corpora.

2.1 Project Definition
An important part of project definition is the map-
ping of the NLP problem into one or more crowd-
sourcing tasks, which are sufficiently simple to be
carried out by non-experts and with a good qual-
ity. What are helpful here are reusable patterns
for how best to crowdsource different kinds of
NLP corpora. The GATE Crowdsourcing plugin

1Currently for CrowdFlower, which unlike Amazon Me-
chanical Turk is available globally.

97

currently provides such patterns for selection and
classification tasks.

This stage also focuses on setup of the task pa-
rameters (e.g. number of crowd workers per task,
payment per task) and piloting the project, in order
to tune in its design. With respect to task param-
eters, infrastructural support is helpful, in order
to enable automatic splitting of longer documents
across crowdsourcing tasks.

2.2 Data Preparation
This stage, in particular, can benefit significantly
from infrastructural support and reusable compo-
nents, in order to collect the data (e.g. crawl
the web, download samples from Twitter), pre-
process it with linguistic tools (e.g. tokenisation,
POS tagging, entity recognition), and then map
automatically from documents and sentences to
crowdsourcing micro-tasks.

2.3 Running the Crowdsourcing Project
This is the main phase of each crowdsourcing
project. It consists of three kinds of tasks: task
workflow and management, contributor manage-
ment (including profiling and retention), and qual-
ity control. Paid-for marketplaces like Amazon
Mechanical Turk and CrowdFlower already pro-
vide this support. As with conventional corpus an-
notation, quality control is particularly challeng-
ing, and additional NLP-specific infrastructural
support can help.

2.4 Data Evaluation and Aggregation
In this phase, additional NLP-specific, infrastruc-
tural support is needed for evaluating and aggre-
gating the multiple contributor inputs into a com-
plete linguistic resource, and in assessing the re-
sulting overall quality.

Next we demonstrate how these challenges have
been addressed in our work.

3 The GATE Crowdsourcing Plugin

To address these NLP-specific requirements,
we implemented a generic, open-source GATE
Crowdsourcing plugin, which makes it very easy
to set up and conduct crowdsourcing-based corpus
annotation from within GATE’s visual interface.

3.1 Physical representation for documents
and annotations

Documents and their annotations are encoded in
the GATE stand-off XML format (Cunningham

Figure 1: Classification UI Configuration

et al., 2002), which was chosen for its support
for overlapping annotations and the wide range of
automatic pre-processing tools available. GATE
also has support for the XCES standard (Ide et al.,
2000) and others (e.g. CoNLL) if preferred. An-
notations are grouped in separate annotation sets:
one for the automatically pre-annotated annota-
tions, one for the crowdsourced judgements, and
a consensus set, which can be considered as the fi-
nal resulting corpus annotation layer. In this way,
provenance is fully tracked, which makes it possi-
ble to experiment with methods that consider more
than one answer as potentially correct.

3.2 Automatic data mapping to
CrowdFlower

The plugin expects documents to be pre-
segmented into paragraphs, sentences and word
tokens, using a tokeniser, POS tagger, and sen-
tence splitter – e.g. those built in to GATE (Cun-
ningham et al., 2002). The GATE Crowdsourcing
plugin allows choice between these of which to
use as the crowdsourcing task unit; e.g., to show
one sentence per unit or one paragraph. In the
demonstration we will show both automatic map-
ping at sentence level (for named entity annota-
tion) and at paragraph level (for named entity dis-
ambiguation).

3.3 Automatic user interface generation

The User Interfaces (UIs) applicable to various
task types tend to fall into a set of categories, the
most commonly used being categorisation, selec-
tion, and text input. The GATE Crowdsourcing
plugin provides generalised and re-usable, auto-
matically generated interfaces for categorisation

98

Figure 2: Classification Interface: Sense Disambiguation Example

Figure 3: Sequential Selection Interface: Named Entity Recognition Example

and selection.

In the first step, task name, instructions, and
classification choices are provided, in a UI config-
uration dialog (see Figure 1). In this example, the
instructions are for disambiguating named entities.
We have configured three fixed choices, which ap-
ply to each entity classification task.

For some categorisation NLP annotation tasks
(e.g. classifying sentiment in tweets into posi-
tive, negative, and neutral), fixed categories are
sufficient. In others, where the available category
choices depend on the text that is being classi-
fied (e.g. the possible disambiguations of Paris
are different from those of London), choices are
defined through annotations on each of the clas-
sification targets. In this case case, the UI gen-
erator then takes these annotations as a parame-
ter and automatically creates the different category
choices, specific to each crowdsourcing unit. Fig-
ure 2 shows an example for sense disambiguation,
which combines two unit-specific classes with the
three fixed classification categories shown before.

Figure 3 shows the CrowdFlower-based user in-
terface for word-constrained sequential selection,
which in this case is parameterised for named en-
tity annotation. In sequential selection, sub-units
are defined in the UI configuration – tokens, for
this example. The annotators are instructed to
click on all words that constitute the desired se-
quence (the annotation guidelines are given as a
parameter during the automatic user interface gen-

eration).
Since the text may not contain a sequence to be

annotated, we also generate an explicit confirma-
tion checkbox. This forces annotators to declare
that they have made the selection or there is noth-
ing to be selected in this text. CrowdFlower can
then use gold units and test the correctness of the
selections, even in cases where no sequences are
selected in the text. In addition, requiring at least
some worker interaction and decision-making in
every task improves overall result quality.

3.4 Quality control
The key mechanism for spam prevention and qual-
ity control in CrowdFlower is test data, which
we also refer to as gold units. These are com-
pleted examples which are mixed in with the un-
processed data shown to workers, and used to
evaluate worker performance. The GATE Crowd-
sourcing plugin supports automatic creation of
gold units from GATE annotations having a fea-
ture correct. The value of that feature is then
taken to be the answer expected from the human
annotator. Gold units need to be 10%–30% of the
units to be annotated. The minimum performance
threshold for workers can be set in the job config-
uration.

3.5 Automatic data import from
CrowdFlower and adjudication

On completion, the plugin automatically imports
collected multiple judgements back into GATE

99

Figure 4: CrowdFlower Judgements in GATE

and the original documents are enriched with the
crowdsourced information, modelled as multiple
annotations (one per contributor). Figure 4 shows
judgements that have been imported from Crowd-
Flower and stored as annotations on the original
document. One useful feature is the trust metric,
assigned by CrowdFlower for this judgement.

GATE’s existing tools for calculating inter-
annotator agreement and for corpus analysis are
used to gain further insights into the quality of the
collected information. If manual adjudication is
required, GATE’s existing annotations stack edi-
tor is used to show in parallel the annotations im-
ported from CrowdFlower, so that differences in
judgement can easily be seen and resolved. Alter-
natively, automatic adjudication via majority vote
or other more sophisticated strategies can be im-
plemented in GATE as components.

4 Conclusion

This paper described the GATE Crowdsourcing
plugin2 and the reusable components that it pro-
vides for automatic mapping of corpora to micro-
tasks and vice versa, as well as the generic se-
quence selection and classification user interfaces.
These are easily configurable for a wide range
of NLP corpus annotation tasks and, as part of
this demonstration, several example crowdsourc-
ing projects will be shown.

Future work will focus on expanding the num-
ber of reusable components, the implementation
of reusable automatic adjudication algorithms,
and providing support for crowdsourcing through
games-with-a-purpose (GWAPs).

Acknowledgments This was part of the uComp
project (www.ucomp.eu). uComp receives the
funding support of EPSRC EP/K017896/1, FWF
1097-N23, and ANR-12-CHRI-0003-03, in the
framework of the CHIST-ERA ERA-NET.

2It is available to download from http://gate.ac.uk/ .

References
Kalina Bontcheva, Hamish Cunningham, Ian Roberts,

Angus. Roberts, Valentin. Tablan, Niraj Aswani, and
Genevieve Gorrell. 2013. GATE Teamware: A
Web-based, Collaborative Text Annotation Frame-
work. Language Resources and Evaluation,
47:1007—1029.

Chris Callison-Burch and Mark Dredze. 2010. Cre-
ating speech and language data with Amazon’s Me-
chanical Turk. In Proceedings of the NAACL HLT
2010 Workshop on Creating Speech and Language
Data with Amazon’s Mechanical Turk, pages 1–12.

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, and Valentin Tablan. 2002. GATE:
an Architecture for Development of Robust HLT
Applications. In Proceedings of the 40th An-
nual Meeting on Association for Computational
Linguistics, 7–12 July 2002, ACL ’02, pages
168–175, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Karen Fort, Gilles Adda, and K. Bretonnel Cohen.
2011. Amazon mechanical turk: Gold mine or coal
mine? Computational Linguistics, 37(2):413 –420.

Eduard Hovy. 2010. Annotation. In Tutorial Abstracts
of ACL.

N. Ide, P. Bonhomme, and L. Romary. 2000. XCES:
An XML-based Standard for Linguistic Corpora.
In Proceedings of the second International Confer-
ence on Language Resources and Evaluation (LREC
2000), 30 May – 2 Jun 2000, pages 825–830,
Athens, Greece.

Shashank Khanna, Aishwarya Ratan, James Davis, and
William Thies. 2010. Evaluating and improving the
usability of Mechanical Turk for low-income work-
ers in India. In Proceedings of the first ACM sympo-
sium on computing for development. ACM.

Manfred Stede and Chu-Ren Huang. 2012. Inter-
operability and reusability: the science of annota-
tion. Language Resources and Evaluation, 46:91–
94. 10.1007/s10579-011-9164-x.

A. Wang, C.D.V. Hoang, and M. Y. Kan. 2012. Per-
spectives on Crowdsourcing Annotations for Natu-
ral Language Processing. Language Resources and
Evaluation, Mar:1–23.

100

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 101–104,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

A Spinning Wheel for YARN:
User Interface for a Crowdsourced Thesaurus

Pavel Braslavski
Ural Federal University

Kontur Labs
pbras@yandex.ru

Dmitry Ustalov
Ural Federal University

IMM UB RAS
dau@imm.uran.ru

Mikhail Mukhin
Ural Federal University

mfly@sky.ru

Abstract

YARN (Yet Another RussNet) project
started in 2013 aims at creating a large
open thesaurus for Russian using crowd-
sourcing. This paper describes synset
assembly interface developed within the
project — motivation behind it, design, us-
age scenarios, implementation details, and
first experimental results.

1 Introduction

Creation of linguistic resources and annotations
using crowdsourcing and gamification is becom-
ing a common practice. Untrained workers con-
tribute to development of thesauri, dictionaries,
translation memories, and corpora annotations.
Crowdsourcing can employ both paid workers,
e.g. on Amazon Mechanical Turk (AMT) plat-
form1 and volunteers as in case of Wiktionary2 —
a large wiki-style online multilingual dictionary.

The goal of the YARN (Yet Another RussNet)
project3 launched in 2013 is to create a large open
thesaurus for Russian language using crowdsourc-
ing (Braslavski et al., 2013). Despite the fact
that there were several attempts to create a Rus-
sian Wordnet (Azarova et al., 2002; Balkova et al.,
2004; Gelfenbein et al., 2003; Loukachevitch and
Dobrov, 2002), there is no open resource of ac-
ceptable quality and coverage currently available.
The choice of crowdsourcing is also advocated by
successful projects that are being evolved by vol-
unteers: Russian Wiktionary4, corpus annotation
project OpenCorpora5 and a wiki for linguistic re-
sources related to Russian NLPub6.

1http://www.mturk.com/
2http://www.wiktionary.org/
3http://russianword.net/
4http://ru.wiktionary.org/
5http://opencorpora.org/
6http://nlpub.ru/

Wordnets had been traditionally developed
within small research teams. This approach main-
tains conceptual consistency and project manage-
ability, facilitates informal exchange of ideas in a
small group of contributors. However, this prac-
tice is hardly scalable and can potentially lead
to a biased description of linguistic phenomena
caused by the preferences of a close group of
researchers. Crowdsourcing can possibly reduce
costs, increase development pace, and make the
results more robust, but puts additional demands
on project management and tools, including user
interface. Requirements for a crowdsourcing the-
saurus development interface are as follows: 1) a
low entry threshold for new users and a gradual
learning curve; 2) no need for users to install addi-
tional software; 3) central data storage, collabora-
tive work for several users in a competitive mode,
and permission management; 4) change history
tracking to protect data against vandalism.

Princeton WordNet editors had worked directly
with lexicographer files stored in a version control
system (Fellbaum, 1998). In later thesauri creation
projects specialized tools were developed that fea-
tured more user-friendly interface, graphical rep-
resentation of thesaurus relationships, centralized
data storage, possibility of collaborative work, and
data consistency checks. Examples of thesauri
development tools are DEBVisDic (Horák et al.,
2006), GernEdiT (Henrich and Hinrichs, 2010), as
well as WordNetLoom (Piasecki et al., 2012) (see
(Piasecki et al., 2012) for a brief overview of the-
sauri editing tools). Wiktionary and OmegaWiki7

use MediaWiki engine and wiki markup to encode
dictionary information.

In the preparatory stage of the project we con-
sidered adoption of the above mentioned tools.
However, we estimated that the amount of work
needed for adaptation of existing tools to YARN

7http://www.omegawiki.org/

101

data formats and usage scenarios is quite costly
and decided to develop a series of specialized
tools.

The paper briefly describes YARN project and
its noun synsets assembly interface in particular —
motivation behind it, current state and appearance,
usage scenarios, as well as results of a preliminary
user study and future plans.

2 Project Outline

YARN is conceptually similar to Princeton Word-
net (Fellbaum, 1998) and its followers: it con-
sists of synsets — groups of quasi-synonyms cor-
responding to a concept. Concepts are linked
to each other, primarily via hierarchical hy-
ponymic/hypernymic relationships. According to
the project’s outline, YARN contains nouns, verbs,
and adjectives. We aim at splitting the process of
thesaurus creation into smaller tasks and develop-
ing custom interfaces for each of them. The first
step is an online tool for building noun synsets
based on content of existing dictionaries. The goal
of this stage is to establish YARN core content,
test and validate crowdsourcing approach, prepare
annotated data for automatic methods, and create
a basis for the work with the other parts of speech.

As mentioned above, important characteristics
of the project are its openness and recruitment of
volunteers. Our crowdsourcing approach is differ-
ent, for example, from the one described in (Bie-
mann and Nygaard, 2010), where AMT turkers
form synsets using the criterion of contextual sub-
stitutability directly. In our case, editors assem-
ble synsets using word lists and definitions from
dictionaries as “raw material”. Obviously, such
a task implies minimal lexicographical skills and
is more complicated than an average task offered
to AMT workers. Our target editors are college
or university students, preferably from linguistics
departments, who are native Russian speakers. It
is desirable that students are instructed by a uni-
versity teacher and may seek their advice in com-
plex cases. As in the case of Wikipedia and Wik-
tionary, we foresee two levels of contributors: line
editors and administrators with the corresponding
privileges. According to our expectations, the to-
tal number of line editors can reach two hundreds
throughout a year.

3 Raw Materials for YARN

We used two sources of “raw materials” for
YARN: 1) Russian Wiktionary and 2) Small
Academic Dictionary (SAD). Russian Wiktionary
dump as of March 2012 was parsed and con-
verted to database format using Wikokit software
(Krizhanovsky and Smirnov, 2013). Wiktionary
dump contains 51,028 nouns, including 45,646
single-word nouns; 30,031 entries have at least
one definition. Besides the words and definitions
Wiktionary dump contains occasionally synonym
references and word usage examples. SAD data
contain 33,220 word entries and 51,676 defini-
tions. All single-word nouns were provided with
frequencies based on the Russian National Cor-
pus8.

4 User Interface

The current synset editing interface can be ac-
cessed online 9; its main window is presented in
Figure 1.

“Raw data” are placed on the left-hand side of
the interface: definitions of the initial word and ex-
amples, possible synonyms for each of the mean-
ings in turn with definitions and examples. The
right-hand part represents resulted synsets includ-
ing words, definitions, and examples. In principle,
an editor can assemble a “minimal” synset from
the dictionary “raw material” simply with several
mouse clicks, without any typing.

Synset assembly begins with a word, or “synset
starter”. The editor selects an item from the list
of words ranked by decreasing frequency; already
processed words are shaded. The editor can go
through the words one after another or choose an
arbitrary word using search box.

The top left-hand pane displays definitions of
the initial word and usage examples if any. To sim-
plify the view, editor can turn out examples or to
blind individual definitions. Possible synonyms of
the initial word are listed at the bottom-left pane,
in turn with definitions and examples. The top-
right pane displays a list of synsets containing the
initial word. The editor can copy definitions and
usage examples of the initial word from the top left
of the interface to the current synset with mouse
clicks. From the synonyms pane one can transfer
bare words or words along with definitions and ex-
amples. The editor can add a new word to the list

8http://ruscorpora.ru/en/
9http://russianword.net/editor

102

Figure 1: Main window of YARN synset assembly interface (interface captions are translated for con-
venience of readers into English; originally all interface elements are in Russian): 1) initial word; 2)
definitions and examples of the initial word; 3) possible synonyms of the initial word with definitions
and examples; 4) a list of synsets containing the initial word (active synset is highlighted); 5) words con-
stituting the current synset; 6) definitions of the current synset. The arrows show how the information
items from the left-hand side form synsets in the right-hand side.

of synonyms; it will appear with dictionary defini-
tions and examples if presented in the parsed data.
If the editor is not satisfied with the collected def-
initions, they can create a new one — either from
scratch or based on one of the existing descrip-
tions. Additionally, a word or a definition within a
synset can be flagged as “main”; and be provided
with labels. All synset edits are tracked and stored
in the database along with timestamps and editor
ID.

YARN software is implemented using Ruby on
Rails framework. All data are stored in a Post-
greSQL database. User authentication is per-
formed through an OAuth endpoint provided by
Facebook. The user interface is implemented as
a browser JavaScript application. The applica-
tion interacts with the server application via JSON
API. The entire source code of the project is avail-
able in an open repository10.

10https://github.com/russianwordnet

5 Preliminary Results

In the fall 2013 we conducted a pilot user study
with 45 students of the linguistics department at
the Ural Federal University. The experiment re-
sulted in 1390 synsets; 970 of them are ‘non-
trivial’, i.e. contain more than a single word (253
contain 2 words, 228 — 3 words, 207 — 4, 282 —
5+). Editors spent about two minutes on building
a ‘non-trivial’ synset on average, which we find a
very good result. Figure 2 shows the distribution
of edit times for 2+ word synsets. Distribution of
completed synsets by students is also skewed, e.g.
top-5 contributors account for more than a third of
all non-trivial synsets (329).

Figure 3 shows a linear trend of time spent by
five top contributors on constructing consecutive
non-trivial synsets. Four out of five demonstrate
a learning effect: average time per synset tends to
decrease while the editor proceeds through tasks.

In general, students were very positive about

103

0

30

60

90

0 120 240 360 480 600 720 840

editing time, sec

s
y
n
s
e
ts

Figure 2: Distribution of times spent on non-trivial
synset editing.

their participation in the experiment and the
YARN interface. Participants mentioned flaws in
parsed data, inability to delete an existing synset
(we disabled this option during the experiment),
and the inconvenience of label assignments as
main disadvantages.

6 Conclusions

YARN synset assembly tool passed an initial test-
ing and proved to be a usable tool for creation of
thesaurus building blocks. Upon reading simple
instructions, volunteers were able to quickly learn
an intuitive interface and accomplish the synset as-
sembly task without problems.

During the experiment we were able to diag-
nose some flaws related to interface design, editor
guidelines, and internal data representation. In the
future we will elaborate instructions and learning
materials, clean existing and add more dictionary
data, and perform a thorough evaluation of the in-
terface. Then, we will work on an interface for
linking synsets and expand YARN with verbs and
adjectives.

Acknowledgments. This work is supported by
the Russian Foundation for the Humanities,
project #13-04-12020 “New Open Electronic The-
saurus for Russian”.

References
Irina Azarova et al. 2002. RussNet: Building a Lex-

ical Database for the Russian Language. In Proc.
of Workshop on WordNet Structures and Standardi-
sation, and How These Affect WordNet Applications
and Evaluation, Gran Canaria, Spain, pages 60–64.

25

50

75

100

125

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

synset, #

e
d
it
in

g
 t
im

e
,
s
e
c

user 1 2 3 4 5

Figure 3: Linear trend of time spent on sequential
edits of nontrivial synsets by top-5 contributors.

Valentina Balkova et al. 2004. Russian wordnet. In
Proc. of the Second Global WordNet Conference,
pages 31–38. Citeseer.

Chris Biemann and Valerie Nygaard. 2010. Crowd-
sourcing Wordnet. In Proc. of the 5th Global Word-
Net conference, Mumbai, India.

Pavel Braslavski et al. 2013. YARN Begins. In Proc.
of Dialog-2013 (in Russian).

Christiane Fellbaum. 1998. WordNet: An Electronic
Database.

Ilya Gelfenbein et al. 2003. Avtomaticheskij perevod
semanticheskoj seti WORDNET na russkij yazyk.
In Proc. of Dialog’2003 (in Russian).

Verena Henrich and Erhard Hinrichs. 2010. GernEdiT-
The GermaNet Editing Tool. In ACL (System
Demonstrations), pages 19–24.

Aleš Horák et al. 2006. DEBVisDic–First Version of
New Client-Server Wordnet Browsing and Editing
Tool. In Proc. of the Third International Wordnet
Conference.

Andrew Krizhanovsky and Alexander Smirnov. 2013.
An Approach to Automated Construction of a Gen-
eral Purpose Lexical Ontology Based on Wiktionary.
Journal of Computer and Systems Sciences Interna-
tional, 52(2):215–225.

Natalia Loukachevitch and Boris Dobrov. 2002. De-
velopment and Use of Thesaurus of Russian Lan-
guage RuThes. In Proc. of Workshop on Word-
Net Structures and Standardisation, and How These
Affect WordNet Applications and Evaluation, Gran
Canaria, Spain, pages 65–70.

Maciej Piasecki et al. 2012. WordnetLoom: a Wordnet
Development System Integrating Form-based and
Graph-based Perspectives. International Journal of
Data Mining, Modelling and Management.

104

Author Index

Agerri, Rodrigo, 5
Agić, Željko, 9
Alabau, Vicent, 25
Alexandropoulou, Stavroula, 77
Angelov, Krasimir, 41

Banchs, Rafael E., 33
Barth, Tassilo, 89
Bekavac, Bozo, 9
Bermudez, Josu, 5
Bøgh, Kenneth S., 61
Björkelund, Anders, 57
Bontcheva, Kalina, 97
Bosca, Alessio, 49
Boudy, Jérôme, 85
Branco, Antonio, 81
Braslavski, Pavel, 101
Bringert, Björn, 41
Buck, Christian, 25

Carl, Michael, 25
Carreras, Xavier, 9
Casacuberta, Francisco, 25, 45
Centelles, Jordi, 33
Chesney, Sophie, 77
Chollet, Gérard, 85
Chrupała, Grzegorz, 89
Costa-jussà, Marta R., 33

Dekova, Rositsa, 69
Delmonte, Rodolfo, 73
Derczynski, Leon, 61, 97
Dymetman, Marc, 49

Eryiğit, Gülşen, 1

Field, Camilla Vilhelmsen, 61
Fortuna, Blaz, 9
Freitag, Markus, 29

García-Cuesta, Esteban, 9
García-Martínez, Mercedes, 25
Gärtner, Markus, 57
Germann, Ulrich, 25
Gonçalves, Patricia, 81

González-Rubio, Jesús, 25
Grimm, Robert, 77
Grönroos, Stig-Arne, 21
Gropp, Martin, 89

Hill, Robin, 25
Huck, Matthias, 29
Hürriyetoğlu, Ali, 65

Jakubíček, Miloš, 53

Kilgarriff, Adam, 53
Klakow, Dietrich, 89
Koehn, Philipp, 25
Kokke, Pepijn, 77
Kopeć, Mateusz, 93
Kovář, Vojtěch, 53
Kronlid, Fredrik, 37
Kruit, Benno, 77
Kucuk, Dilek, 65
Kuhn, Jonas, 57
Kurimo, Mikko, 21

Larsson, Staffan, 37
Leiva, Luis, 25
Li, Zhixing, 9

Mesa-Lao, Bartolomé, 25
Milhorat, Pierrick, 85
Mukhin, Mikhail, 101

Neophytou, Kyriaki, 77
Ney, Hermann, 29
Nguyen, Antony, 77
Nguyen, Dai Quoc, 17
Nguyen, Dat Quoc, 17
Nikoulina, Vassilina, 49

Ortiz-Martínez, Daniel, 25, 45

Padró, Lluís, 9
Pham, Dang Duc, 17
Pham, Son Bao, 17
Prati, Anton Maria, 73

Ranta, Aarne, 41

105

Rettinger, Achim, 9, 13
Rigau, German, 5
Rizov, Borislav, 69
Roberts, Ian, 97
Roth, Benjamin, 89
Rout, Dominic, 97
Rychlý, Pavel, 53

Saint-Amand, Herve, 25
Sanchis Trilles, Germán, 25
Schlögl, Stephan, 85
Seeker, Wolfgang, 57
Smit, Peter, 21
Štajner, Tadej, 9
Suchomel, Vít, 53

Tanev, Hristo, 65
Thiele, Gregor, 57
Toledo, Assaf, 77
Tsoukala, Chara, 25

Ustalov, Dmitry, 101

Virpioja, Sami, 21

Wärnestål, Pontus, 37
Winter, Yoad, 77

Zavarella, Vanni, 65
Zhang, Lei, 9, 13

	Program
	ITU Turkish NLP Web Service
	Multilingual, Efficient and Easy NLP Processing with IXA Pipeline
	XLike Project Language Analysis Services
	Semantic Annotation, Analysis and Comparison: A Multilingual and Cross-lingual Text Analytics Toolkit
	RDRPOSTagger: A Ripple Down Rules-based Part-Of-Speech Tagger
	Morfessor 2.0: Toolkit for statistical morphological segmentation
	CASMACAT: A Computer-assisted Translation Workbench
	Jane: Open Source Machine Translation System Combination
	CHISPA on the GO: A mobile Chinese-Spanish translation service for travellers in trouble
	Safe In-vehicle Dialogue Using Learned Predictions of User Utterances
	Speech-Enabled Hybrid Multilingual Translation for Mobile Devices
	The New Thot Toolkit for Fully-Automatic and Interactive Statistical Machine Translation
	A Lightweight Terminology Verification Service for External Machine Translation Engines
	Finding Terms in Corpora for Many Languages with the Sketch Engine
	A Graphical Interface for Automatic Error Mining in Corpora
	DKIE: Open Source Information Extraction for Danish
	Event Extraction for Balkan Languages
	Anaphora -- Clause Annotation and Alignment Tool.
	SPARSAR: An Expressive Poetry Reader
	Annotating by Proving using SemAnTE
	Answering List Questions using Web as a corpus
	Designing Language Technology Applications: A Wizard of Oz Driven Prototyping Framework
	RelationFactory: A Fast, Modular and Effective System for Knowledge Base Population
	MMAX2 for coreference annotation
	The GATE Crowdsourcing Plugin: Crowdsourcing Annotated Corpora Made Easy
	A Spinning Wheel for YARN: User Interface for a Crowdsourced Thesaurus

