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Abstract

We present a system for the real-time gen-
eration of car navigation instructions with
landmarks. Our system relies exclusively
on freely available map data from Open-
StreetMap, organizes its output to fit into
the available time until the next driving ma-
neuver, and reacts in real time to driving er-
rors. We show that female users spend sig-
nificantly less time looking away from the
road when using our system compared to a
baseline system.

1 Introduction

Systems that generate route instructions are be-
coming an increasingly interesting application
area for natural language generation (NLG) sys-
tems. Car navigation systems are ubiquitous
already, and with the increased availability of
powerful mobile devices, the wide-spread use of
pedestrian navigation systems is on the horizon.
One area in which NLG systems could improve
existing navigation systems is in the use of land-
marks, which would enable them to generate in-
structions such as “turn right after the church” in-
stead of “after 300 meters”. It has been shown in
human-human studies that landmark-based route
instructions are easier to understand (Lovelace
et al., 1999) than distance-based ones and re-
duce driver distraction in in-car settings (Bur-
nett, 2000), which is crucial for improved traffic
safety (Stutts et al., 2001). From an NLG per-
spective, navigation systems are an obvious ap-
plication area for situated generation, for which
there has recently been increasing interest (see
e.g. (Lessmann et al., 2006; Koller et al., 2010;
Striegnitz and Majda, 2009)).

Current commercial navigation systems use
only trivial NLG technology, and in particular are

limited to distance-based route instructions. Even
in academic research, there has been remarkably
little work on NLG for landmark-based naviga-
tion systems. Some of these systems rely on map
resources that have been hand-crafted for a par-
ticular city (Malaka et al., 2004), or on a com-
bination of multiple complex resources (Raubal
and Winter, 2002), which effectively limits their
coverage. Others, such as Dale et al. (2003), fo-
cus on non-interactive one-shot instruction dis-
courses. However, commercially successful car
navigation systems continuously monitor whether
the driver is following the instructions and pro-
vide modified instructions in real time when nec-
essary. That is, two key problems in designing
NLG systems for car navigation instructions are
the availability of suitable map resources and the
ability of the NLG system to generate instructions
and react to driving errors in real time.

In this paper, we explore solutions to both of
these points. We present the Virtual Co-Pilot,
a system which generates route instructions for
car navigation using landmarks that are extracted
from the open-source OpenStreetMap resource.1

The system computes a route plan and splits it
into episodes that end in driving maneuvers. It
then selects landmarks that describe the locations
of these driving maneuvers, and aggregates in-
structions such that they can be presented (via
a TTS system) in the time available within the
episode. The system monitors the user’s position
and computes new, corrective instructions when
the user leaves the intended path. We evaluate
our system using a driving simulator, and com-
pare it to a baseline that is designed to replicate
a typical commercial navigation system. The Vir-
tual Co-Pilot performs comparably to the baseline

1http://www.openstreetmap.org/
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on the number of driving errors and on user sat-
isfaction, and outperforms it significantly on the
time female users spend looking away from the
road. To our knowledge, this is the first time that
the generation of landmarks has been shown to
significantly improve the instructions of a wide-
coverage navigation system.

Plan of the paper. We start by reviewing ear-
lier literature on landmarks, route instructions,
and the use of NLG for route instructions in Sec-
tion 2. We then present the way in which we
extract information on potential landmarks from
OpenStreetMap in Section 3. Section 4 shows
how we generate route instructions, and Section 5
presents the evaluation. Section 6 concludes.

2 Related Work

What makes an object in the environment a good
landmark has been the topic of research in vari-
ous disciplines, including cognitive science, com-
puter science, and urban planning. Lynch (1960)
defines landmarks as physical entities that serve
as external points of reference that stand out from
their surroundings. Kaplan (1976) specified a
landmark as “a known place for which the in-
dividual has a well-formed representation”. Al-
though there are different definitions of land-
marks, a common theme is that objects are con-
sidered landmarks if they have some kind of cog-
nitive salience (both in terms of visual distinctive-
ness and frequeny of interaction).

The usefulness of landmarks in route instruc-
tions has been shown in a number of different
human-human studies. Experimental results from
Lovelace et al. (1999) show that people not only
use landmarks intuitively when giving directions,
but they also perceive instructions that are given to
them to be of higher quality when those instruc-
tions contain landmark information. Similar find-
ings have also been reported by Michon and Denis
(2001) and Tom and Denis (2003).

Regarding car navigation systems specifically,
Burnett (2000) reports on a road-based user study
which compared a landmark-based navigation
system to a conventional car navigation system.
Here the provision of landmark information in
route directions led to a decrease of navigational
errors. Furthermore, glances at the navigation
display were shorter and fewer, which indicates
less driver distraction in this particular experi-
mental condition. Minimizing driver distraction

is a crucial goal of improved navigation systems,
as driver inattention of various kinds is a lead-
ing cause of traffic accidents (25% of all police-
reported car crashes in the US in 2000, according
to Stutts et al. (2001)). Another road-based study
conducted by May and Ross (2006) yielded simi-
lar results.

One recurring finding in studies on landmarks
in navigation is that some user groups are able
to benefit more from their inclusion than oth-
ers. This is particularly the case for female users.
While men tend to outperform women in wayfind-
ing tasks, completing them faster and with fewer
navigation errors (c.f. Allen (2000)), women are
likely to show improved wayfinding performance
when landmark information is given (e.g. Saucier
et al. (2002)).

Despite all of this evidence from human-human
studies, there has been remarkably little research
on implemented navigation systems that use land-
marks. Commercial systems make virtually no
use of landmark information when giving direc-
tions, relying on metric representations instead
(e.g. “Turn right in one hundred meters”). In aca-
demic research, there have only been a handful of
relevant systems. A notable example is the DEEP
MAP system, which was created in the SmartKom
project as a mobile tourist information system for
the city of Heidelberg (Malaka and Zipf, 2000;
Malaka et al., 2004). DEEP MAP uses landmarks
as waypoints for the planning of touristic routes
for car drivers and pedestrians, while also making
use of landmark information in the generation of
route directions. Raubal and Winter (2002) com-
bine data from digital city maps, facade images,
cultural heritage information, and other sources
to compute landmark descriptions that could be
used in a pedestrian navigation system for the city
of Vienna.

The key to the richness of these systems is a
set of extensive, manually curated geographic and
landmark databases. However, creation and main-
tenance of such databases is expensive, which
makes it impractical to use these systems outside
of the limited environments for which they were
created. There have been a number of suggestions
for automatically acquiring landmark data from
existing electronic databases, for instance cadas-
tral data (Elias, 2003) and airborne laser scans
(Brenner and Elias, 2003). But the raw data for
these approaches is still hard to obtain; informa-
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tion about landmarks is mostly limited to geomet-
ric data and does not specify the semantic type
of a landmark (such as “church”); and updating
the landmark database frequently when the real
world changes (e.g., a shop closes down) remains
an open issue.

The closest system in the literature to the re-
search we present here is the CORAL system
(Dale et al., 2003). CORAL generates a text of
driving instructions with landmarks out of the out-
put of a commercial web-based route planner. Un-
like CORAL, our system relies purely on open-
source map data. Also, our system generates driv-
ing instructions in real time (as opposed to a sin-
gle discourse before the user starts driving) and
reacts in real time to driving errors. Finally, we
evaluate our system thoroughly for driving errors,
user satisfaction, and driver distraction on an ac-
tual driving task, and find a significant improve-
ment over the baseline.

3 OpenStreetMap

A system that generates landmark-based route di-
rections requires two kinds of data. First, it must
plan routes between points in space, and therefore
needs data on the road network, i.e. the road seg-
ments that make up streets along with their con-
nections. Second, the system needs information
about the landmarks that are present in the envi-
ronment. This includes geographic information
such as position, but also semantic information
such as the landmark type.

We have argued above that the availability of
such data has been a major bottleneck in the
development of landmark-based navigation sys-
tems. In the Virtual Co-Pilot system, which
we present below, we solve this problem by us-
ing data from OpenStreetMap, an on-line map
resource that provides both types of informa-
tion mentioned above, in a unified data struc-
ture. The OpenStreetMap project is to maps what
Wikipedia is to encyclopedias: It is a map of
the entire world which can be edited by anyone
wishing to participate. New map data is usually
added by volunteers who measure streets using
GPS devices and annotate them via a Web inter-
face. The decentralized nature of the data entry
process means that when the world changes, the
map will be updated quickly. Existing map data
can be viewed as a zoomable map on the Open-
StreetMap website, or it can be downloaded in an

Figure 1: A graphical representation of some nodes
and ways in OpenStreetMap.

Landmark Type
Street Furniture stop sign

traffic lights
pedestrian crossing

Visual Landmarks church
certain video stores
certain supermarkets
gas station
pubs and bars

Figure 2: Landmarks used by the Virtual Co-Pilot.

XML format for offline use.
Geographical data in OpenStreetMap is repre-

sented in terms of nodes and ways. Nodes rep-
resent points in space, defined by their latitude
and longitude. Ways consist of sequences of
edges between adjacent nodes; we call the in-
dividual edges segments below. They are used
to represent streets (with curved streets consist-
ing of multiple straight segments approximating
their shape), but also a variety of other real-world
entities: buildings, rivers, trees, etc. Nodes and
ways can both be enriched with further infor-
mation by attaching tags. Tags encode a wide
range of additional information using a predefined
type ontology. Among other things, they specify
the types of buildings (church, cafe, supermarket,
etc.); where a shop or restaurant has a name, it too
is specified in a tag. Fig. 1 is a graphical represen-
tation of some OpenStreetMap data, consisting of
nodes and ways for two streets (with two and five
segments) and a building which has been tagged
as a gas station.

For the Virtual Co-Pilot system, we have cho-
sen a set of concrete landmark types that we con-
sider useful (Fig. 2). We operationalize the crite-
ria for good landmarks sketched in Section 2 by
requiring that a landmark should be easily visible,
and that it should be generic in that it is appli-
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cable not just for one particular city, but for any
place for which OpenStreetMap data is available.

We end up with two classes of landmark types:
street furniture and visual landmarks. Street fur-
niture is a generic term for objects that are in-
stalled on streets. In this subset, we include stop
signs, traffic lights, and pedestrian crossings. Our
assumption is that these objects inherently pos-
sess a high salience, since they already require
particular attention from the driver. “Visual land-
marks” encompass roadside buildings that are not
directly connected to the road infrastructure, but
draw the driver’s attention due to visual salience.
Churches are an obvious member of this group; in
addition, we include gas stations, pubs, and bars,
as well as certain supermarket and video store
chains (selected for wide distribution over differ-
ent cities and recognizable, colorful signs).

Given a certain location at which the Virtual
Co-Pilot is to be used, we automatically extract
suitable landmarks along with their types and lo-
cations from OpenStreetMap. We also gather
the road network information that is required
for route planning, and collect informations on
streets, such as their names, from the tags. We
then transform this information into a directed
street graph. The nodes of this graph are the
OpenStreetMap nodes that are part of streets; two
adjacent nodes are connected by a single directed
edge for segments of one-way streets and a di-
rected edge in each direction for ordinary street
segments. Each edge is weighted with the Eu-
clidean distance between the two nodes.

4 Generation of route directions

We will now describe how the Virtual Co-Pilot
generates route directions from OpenStreetMap
data. The system generates three types of mes-
sages (see Fig. 3). First, at every decision point,
i.e. at the intersection where a driving maneu-
ver such as turning left or right is required, the
user is told to turn immediately in the given di-
rection (“now turn right”). Second, if the driver
has followed an instruction correctly, we gener-
ate a confirmation message after the driver has
made the turn, letting them know they are still
on the right track. Finally, we generate preview
messages on the street leading up to the decision
point. These preview messages describe the loca-
tion of the next driving maneuver.

Of the three types, preview messages are the

Figure 3: Schematic representation of an episode
(dashed red line), with sample trigger positions of pre-
view, turn instruction, and confirmation messages.

most interesting. Our system avoids the genera-
tion of metric distance indicators, as in “turn left
in 100 meters”. Instead, it tries to find landmarks
that describe the position of the decision point:
“Prepare to turn left after the church.” When no
landmark is available, the system tries to use street
intersections as secondary landmarks, as in “Turn
right at the next/second/third intersection.” Metric
distances are only used when both of these strate-
gies fail.

In-car NLG takes place in a heavily real-time
setting, in which an utterance becomes uninter-
pretable or even misleading if it is given too late.
This problem is exacerbated for NLG of speech
because simply speaking the utterance takes time
as well. One consequence that our system ad-
dresses is the problem of planning preview mes-
sages in such a way that they can be spoken be-
fore the decision point without overlapping each
other. We handle this problem in the sentence
planner, which may aggregate utterances to fit
into the available time. A second problem is that
the user’s reactions to the generated utterances are
unpredictable; if the driver takes a wrong turn, the
system must generate updated instructions in real
time.

Below, we describe the individual components
of the system. We mostly follow a standard NLG
pipeline (Reiter and Dale, 2000), with a focus on
the sentence planner and an extension to interac-
tive real-time NLG.

760



Segment123
From: Node1
To: Node2
On: “Main Street”

Segment124
From: Node2
To: Node3
On: “Main Street”

Segment125
From: Node3
To: Node4
On: “Park Street”

Segment126
From: Node4
To: Node5
On: “Park Street”

Figure 4: A simple example of a route plan consisting
of four street segments.

4.1 Content determination and text planning

The first step in our system is to obtain a plan for
reaching the destination. To this end, we com-
pute a shortest path on the directed street graph
described in Section 3. The result is an ordered
list of street segments that need to be traversed in
the given order to successfully reach the destina-
tion; see Fig. 4 for an example.

To be suitable as the input for an NLG system,
this flat list of OpenStreetMap nodes needs to be
subdivided into smaller message chunks. In turn-
by-turn navigation, the general delimiter between
such chunks are the driving maneuvers that the
driver must execute at each decision point. We
call each span between two decision points an
episode. Episodes are not explicitly represented
in the original route plan: although every segment
has a street name associated with it, the name of
a street sometimes changes as we go along, and
because chains of segments are used to model
curved streets in OpenStreetMap, even segments
that are joined at an angle may be parts of the
same street. Thus, in Fig. 4 it is not apparent
which segment traversals require any navigational
maneuvers.

We identify episode boundaries with the fol-
lowing heuristic. We first assume that episode
boundaries occur when the street name changes
from one segment to the next. However, stay-
ing on the road may involve a driving maneu-
ver (and therefore a decision point) as well, e.g.

when the road makes a sharp turn where a minor
street forks off. To handle this case, we introduce
decision points at nodes with multiple adjacent
segments if the angle between the incoming and
outgoing segment of the street exceeds a certain
threshold. Conversely, our heuristic will some-
times end an episode where no driving maneuver
is necessary, e.g. when an ongoing street changes
its name. This is unproblematic in practice; the
system will simply generate an instruction to keep
driving straight ahead. Fig. 3 shows a graphical
representation of an episode, with the street seg-
ments belonging to it drawn as red dashed lines.

4.2 Aggregation

Because we generate spoken instructions that are
given to the user while they are driving, the timing
of the instructions becomes a crucial issue, espe-
cially because a driver moves faster than the user
of a pedestrian navigation system. It is undesir-
able for a second instruction to interrupt an ear-
lier one. On the other hand, the second instruc-
tion cannot be delayed because this might make
the user miss a turn or interpret the instruction in-
correctly.

We must therefore control at which points in-
structions are given and make sure that they do
not overlap. We do this by always presenting pre-
view messages at trigger positions at certain fixed
distances from the decision point. The sentence
planner calculates where these trigger positions
are located for each episode. In this way, we cre-
ate time frames during which there is enough time
for instructions to be presented.

However, some episodes are too short to ac-
commodate the three trigger positions for the con-
firmation message and the two preview messages.
In such episodes, we aggregate different mes-
sages. We remove the trigger positions for the two
preview messages from the episode, and instead
add the first preview message to the turn instruc-
tion message of the previous episode. This allows
our system to generate instructions like “Now turn
right, and then turn left after the church.”

4.3 Generation of landmark descriptions

The Virtual Co-Pilot computes referring expres-
sions to decision points by selecting appropriate
landmarks. To this end, it first looks up landmark
candidates within a given range of the decision
point from the database created in Section 3. This
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yields an initial list of landmark candidates.
Some of these landmark candidates may be un-

suitable for the given situation because of lack of
uniqueness. If there are several visual landmarks
of the same type along the course of an episode,
all of these landmark candidates are removed. For
episodes which contain multiple street furniture
landmarks of the same type, the first three in each
episode are retained; a referring expression for the
decision point might then be “at the second traf-
fic light”. If the decision point is no more than
three intersections away, we also add a landmark
description of the form “at the third intersection”.
Furthermore, a landmark must be visible from the
last segment of the current episode; we only retain
a candidate if it is either adjacent to a segment of
the current episode or if it is close to the end point
of the very last segment of the episode. Among
the landmarks that are left over, the system prefers
visual landmarks over street furniture, and street
furniture over intersections. If no landmark candi-
dates are left over, the system falls back to metric
distances.

Second, the Virtual Co-Pilot determines the
spatial relationship between the landmark and the
decision point so that an appropriate preposition
can be used in the referring expression. If the de-
cision point occurs before the landmark along the
course of the episode, we use the preposition “in
front of”, otherwise, we use “after”. Intersections
are always used with “at” and metric distances
with “in”.

Finally, the system decides how to refer to the
landmark objects themselves. Although it has ac-
cess to the names of all objects from the Open-
StreetMap data, the user may not know these
names. We therefore refer to churches, gas sta-
tions, and any street furniture simply as “the
church”, “the gas station”, etc. For supermar-
kets and bars, we assume that these buildings are
more saliently referred to by their names, which
are used in everyday language, and therefore use
the names to refer to them.

The result of the sentence planning stage is
a list of semantic representations, specifying the
individual instructions that are to be uttered in
each episode; an example is shown in Fig. 5.
For each type of instruction, we then use a sen-
tence template to generate linguistic surface forms
by inserting the information contained in those
plans into the slots provided by the templates (e.g.

Preview message p1:
Trigger position: Node3 − 50m
Turn direction: right
Landmark: church
Preposition: after

Preview message p2 = p1, except:
Trigger position: Node3 − 100m

Turn instruction t1:
Trigger position: Node3
Turn direction: right

Confirmation message c1:
Trigger position: Node3 + 50m

Figure 5: Semantic representations of the different
types of instructions in one episode.

“Turn direction preposition landmark”).

4.4 Interactive generation

As a final point, the NLG process of a car naviga-
tion system takes place in an interactive setting:
as the system generates and utters instructions, the
user may either follow them correctly, or they may
miss a turn or turn incorrectly because they mis-
understood the instruction or were forced to disre-
gard it by the traffic situation. The system must be
able to detect such problems, recover from them,
and generate new instructions in real time.

Our system receives a continuous stream of in-
formation about the position and direction of the
user. It performs execution monitoring to check
whether the user is still following the intended
route. If a trigger position is reached, we present
the instruction that we have generated for this po-
sition. If the user has left the route, the system
reacts by planning a new route starting from the
user’s current position and generating a new set of
instructions. We check whether the user is follow-
ing the intended route in the following way. The
system keeps track of the current episode of the
route plan, and monitors the distance of the car
to the final node of the episode. While the user
is following the route correctly, the distance be-
tween the car and the final node should decrease
or at least stay the same between two measure-
ments. To accommodate for occasional deviations
from the middle of the road, we allow five subse-
quent measurements to increase the distance; the
sixth increase of the distance triggers a recompu-
tation of the route plan and a freshly generated
instruction. On the other hand, when the distance
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of the car to the final node falls below a certain
threshold, we assume that the end of the episode
has been reached, and activate the next episode.
By monitoring whether the user is now approach-
ing the final node of this new episode, we can in
particular detect wrong turns at intersections.

Because each instruction carries the risk that it
may not be followed correctly, there is a question
as to whether it is worth planning out all remain-
ing instructions for the complete route plan. After
all, if the user does not follow the first instruc-
tion, the computation of all remaining instructions
was a waste of time. We decided to compute all
future instructions anyway because the aggrega-
tion procedure described above requires them. In
practice, the NLG process is so efficient that all
instructions can be done in real time, but this de-
cision would have to be revisited for a slower sys-
tem.

5 Evaluation

We will now report on an experiment in which we
evaluated the performance of the Virtual Co-Pilot.

5.1 Experimental Method
5.1.1 Subjects

In total, 12 participants were recruited through
printed ads and mailing lists. All of them were
university students aged between 21 and 27 years.
Our experiment was balanced for gender, hence
we recruited 6 male and 6 female participants. All
participants were compensated for their effort.

5.1.2 Design
The driving simulator used in the experiment

replicates a real-world city center using a 3D
model that contains buildings and streets as they
can be perceived in reality. The street layout 3D
model used by the driving simulator is based on
OpenStreetMap data, and buildings were added to
the virtual environment based on cadastral data.
To increase the perceived realism of the model,
some buildings were manually enhanced with
photographic images of their real-world counter-
parts (see Fig. 7).

Figure 6 shows the set-up of the evaluation ex-
periment. The virtual driving simulator environ-
ment (main picture in Fig. 7) was presented to the
participants on a 20” computer screen (A). In ad-
dition, graphical navigation instructions (shown
in the lower right of Fig. 7) were displayed on

Figure 6: Experiment setup. A) Main screen B) Navi-
gation screen C) steering wheel D) eye tracker

a separate 7” monitor (B). The driving simula-
tor was controlled by means of a steering wheel
(C), along with a pair of brake and acceleration
pedals. We recorded user eye movements using
a Tobii IS-Z1 table-mounted eye tracker (D). The
generated instructions were converted to speech
using MARY, an open-source text-to-speech sys-
tem (Schröder and Trouvain, 2003), and played
back on loudspeakers.

The task of the user was to drive the car in
the virtual environment towards a given destina-
tion; spoken instructions were presented to them
as they were driving, in real time. Using the
steering wheel and the pedals, users had full con-
trol over steering angles, acceleration and brak-
ing. The driving speed was limited to 30 km/h, but
there were no restrictions otherwise. The driving
simulator sent the NLG system a message with the
current position of the car (as GPS coordinates)
once per second.

Each user was asked to drive three short routes
in the driving simulator. Each route took about
four minutes to complete, and the travelled dis-
tance was about 1 km. The number of episodes
per route ranged from three to five. Landmark
candidates were sufficiently dense that the Virtual
Co-Pilot used landmarks to refer to all decision
points and never had to fall back to the metric dis-
tance strategy.

There were three experimental conditions,
which differed with respect to the spoken route
instructions and the use of the navigation screen.
In the baseline condition, designed to replicate the
behavior of an off-the-shelf commercial car nav-
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All Users Males Females
B VCP B VCP B VCP

Total Fixation Duration (seconds) 4.9 3.5 2.7 4.1 7.0 2.9*
Total Fixation Count (N) 21.8 15.4 13.5 16.5 30.0 14.3*
”The system provided the right amount
of information at any time”

3.9 2.9 4.2* 3.3 3.5 2.5

”I was insecure at times about still be-
ing on the right track.”

2.3 3.2 1.9* 2.8 2.6 3.5

”It was important to have a visual rep-
resentation of route directions”

4.3 4.0 4.2 4.2 4.3 3.7

”I could trust the navigation system” 3.6 3.7 4.1 3.7 3.0 3.7

Figure 8: Mean values for gaze behavior and subjective evaluation, separated by user group and condition (B =
baseline, VCP = our system). Significant differences are indicated by *; better values are printed in boldface.

Figure 7: Screenshot of a scene in the driving simula-
tor. Lower right corner: matching screenshot of navi-
gation display.

igation system, participants were provided with
spoken metric distance-to-turn navigation instruc-
tions. The navigation screen showed arrows de-
picting the direction of the next turn, along with
the distance to the decision point (cf. Fig. 7). The
second condition replaced the spoken route in-
structions by those generated by the Virtual Co-
Pilot. In a third condition, the output of the nav-
igation screen was further changed to display an
icon for the next landmark along with the arrow
and distance indicator. The three routes were pre-
sented to the users in different orders, and com-
bined with the conditions in a Latin Squares de-
sign. In this paper, we focus on the first and sec-
ond condition, in order to contrast the two styles
of spoken instruction.

Participants were asked to answer two ques-
tionnaires after each trial run. The first was the
DALI questionnaire (Pauzié, 2008), which asks
subjects to report how they perceived different

aspects of their cognitive workload (general, vi-
sual, auditive and temporal workload, as well as
perceived stress level). In the second question-
naire, participants were state to rate their agree-
ment with a number of statements about their sub-
jective impression of the system on a 5-point un-
labelled Likert scale, e.g. whether they had re-
ceived instructions at the right time or whether
they trusted the navigation system to give them
the right instructions during trials.

5.2 Results

There were no significant differences between the
Virtual Co-Pilot and the baseline system on task
completion time, rate of driving errors, or any of
the questions of the DALI questionnaire. Driv-
ing errors in particular were very rare: there were
only four driving errors in total, two of which
were due to problems with left/right coordination.

We then analyzed the gaze data collected by the
table-mounted eye tracker, which we set up such
that it recognized glances at the navigation screen.
In particular, we looked at the total fixation dura-
tion (TFD), i.e. the total amount of time that a user
spent looking at the navigation screen during a
given trial run. We also looked at the total fixation
count (TFC), i.e. the total number of times that a
user looked at the navigation screen in each run.
Mean values for both metrics are given in Fig. 8,
averaged over all subjects and only male and fe-
male subjects, respectively; the “VCP” column is
for the Virtual Co-Pilot, whereas “B” stands for
the baseline. We found that male users tended
to look more at the navigation screen in the VCP
condition than in B, although the difference is not
statistically significant. However, female users
looked at the navigation screen significantly fewer
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times (t(5) = 3.2, p < 0.05, t-test for dependent
samples) and for significantly shorter amounts of
time (t(5) = 3.2, p < 0.05) in the VCP condition
than in B.

On the subjective questionnaire, most questions
yielded no significant differences (and are not re-
ported here). However, we found that female
users tended to rate the Virtual Co-Pilot more pos-
itively than the baseline on questions concerning
trust in the system and the need for the navigation
screen (but not significantly). Male users found
that the baseline significantly outperformed the
Virtual Co-Pilot on presenting instructions at the
right time (t(5) = 2.7, p < 0.05) and on giving
them a sense of security in still being on the right
track (t(5) = −2.7, p < 0.05).

5.3 Discussion

The most striking result of the evaluation is that
there was a significant reduction of looks to the
navigation display, even if only for one group
of users. Female users looked at the navigation
screen less and more rarely with the Virtual Co-
Pilot compared to the baseline system. In a real
car navigation system, this translates into a driver
who spends less time looking away from the road,
i.e. a reduction in driver distraction and an in-
crease in traffic safety. This suggests that female
users learned to trust the landmark-based instruc-
tions, an interpretation that is further supported
by the trends we found in the subjective question-
naire.

We did not find these differences in the male
user group. Part of the reason may be the known
gender differences in landmark use we mentioned
in Section 2. But interestingly, the two signifi-
cantly worse ratings by male users concerned the
correct timing of instructions and the feedback for
driving errors, i.e. issues regarding the system’s
real-time capabilities. Although our system does
not yet perform ideally on these measures, this
confirms our initial hypothesis that the NLG sys-
tem must track the user’s behavior and schedule
its utterances appropriately. This means that ear-
lier systems such as CORAL, which only com-
pute a one-shot discourse of route instructions
without regard to the timing of the presentation,
miss a crucial part of the problem.

Apart from the exceptions we just discussed,
the landmark-based system tended to score com-
parably or a bit worse than the baseline on the

other subjective questions. This may partly be due
to the fact that the subjects were familiar with ex-
isting commercial car navigation systems and not
used to landmark-based instructions. On the other
hand, this finding is also consistent with results
of other evaluations of NLG systems, in which
an improvement in the objective task usefulness
of the system does not necessarily correlate with
improved scores from subjective questionnaires
(Gatt et al., 2009).

6 Conclusion

In this paper, we have described a system for gen-
erating real-time car navigation instructions with
landmarks. Our system is distinguished from ear-
lier work in its reliance on open-source map data
from OpenStreetMap, from which we extract both
the street graph and the potential landmarks. This
demonstrates that open resources are now infor-
mative enough for use in wide-coverage naviga-
tion NLG systems. The system then chooses ap-
propriate landmarks at decision points, and con-
tinuously monitors the driver’s behavior to pro-
vide modified instructions in real time when driv-
ing errors occur.

We evaluated our system using a driving simu-
lator with respect to driving errors, user satisfac-
tion, and driver distraction. To our knowledge,
we have shown for the first time that a landmark-
based car navigation system outperforms a base-
line significantly; namely, in the amount of time
female users spend looking away from the road.

In many ways, the Virtual Co-Pilot is a very
simple system, which we see primarily as a start-
ing point for future research. The evaluation
confirmed the importance of interactive real-time
NLG for navigation, and we therefore see this as
a key direction of future work. On the other hand,
it would be desirable to generate more complex
referring expressions (“the tall church”). This
would require more informative map data, as well
as a formal model of visual salience (Kelleher and
van Genabith, 2004; Raubal and Winter, 2002).
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