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Abstract

Many verbal jokes, like garden path sen-

tences, pose difficulties to models of dis-

course since the initially primed interpre-

tation needs to be discarded and a new one

created based on subsequent statements.

The effect of the joke depends on the

fact that the second (correct) interpretation

was not visible earlier. Existing models

of discourse semantics in principle gen-

erate all interpretations of discourse frag-

ments and carry these until contradicted,

and thus the dissonance criteria in humour

cannot be met. Computationally, main-

taining all possible worlds in a discourse

is very inefficient, thus computing only the

maximum-likelihood interpretation seems

to be a more efficient choice on average.

In this work we outline a probabilistic

lexicon based lexical semantics approach

which seems to be a reasonable construct

for discourse in general and use some ex-

amples from humour to demonstrate its

working.

1 Introduction

Consider the following :

(1) I still miss my ex-wife, but my aim is

improving.

(2) The horse raced past the barn fell.

In a discourse structure common to many jokes,

the first part of (1) has a default set of interpre-

tations, say P1, for which no consistent interpre-

tation can be found when the second part of the

joke is uttered. After a search, the listener reaches

P2

P1

J2J1

time t

TP

I still miss my ex-wife, but my aim is improving 

search

gap

   

Figure 1: Cognitive model of destructive disso-

nance as in joke (1). The initial sentence primes

the possible world P1 where miss is taken in an

emotional sense. After encountering the word aim

this is destroyed and eventually a new world P2

arises where miss is taken in the physical sense.

the alternate set of interpretations P2 (Figure 1).

A similar process holds for garden path sentences

such as (2), where the default interpretation cre-

ated in the first part (upto the word barn) has to be

discarded when the last part is heard. The search

involved in identifying the second interpretation

is an important indicator of human communica-

tion, and linguistic impairment such as autism of-

ten leads to difficulty in identifying jokes.

Yet, this aspect of discourse is not sufficiently

emphasized in most computational work. Cog-

nitively, this is a form of dissonance, a violation

of expectation. However, unlike some forms of

dissonance which may be constructive, leading to

metaphoric or implicature shifts, where part of the

original interpretation may be retained, these dis-

course structures are destructive, and the origi-

nal interpretation has to be completely abandoned,

and a new one searched out (Figure 2). Often

this is because the default interpretation involves

a sense-association that has very high coherence

in the immediate context, but is nullified by later
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Figure 2: Cognitive Dissonance in Discourse (a-c)

can be Constructive, where the interpretation P1

does not disappear completely after the dissonant

utterance, or (d) Destructive, where P2 has to be

arrived at afresh and P1 is destroyed completely.

utterances.

While humour may involve a number of other

mechanisms such as allusion or stereotypes (Shi-

bles, 1989; Gruner, 1997), a wide class of ver-

bal humour exhibits destructive dissonance. For

a joke to work, the resulting interpretation must

result in an incongruity, what (Freud, 1960) calls

an ‘energy release’ that breaks the painful barriers

we have around forbidden thoughts.

Part of the difficulty in dealing with such shifts

is that it requires a rich model of discourse se-

mantics. Computational theories such as the

General Theory of Verbal Humour (Attardo and

Raskin, 1991) have avoided this difficult prob-

lem by adopting extra-linguistic knowledge in the

form of scripts, which encode different opposi-

tions that may arise in jokes. Others (Minsky,

1986) posit a general mechanism without con-

sidering specifics. Other models in computation

have attempted to generate jokes using templates

(Attardo and Raskin, 1994; Binsted and Ritchie,

1997) or recognize jokes using machine learning

models (Mihalcea and Strapparava, 2005).

Computationally, the fact that other less likely

interpretations such as P2 are not visible initially,

may also result in considerably efficiency in more

common situations, where ambiguities are not

generated to begin with. For example, in joke

(1) the interpretation after reading the first clause,

has the word miss referring to the abstract act of

missing a dear person. After hearing the punch

line, somewhere around the word aim, (the trigger

point TP ), we have to revise our interpretation to

one where miss is used in a physical sense, as in

shooting a target. Then, the forbidden idea of hurt-

ing ex-wives generates the humour. By hiding this

meaning, the mechanism of destructive dissonance

enables the surprise which is the crux of the joke.

In the model proposed here, no extra-linguistic

sources of knowledge are appealed to. Lexical

Semantics proposes rich inter-relations encoding

knowledge within the lexicon itself (Pustejovksy,

1995; Jackendoff, 1990), and this work consid-

ers the possibility that such lexicons may eventu-

ally be able to carry discourse interpretations as

well, to the level of handling situations such as the

destructive transition from a possible-world P1 to

possible world P2. Clearly, a desideratum in such

a system would be that P1 would be the preferred

interpretation from the outset, so much so that P2,

which is in principle compatible with the joke, is

not even visible in the first part of the joke. It

would be reasonable to assume that such an inter-

pretation may be constructed as a “Winner Take

All” measure using probabilistic inter-relations in

the lexicon, built up based on usage frequencies.

This would differ from existing theories of dis-

course in several ways, as will be illustrated in the

following sections.

2 Models of Discourse

Formal semantics (Montague, 1973) looked at log-

ical structures, but it became evident that lan-

guage builds up on what is seemingly semantic

incompatibility, particularly in Gricean Implica-

ture (Grice, 1981). It became necessary to look

at the relations that describe interactions between

such structures. (Hobbs, 1985) introduces an early

theory of discourse and the notion of coherence

relations, which are applied recursively on dis-

course segments. Coherence relations, such as

Elaboration, Explanation and Contrast, are rela-

tions between discourse units that bind segments

of text into one global structure. (Grosz and Sid-

ner, 1986) incorporates two more important no-

tions into its model - the idea of intention and fo-

cus. The Rhetorical Structure Theory, introduced

in (Mann and Thompson, 1987), binds text spans

with rhetorical relations, which are discourse con-

nectives similar to coherence relations.

The Discourse Representation Theory (DRT)

(Kamp, 1984) computes inter-sentential anaphora

and attempts to maintain text cohesion through

sets of predicates, termed Discourse Representa-

tion Structures (DRSs), that represent discourse
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No one does 

He can still walk by himself 

Explanation 

Who supports Gorbachev? 

Question-answer 

pair

Figure 3: Rhetorical Relations for joke (3)

units. A Principal DRS accumulates information

contained in the text, and forms the basis for re-

solving anaphora and discourse referents.

By marrying DRT to a rich set of rhetorical

relations, Segmented Discourse Representation

Theory (SDRT) (Lascarides and Asher, 2001)

attempts to to create a dynamic framework that

tries to bridge the semantic-pragmatic interface.

It consists of three components - Underspecified

Logical Formulae (ULF), Rhetorical Relations

and Glue Logic. Semantic representation in

the ULF acts as an interface to other levels.

Information in discourse units is represented by

a modified version of DRS, called Segmented

Discourse Representation Structures (SDRSs).

SDRSs are connected through rhetorical relations,

which posit relationships on SDRSs to bind them.

To illustrate, consider the discourse in (3):

(3) Who supports Gorbachev? No one does,

he can still walk by himself!

The rhetorical relations over the discourse are

shown in Figure 3. Here, Explanation induces

subordination and implies that the content of the

subordinate SDRSs work on further qualifying the

principal SDRS, while Question-Answer Pair in-

duces coordination. Rhetorical relations thus con-

nect semantic units together to formalize the flow

in a discourse. SDRT’s Glue Logic then runs se-

quentially on the ULF and rhetorical relations to

reduce underspecification and disambiguation and

derive inferences through the discourse. The way

inferencing is done is similar to DRT, with the ad-

ditional constraints that rhetorical relations spec-

ify.

A point to note is SDRT’s Maximum Dis-

course Coherence (MDC) Principle. This princi-

ple is used to resolve ambiguity in interpretation

by maximizing discourse coherence to obtain the

Pragmatically Preferred interpretation. There are

three conditions on which MDC works: (a) The

more rhetorical relations there are between two

units, the more coherent the discourse. (b) The

more anaphorae that are resolved, the more coher-

ent the discourse. (c) Some rhetorical relations

can be measured for coherence as well. For ex-

ample, the coherence of Contrast depends on how

dissimilar its connected prepositions are. SDRT

uses rhetorical relations and MDC to resolve lex-

ical and semantic ambiguities. For example, in

the utterance ‘John bought an apartment. But he

rented it’, the sense of rented is that of renting

out, and that is resolved in SDRT because the word

but cues the relation Contrast, which prefers an in-

terpretation that maximizes semantic contrast be-

tween its connectives.

Glue logic works by iteratively extracting sub-

sets of inferences through the flow of the dis-

course. This is discussed in more detail later.

2.1 Lexicons for Discourse modeling

Pustejovsky’s Generative Lexicon (GL) model

(Pustejovksy, 1995) outlines an ambitious attempt

to formulate a lexical semantics framework that

can handle the unboundedness of linguistic ex-

pressions by providing a rich semantic structure,

a principled ontology of concepts (called qualia),

and a set of generative devices in which partici-

pants in a phrase or sentence can influence each

other’s semantic properties.

The ontology of concepts in GL is hierarchi-

cal, and concepts that exhibit similar behaviour

are grouped together into subsystems called Lexi-

cal Conceptual Paradigms (LCP). As an example,

the GL structure for door is an LCP that represents

both the use of door as a physical object such as in

‘he knocked on the door’, as well as an aperture

like in ‘he entered the door’.

In this work, we extend the GL structures to in-

corporate likelihood measures in the ontology and

the event structure relations. The Probabilistic

Qualia Structure, which outlines the ontological

hierarchy of a lexical item, also encodes frequency

information. Every time the target word appears

together with an ontologically connected concept,

the corresponding qualia features are strength-

ened. This results in a probabilistic model of

qualia features, which can in principle determine
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that a book has read as its maximally likely telic

role, but that in the context of the agent being the

author, write becomes more likely.

Generative mechanisms work on this semantic

structure to capture systematic polysemy in terms

of type shifts. Thus Type Coercion enforces se-

mantic constraints on the arguments of a predicate.

For example, ‘He enjoyed the book’ is coerced to

‘He enjoyed reading the book’ since enjoy requires

an activity, which is taken as the telic role of the

argument, i.e. that of book. Co-composition con-

strains the type-shifting of the predicate by its ar-

guments. An example is the difference between

‘bake a cake’ (creating a new object) versus ‘bake

beans’ (state change). Finally, Selective Binding

type-shifts a modifier based on the head. For ex-

ample, in ‘old man’ and ‘old book’, the property

being modified by old is shifted from physical-age

to information-recency.

To accommodate for likelihoods in generative

mechanisms, we need to incorporate conditional

probabilities between the lexical and ontological

entries that the mechanisms work on. These prob-

abilities can be stored within the lexicon itself or

integrated into the generative mechanisms. In ei-

ther case, mechanisms like Type Coercion should

no longer exhibit a default behaviour - the coer-

cion must change based on frequency of occur-

rence and context.

3 The Analysis of Humour

The General Theory of Verbal Humour (GTVH),

introduced earlier, is a well-known computational

model of humour. It uses the notion of scripts

to account for the opposition in jokes. It models

humour as two opposing and overlapping scripts

put together in a discourse, one of which is

apparent and the other hidden from the reader till

a trigger point, when the hidden script suddenly

surfaces, generating humour. However, the notion

of scripts implies that there is a script for every

occasion, which severely limits the theory. On the

other hand, models of discourse are more general

and do not require scripts. However, they lack the

mechanism needed to capture such oppositions.

In addition to joke (3), consider:

(4) Two guys walked into a bar. The third

one ducked.

The humour in joke (4) results from the polyse-

mous use of the word bar. The first sentence leads

us to believe that bar is a place where one drinks,

but the second sentence forces us to revise our in-

terpretation to mean a solid object. GTVH would

use the DRINKING BAR script before the trigger

and the COLLISION script after. Joke (3), quoted

in Raskin’s work as well, contains an obvious op-

position. The first sentence invokes the sense of

support being that of political support. The second

sentence introduces the opposition, and the mean-

ing of support is changed to that of physical sup-

port.

In all examples discussed so far, the key

observations are that (i) a single inference is

primed by the reader, (ii) this primary inference

suppresses other inferences until (iii) a trigger

point is reached.

To formalize the unfolding of a joke, we re-

fer back to Figure 1. Let t be a point along the

timeline. When t < TP , both P1 and P2 are com-

patible, and the possible world is P = P1 ∪ P2.

P1 is the preferred interpretation and P2 is hidden.

When t = TP , J2 is introduced, and P1 becomes

incompatible with P2, and P1 may also lose

compatibility with J2. P2 now surfaces as the

preferred inference. The reader has to invoke a

search to find P2, which is represented by the

search gap.

A possible world Pi = {qi1, qi2, . . . , qik}
where qmn is an inference. Two worlds Pi and Pj

are incompatible if there exists any pair of sets of

inferences whose intersection is a contradiction.

i.e.

Pi is said to be incompatible with

Pj iff ∃ {qi1, qi2, . . . , qik} ⊆ Pi ∧
∃{qj1, qj2, . . . , qjl} ⊆ Pj such that

{qi1 ∧ qi2 ∧ . . . qik ∧ qj1 ∧ qj2 ∧ . . . qjl} ⇒ F .

They are said to be compatible if no such subsets

exist.

We now explore in detail why compositional

discourse models fail to handle the mechanisms of

humour.

3.1 Beyond Scripts - Why Verbal Humour

Should Be Winner Take All

An argument against the approach of existing dis-

course models like SDRT concerns their iterative

inferencing. At each point in the process of infer-
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encing, SDRT’s Glue Logic carries over all inter-

pretations possible within its constraints as a set.

MDC ranks contending inferences, allowing less

preferred inferences to be discarded, and the result

of this process is a subset of the input to it. Con-

trasting inferences can coexist through underspec-

ification, and the contrast is resolved when one of

them loses compatibility. This is cognitively un-

likely; (Miller, 1956) has shown that the human

brain actively retains only around seven units of

information. With such a limited working mem-

ory, it is not cognitively feasible to model dis-

course analysis in this manner. Cognitive models

working with limited-capacity short-term memory

like in (Lewis, 1996) support the same intuition.

Thus, a better approach would be a Winner Take

All (WTA) approach, where the most likely inter-

pretation, called the winner, suppresses all other

interpretations as we move through the discourse.

The model must be revised to reflect new contexts

if they are incompatible with the existing model.

Let us now explore this with respect to joke

(3). There is a Question-Answer relation between

the first sentence and the next two. The semantic

representation for the first sentence alone is:

∃x(support(x,Gorbachev)), x =?

The x =? indicates a missing referent for

who. Using GL, it is not difficult to resolve the

sense of support to mean that of political support.

To elaborate, the lexical entry of Gorbachev

is an LCP of two senses - that of the head of

government and that of an animate, as shown:















Gorbachev

ARGSTR =

[

ARG1 =x: man
ARG2 =y: head of govt
D-ARG3 =z: community

]

QUALIA =

[

human.president lcp
FORMAL = p(x, y)
TELIC = govern(y, z)

]















The two senses of support applicable in this

context are that of physical support and of political

support. We use abstract support as a generaliza-

tion of the political sense. The analysis of the first

sentence alone would allow for both these possi-

bilities:















supportabs

ARGSTR =

[

ARG1 =x: animate
ARG2 =y: abstract entity

]

EVENTSTR =
[

E1 = e1 : process
]

QUALIA =

[

FORMAL = supportabs act(e1, x, y)
AGENTIVE =...

]





























supportphy

ARGSTR =

[

ARG1 =x: physical entity
ARG2 =y: physical entity

]

EVENTSTR =
[

E1 = e1 : process
]

QUALIA =

[

FORMAL = supportphy act(e1, x, y)
AGENTIVE =...

]















Thus, after the first sentence, the sense of

support includes both senses, i.e. support ∈
{supportabs, supportphy}.

We then come across the second sentence and

establish the semantic representation for it, as

well as establish rhetorical relations. We find

that the sentence contains walk(z). SDRT’s

Right Frontier Rule resolves the referent he to

Gorbachev. Also, the clause ‘no one does’

resolves the referent x to null. Thus, we get:

walk(Gorbachev) ∧ support(null,Gorbachev)

Now consider the lexical entry for walk:











walk

ARGSTR =
[

ARG1 =x: animate
]

EVENTSTR =
[

E1 = e1 : process
]

QUALIA =

[

FORMAL = walk act(e1, x)
AGENTIVE = walk begin(e1, x)

]











The action walk requires an animate argument.

Since walk(Gorbachev) is true, the sense of sup-

port in the previous sentence is restricted to mean

physical support, i.e. support = supportphy,

since only supportphy can take an animate argu-

ment as its object - the abstract entity require-

ment of supportabs causes it to be ruled out, end-

ing at a final inference.

The change of sense for support is key to the

generation of humour, but SDRT fails to recog-

nize the shift since it neither has any priming

mechanism nor revision of models built into it.

It merely works by restricting the possible infer-

ences as more information becomes available. Re-

ferring to Figure 1 again, SDRT will only account

for the refinement of possible worlds from P1∪P2

to P2. It will not be able to account for the priming

of either Pi, which is required.

4 A Probabilistic Semantic Lexicon

We now introduce a WTA model under which

priming could be well accounted for. We would

like a model under which a single interpretation is

made at each point in the analysis. We want a set
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of possible worlds P such that:

J1 −→WTA P =
{p : p is a world consistent with J1}

WTA ensures that only the prime world P is

chosen by J1. When J2 is analyzed, no world

p ∈ P can satisfy J2, i.e:

∀p ∈ P,¬J2 −→ p

In this case, we need to backtrack and find

another set P ′ that satisfies both J1 and J2, i.e:

(J1, J2) −→WTA P ′

In Figure 1, P = P1 and P ′ = P2.

The most appropriate way to achieve this is

to include the priming in the lexicon itself. We

present a lexical structure where senses of com-

positional units are attributed with a probability of

occurrence approximated by its frequency count.

The probability of a composition can then be cal-

culated from the individual probabilities. The

highest probability is primed. Thus, at every point

in the discourse, only one inference emerges as

primary and suppresses all other inferences. As

an example, the proposed structure for Gorbachev

is presented below:



















Gorbachev

ARGSTR =

[

ARG1 =x: man
ARG2 =y: head of govt
D-ARG3 =z: community

]

QUALIA =







FORMAL = p(x, y)
p(man) = p1

p(head_of_govt) = p2

...

























Instead of using the concept of an LCP as in

classical GL, we assign probabilities to each sense

encountered. These probabilities can then facili-

tate priming.

To add weight to the argument with empirical

data, we use WordNet (Fellbaum, 1998), built on

the British National Corpus, as an approximation

for frequency counts. We find that

P (supportabs) = 0.59 and

P (supportphy) = 0.36.

Similarly, for the notion of Gorbachev, it is

plausible to assume that Gorbachev as head of

government is more meaningful for most of us,

rather than just another old man. In order to make

an inference after the first sentence, we need to

search for the correct interpretation, i.e. we need

to find argmaxi,j(P (supporti/Gorbachevj)),
which intuitively should be

P (supportabs/head of govt). Making a

similar analysis as in the previous section,

the second sentence should violate the first

assumption, since walk(Gorbachev) can-

not be true (since P (abstract entity) = 0).

Thus, we need to revise our inference, mov-

ing back to the first sentence and choosing

max(P (supporti/Gorbachevj)) that is compati-

ble with the second sentence. This turns out to be

P (supportphy/animate). Thus, the distinct shift

between inferences is captured in the course of

analysis. Cognitive studies such as the studies on

Garden Path Sentences strengthen this approach

to analysis. (Lewis, 1996), for example, presents

a model that predicts cognitive observations with

very limited working memory.

Storing the inter-lexical conditional proba-

bilities is also an issue, as mentioned ear-

lier. Where, for example, do we store

P (supporti/Gorbachevj)? One possible ap-

proach would be to store them with either lexical

item. A better approach would be to bestow the re-

sponsibility of calculating these probabilities upon

the generative mechanisms of the semantic lexicon

whenever possible.

Let us now analyze joke (1) under the prob-

abilistic framework. Again, approximations for

probability of occurrence will be taken from

WordNet. The entry for wife in WordNet lists just

one sense, and so we assign a probability of 1 to it

in its lexical entry:













wife

ARGSTR =

[

ARG1 =x: woman
D-ARG2 =y: man

]

QUALIA =

[

FORMAL = husband(x) = y
AGENTIVE = marriage(x, y)
p(woman) = 1

]













The humour is generated due to the lexical am-

biguity of miss. We list the lexical entries of the

two senses of miss that apply in this context - the

first being an abstract emotional state and the other

being a physical process.
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But my aim is improving 

I still miss my ex-wife 

Contrast, Parallel

Figure 4: Rhetorical relations for joke (1)















missabs

ARGSTR =

[

ARG1 =x: animate
ARG2 =y: entity

]

EVENTSTR =
[

E1 = e1 : state
]

QUALIA =

[

FORMAL = missabs act(e1, x, y)
AGENTIVE =...

]









































missphy

ARGSTR =

[

ARG1 =x: physical entity
ARG2 =y: physical entity
D-ARG1 =z: trajector

]

EVENTSTR =







E1 = e1 : process
E2 = e2 : state
RESTR2 =<α

HEAD2 = e2







QUALIA =

[

FORMAL = missedphy act(e2, x, y, z)
AGENTIVE = shoot(e1, x, y, z)

]



























The Rhetorical Relations for joke (1) are

presented in Figure 4. After parsing the first

sentence, the logical representation obtained is:

∃e1∃e2∃e3∃x∃y(wife(e1, x, y) ∧
divorce(e2, x, y)∧miss(e3, x, y)∧e1 < e2 < e3)

To arrive at a prime inference, note that the

semantic types of the arguments of both

senses of miss are exclusive, and hence

P (physical entity/missphy) = 1 and

P (entity/missabs) = 1. Thus, using Bayes

Theorem, to compare P (missabs/entity) and

P (missphy/physical entity), it is sufficient to

compare P (missabs) and P (missphy). From

WordNet,

P (missabs) = 0.22 and

P (missphy) = 0.06.

Thus, the primed inference has miss =
missabs. The second sentence has the following

logical representation:

∃x(δgoodness(aim(x)) > 0)

This simply means that a measure of the

aim, called goodness, is undergoing a positive

change. The word but is a cue for a Contrast

relation between the two sentences, while the

discourse suggests Parallelism. The two senses of

aim compatible with the first sentence are aimabs,

which is synonymous to goal, and aimphy,

referring to the physical sense of missing. We

now need to consider P (aimabs/missabs) and

P (aimphy/missphy). The semantic constraints

of the rhetorical relation Contrast ensures that

the second is more coherent, i.e. it is more

probable that the contrast of physical aim get-

ting better is more coherent with the physical

sense of miss, and we expect this to be re-

flected in usage frequency as well. Therefore

P (aimabs/missabs) < P (aimphy/missphy),
and we need to shift our inference and make

miss = missphy.

As a final assertion of the probabilistic ap-

proach, consider:

(5) You can lead a child to college, but you

cannot make him think.

The incongruity in joke (5) does not result from

a syntactical or semantic ambiguity at all, and yet

it induces dissonance. The dissonance is not a

result of compositionality, but due to the access

of a whole linguistic structure, i.e. we recall the

familiar proverb ‘You can lead a horse to water

but you cannot make it drink’, and the deviation

from the recognizable structure causes the viola-

tion of our expectations. Thus, access is not re-

stricted to the lexical level; we seem to store and

access bigger units of discourse if encountered fre-

quently enough. The only way to do justice to this

joke would be to encode the entire sentential struc-

ture directly into the lexicon. Our model will now

also consider these larger chunks, whose meaning

is specified atomically. The dissonance will now

come from the semantic difference between the

accessed expression and the one under analysis.

5 Conclusion

We have examined the mechanisms behind verbal

humour and shown how existing discourse mod-

els are inadequate at capturing the mechanisms

of humour. We have proposed a probabilistic
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WTA model based on lexical frequency distribu-

tions that is more capable at handling humour, and

is based on the notion of expectation and disso-

nance.

It would be interesting now to find necessary

and sufficient conditions under this framework for

humour to be generated. Although the above

framework can identify incongruity in humour dis-

course, the same mechanisms are used and indeed

are often integral to other forms of literature. Po-

ems, for example, often rely on such mechanisms.

Are Freudian thoughts the key to separating hu-

mour from the rest, or is it a result of the inten-

tional misleading done by the speaker of a joke?

Also, it would be very interesting to find an empir-

ical link between the extent of incongruity in jokes

in our framework and the way people respond to

them.

Finally, a very interesting question is the acqui-

sition of the lexicon under such a model. How are

lexical semantic models learned by the language

acquirer probabilistically? An exploration of the

question might result in a cognitively sound com-

putational model for acquisition.
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