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Abstract

We analyze estimation methods for Data-

Oriented Parsing, as well as the theoret-

ical criteria used to evaluate them. We

show that all current estimation methods

are inconsistent in the “weight-distribution

test”, and argue that these results force us

to rethink both the methods proposed and

the criteria used.

1 Introduction

Stochastic Tree Substitution Grammars (hence-

forth, STSGs) are a simple generalization of Prob-

abilistic Context Free Grammars, where the pro-

ductive elements are not rewrite rules but elemen-

tary trees of arbitrary size. The increased flexibil-

ity allows STSGs to model a variety of syntactic

and statistical dependencies, using relatively com-

plex primitives but just a single and extremely sim-

ple global rule: substitution. STSGs can be seen as

Stochastic Tree Adjoining Grammars without the

adjunction operation.

STSGs are the underlying formalism of most in-

stantiations of an approach to statistical parsing

known as “Data-Oriented Parsing” (Scha, 1990;

Bod, 1998). In this approach the subtrees of the

trees in a tree bank are used as elementary trees of

the grammar. In most DOP models the grammar

used is an STSG with, in principle, all subtrees1 of

the trees in the tree bank as elementary trees. For

disambiguation, the best parse tree is taken to be

the most probable parse according to the weights

of the grammar.

Several methods have been proposed to decide

on the weights based on observed tree frequencies

1A subtree t′ of a parse tree t is a tree such that every node
i′ in t′ equals a node i in t, and i′ either has no daughters or
the same daughter nodes as i.

in a tree bank. The first such method is now known

as “DOP1” (Bod, 1993). In combination with

some heuristic constraints on the allowed subtrees,

it has been remarkably successful on small tree

banks. Despite this empirical success, (Johnson,

2002) argued that it is inadequate because it is bi-

ased and inconsistent. His criticism spearheaded

a number of other methods, including (Bonnema

et al., 1999; Bod, 2003; Sima’an and Buratto,

2003; Zollmann and Sima’an, 2005), and will be

the starting point of our analysis. As it turns out,

the DOP1 method really is biased and inconsis-

tent, but not for the reasons Johnson gives, and it

really is inadequate, but not because it is biased

and inconsistent. In this note, we further show that

alternative methods that have been proposed, only

partly remedy the problems with DOP1, leaving

weight estimation as an important open problem.

2 Estimation Methods

The DOP model and STSG formalism are de-

scribed in detail elsewhere, for instance in (Bod,

1998). The main difference with PCFGs is that

multiple derivations, using elementary trees with

a variety of sizes, can yield the same parse tree.

The probability of a parse p is therefore given by:

P (p) =
∑

d:d̂=p
P (d), where d̂ is the tree derived

by derivation d, P (d) =
∏

t∈d w(t) and w(t) gives

the weights of elementary trees t, which are com-

bined in the derivation d (here treated as a multi-

set).

2.1 DOP1

In Bod’s original DOP implementation (Bod,

1993; Bod, 1998), henceforth DOP1, the weights

of an elementary tree t is defined as its relative

frequency (relative to other subtrees with the same

root label) in the tree bank. That is, the weight
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wi = w(ti) of an elementary tree ti is given by:

wi =
fi

∑

j:r(tj)=r(ti)
(fj)

, (1)

where fi = f(ti) gives the frequency of subtree ti
in a corpus, and r(ti) is the root label of ti.

In his critique of this method, (Johnson, 2002)

considers a situation where there is an STSG G
(the target grammar) with a specific set of sub-

trees (t1 . . . tN ) and specific values of the weights

(w1 . . . wN ) . He evaluates an estimation proce-

dure which produces a grammar G′ (the estimated

grammar), by looking at the difference between

the weights of G and the expected weights of G′.

Johnson’s test for consistency is thus based on

comparing the weight-distributions between target

grammar and estimated grammar2. I will therefore

refer to this test as the “weight-distribution test”.
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Figure 1: The example of (Johnson, 2002)

(Johnson, 2002) looks at an example grammar

G ∈ STSG with the subtrees as in figure 1. John-

son considers the case where the weights of all

trees of the target grammar G are 0, except for

w7, which is necessarily 1, and w4 and w6 which

are w4 = p and w6 = 1 − p. He finds that the

expected values of the weights w4 and w6 of the

estimated grammar G′ are:

E[w′

4] =
p

2 + 2p
, (2)

E[w′

6] =
1 − p

2 + 2p
, (3)

which are not equal to their target values for all

values of p where 0 < p < 1. This analysis

thus shows that DOP1 is unable to recover the true

weights of the given STSG, and hence the incon-

sistency of the estimator with respect to the class

of STSGs.

Although usually cited as showing the inad-

equacy of DOP1, Johnson’s example is in fact

2More precisely, it is based on evaluating the estimator’s
behavior for any weight-distribution possible in the STSG
model. (Prescher et al., 2003) give a more formal treatment
of bias and consistency in the context of DOP.

not suitable to distinguish DOP1 from alternative

methods, because no possible estimation proce-

dure can recover the true weights in the case con-

sidered. In the example there are only two com-

plete trees that can be observed in the training

data, corresponding to the trees t1 and t5. It is

easy to see that when generating examples with

the grammar in figure 1, the relative frequencies3

f1 . . . f4 of the subtrees t1 . . . t4 must all be the

same, and equal to the frequency of the complete

tree t1 which can be composed in the following

ways from the subtrees in the original grammar:

t1 = t2 ◦ t7 = t3 ◦ t7 = t4 ◦ t7 ◦ t7. (4)

It follows that the expected frequencies of each of

these subtrees are:

E[f1] = E[f2] = E[f3] = E[f4] (5)

= w1 + w2w7 + w3w7 + w4w7w7

Similarly, the other frequencies are given by:

E[f5] = E[f6] = w5 + w6w7 (6)

E[f7] = 2 (w1 + w2w7 + w3w7

+w4w7w7) + w5 + w6w7

= 2E[f1] + E[f5]. (7)

From these equations it is immediately clear

that, regardless of the amount of training data,

the problem is simply underdetermined. The val-

ues of 6 weights w1 . . . w6 (w7 = 1) given only

2 frequencies f1 and f5 (and the constraint that
∑6

i=1(fi) = 1) are not uniquely defined, and no

possible estimation method will be able to reliably

recover the true weights.

The relevant test is whether for all possible

STSGs and in the limit of infinite data, the ex-

pected relative frequencies of trees given the es-

timated grammar, equal the observed relative fre-

quencies. I will refer to this test as the “frequency-

distribution test”. As it turns out, the DOP1

method also fails this more lenient test. The easi-

est way to show this, using again figure 1, is as fol-

lows. The weights w′

1 . . . w′

7 of grammar G′ will –

by definition – be set to the relative frequencies of

the corresponding subtrees:

w′

i =

{

fi
P

6

j=1
fj

for i = 1 . . . 6

1 for i = 7.
(8)

3Throughout this paper I take frequencies fi to be relative
to the size of the corpus.
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The grammar G′ will thus produce the complete

trees t1 and t5 with expected frequencies:

E[f ′

1] = w′

1 + w′

2w
′

7 + w′

3w
′

7 + w′

4w
′

7w
′

7

= 4
f1

∑6
j=1 fj

(9)

E[f ′

5] = w′

5 + w′

6w
′

7 = 2
f5

∑6
j=1 fj

. (10)

Now consider the two possible complete trees

t1 and t5, and the fraction of their frequencies

f1/f5. In the estimated grammar G′ this fraction

becomes:

E[f ′

1]

E[f ′

5]
=

4n f1
P

6

j=1
fj

2n f5
P

6

j=1
fj

=
2f1

f5
. (11)

That is, in the limit of infinite data, the estima-

tion procedure not only –understandably– fails to

find the target grammar amongst the many gram-

mars that could have produced the observed fre-

quencies, it in fact chooses a grammar that could

never have produced these observed frequencies

at all. This example shows the DOP1 method is

biased and inconsistent for the STSG class in the

frequency-distribution test4.

2.2 Correction-factor approaches

Based on similar observation, (Bonnema et al.,

1999; Bod, 2003) propose alternative estimation

methods, which involve a correction factor to

move probability mass from larger subtrees to

smaller ones. For instance, Bonnema et al. replace

equation (1) with:

wi = 2−N(ti)
fi

∑

j:r(tj)=r(ti)
(fj)

, (12)

where N(ti) gives the number of internal nodes

in ti (such that 2−N(ti) is inversely proportional

to the number of possible derivations of ti). Sim-

ilarly, (Bod, 2003) changes the way frequencies

fi are counted, with a similar effect. This ap-

proach solves the specific problem shown in equa-

tion (11). However, the following example shows

that the correction-factor approaches cannot solve

the more general problem.

4Note that there are settings of the weights w1 . . . w7 that
generate a frequency-distribution that could also have been
generated with a PCFG. The example given applies to such
distribution as well, and therefore also shows the inconsis-
tency of the DOP1 method for PCFG distributions.
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Figure 2: Counter-example to the correction-

factor approaches

Consider the STSG in figure 2. The expected

frequencies f1 . . . f4 are here given by:

E[f1] = w1 + w5w11 + w6w10 + w9w10w11

E[f2] = w2 + w7w10 + w8w11 + w9w11w10

E[f3] = w3 + w5w10 + w8w10 + w9w10w10

E[f4] = w4 + w6w11 + w7w11 + w9w11w11

(13)

Frequencies f5 . . . f11 are again simple com-

binations of the frequencies f1 . . . f4. Observa-

tions of these frequencies therefore do not add

any extra information, and the problem of find-

ing the weights of the target grammar is in general

again underdetermined. But consider the situation

where f3 = f4 = 0 and f1 > 0 and f2 > 0.

This constrains the possible solutions enormously.

If we solve the following equations for w3 . . . w11

with the constraint that probabilities with the same

root label add up to 1: (i.e.
∑9

i=1(wi) = 1,

w10 + w11 = 1):

w3 + w5w10 + w8w10 + w9w10w10 = 0
w4 + w6w11 + w7w11 + w9w11w11 = 0,

we find, in addition to the obvious w3 = w4 = 0,

the following solutions: w10 = w6 = w7 = w9 =
0 ∨ w11 = w5 = w8 = w9 = 0 ∨ w5 =
w6 = w7 = w8 = w9 = 0. That is, if we ob-

serve no occurrences of trees t3 and t4 in the train-

ing sample, we know that at least one subtree in

each derivation of these strings must have weight

zero. However, any estimation method that uses

the (relative) frequencies of subtrees and a (non-

zero) correction factor that is based on the size of

the subtrees, will give non-zero probabilities to all

weights w5 . . . w11 if f1 > 0 and f2 > 0, as we

assumed. In other words, these weight estimation

methods for STSGs are also biased and inconsis-

tent in the frequency-distribution test.

185



2.3 Shortest derivation estimators

Because the STSG formalism allows elementary

trees of arbitrary size, every parse tree in a tree

bank could in principle be incorporated in an

STSG grammar. That is, we can define a trivial

estimator with the following weights:

wi =

{

fi if ti is an observed parse tree

0 otherwise

(14)

Such an estimator is not particularly interesting,

because it does not generalize beyond the training

data. It is a point to note, however, that this esti-

mator is unbiased and consistent in the frequency-

distribution test. (Prescher et al., 2003) prove that

any unbiased estimator that uses the “all subtrees”

representation has the same property, and con-

clude that lack of bias is not a desired property.

(Zollmann and Sima’an, 2005) propose an esti-

mator based on held-out estimation. The training

corpus is split into an estimation corpus EC and a

held out corpus HC . The HC corpus is parsed

by searching for the shortest derivation of each

sentence, using only fragments from EC . The

elementary trees of the estimated STSG are as-

signed weights according to their usage frequen-

cies u1, . . . , uN in these shortest derivations:

wi =
ui

∑

j:r(tj)=r(ti)
uj

. (15)

This approach solves the problem with bias de-

scribed above, while still allowing for consistency,

as Zollmann & Sima’an prove. However, their

proof only concerns consistency in the frequency-

distribution test. As the corpus EC grows to be

infinitely large, every parse tree in HC will also

be found in EC , and the shortest derivation will

therefore in the limit only involve a single ele-

mentary tree: the parse tree itself. Target STSGs

with non-zero weights on smaller elementary trees

will thus not be identified correctly, even with an

infinitely large training set. In other words, the

Zollmann & Sima’an method, and other methods

that converge to the “complete parse tree” solution

such as LS-DOP (Bod, 2003) and BackOff-DOP

(Sima’an and Buratto, 2003), are inconsistent in

the weight-distribution test.

3 Discussion & Conclusions

A desideratum for parameter estimation methods

is that they converge to the correct parameters with

infinitely many data – that is, we like an estima-

tor to be consistent. The STSG formalism, how-

ever, allows for many different derivations of the

same parse tree, and for many different grammars

to generate the same frequency-distribution. Con-

sistency in the weight-distribution test is there-

fore too stringent a criterion. We have shown that

DOP1 and methods based on correction factors

also fail the weaker frequency-distribution test.

However, the only current estimation methods

that are consistent in the frequency-distribution

test, have the linguistically undesirable property

of converging to a distribution with all probabil-

ity mass in complete parse trees. Although these

method fail the weight-distribution test for the

whole class of STSGs, we argued earlier that this

test is not the appropriate test either. Both estima-

tion methods for STSGs and the criteria for eval-

uating them, thus require thorough rethinking. In

forthcoming work we therefore study yet another

estimator, and the linguistically motivated evalua-

tion criterion of convergence to a maximally gen-

eral STSG consistent with the training data5.
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