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Abstract

We propose an approach for extracting re-

lations between entities from biomedical

literature based solely on shallow linguis-

tic information. We use a combination of

kernel functions to integrate two different

information sources: (i) the whole sen-

tence where the relation appears, and (ii)

the local contexts around the interacting

entities. We performed experiments on ex-

tracting gene and protein interactions from

two different data sets. The results show

that our approach outperforms most of the

previous methods based on syntactic and

semantic information.

1 Introduction

Information Extraction (IE) is the process of find-

ing relevant entities and their relationships within

textual documents. Applications of IE range from

Semantic Web to Bioinformatics. For example,

there is an increasing interest in automatically

extracting relevant information from biomedi-

cal literature. Recent evaluation campaigns on

bio-entity recognition, such as BioCreAtIvE and

JNLPBA 2004 shared task, have shown that sev-

eral systems are able to achieve good performance

(even if it is a bit worse than that reported on news

articles). However, relation identification is more

useful from an applicative perspective but it is still

a considerable challenge for automatic tools.

In this work, we propose a supervised machine

learning approach to relation extraction which is

applicable even when (deep) linguistic process-

ing is not available or reliable. In particular, we

explore a kernel-based approach based solely on

shallow linguistic processing, such as tokeniza-

tion, sentence splitting, Part-of-Speech (PoS) tag-

ging and lemmatization.

Kernel methods (Shawe-Taylor and Cristianini,

2004) show their full potential when an explicit

computation of the feature map becomes compu-

tationally infeasible, due to the high or even infi-

nite dimension of the feature space. For this rea-

son, kernels have been recently used to develop

innovative approaches to relation extraction based

on syntactic information, in which the examples

preserve their original representations (i.e. parse

trees) and are compared by the kernel function

(Zelenko et al., 2003; Culotta and Sorensen, 2004;

Zhao and Grishman, 2005).

Despite the positive results obtained exploiting

syntactic information, we claim that there is still

room for improvement relying exclusively on shal-

low linguistic information for two main reasons.

First of all, previous comparative evaluations put

more stress on the deep linguistic approaches and

did not put as much effort on developing effec-

tive methods based on shallow linguistic informa-

tion. A second reason concerns the fact that syn-

tactic parsing is not always robust enough to deal

with real-world sentences. This may prevent ap-

proaches based on syntactic features from produc-

ing any result. Another related issue concerns the

fact that parsers are available only for few lan-

guages and may not produce reliable results when

used on domain specific texts (as is the case of

the biomedical literature). For example, most of

the participants at the Learning Language in Logic

(LLL) challenge on Genic Interaction Extraction

(see Section 4.2) were unable to successfully ex-

ploit linguistic information provided by parsers. It

is still an open issue whether the use of domain-

specific treebanks (such as the Genia treebank1)

1http://www-tsujii.is.s.u-tokyo.ac.jp/

401



can be successfully exploited to overcome this

problem. Therefore it is essential to better investi-

gate the potential of approaches based exclusively

on simple linguistic features.

In our approach we use a combination of ker-

nel functions to represent two distinct informa-

tion sources: the global context where entities ap-

pear and their local contexts. The whole sentence

where the entities appear (global context) is used

to discover the presence of a relation between two

entities, similarly to what was done by Bunescu

and Mooney (2005b). Windows of limited size

around the entities (local contexts) provide use-

ful clues to identify the roles of the entities within

a relation. The approach has some resemblance

with what was proposed by Roth and Yih (2002).

The main difference is that we perform the extrac-

tion task in a single step via a combined kernel,

while they used two separate classifiers to identify

entities and relations and their output is later com-

bined with a probabilistic global inference.

We evaluated our relation extraction algorithm

on two biomedical data sets (i.e. the AImed cor-

pus and the LLL challenge data set; see Section

4). The motivations for using these benchmarks

derive from the increasing applicative interest in

tools able to extract relations between relevant en-

tities in biomedical texts and, consequently, from

the growing availability of annotated data sets.

The experiments show clearly that our approach

consistently improves previous results. Surpris-

ingly, it outperforms most of the systems based on

syntactic or semantic information, even when this

information is manually annotated (i.e. the LLL

challenge).

2 Problem Formalization

The problem considered here is that of iden-

tifying interactions between genes and proteins

from biomedical literature. More specifically, we

performed experiments on two slightly different

benchmark data sets (see Section 4 for a detailed

description). In the former (AImed) gene/protein

interactions are annotated without distinguishing

the type and roles of the two interacting entities.

The latter (LLL challenge) is more realistic (and

complex) because it also aims at identifying the

roles played by the interacting entities (agent and

target). For example, in Figure 1 three entities

are mentioned and two of the six ordered pairs of

GENIA/topics/Corpus/GTB.html

entities actually interact: (sigma(K), cwlH) and

(gerE, cwlH).

Figure 1: A sentence with two relations, R12 and

R32, between three entities, E1, E2 and E3.

In our approach we cast relation extraction as a

classification problem, in which examples are gen-

erated from sentences as follows.

First of all, we describe the complex case,

namely the protein/gene interactions (LLL chal-

lenge). For this data set entity recognition is per-

formed using a dictionary of protein and gene

names in which the type of the entities is unknown.

We generate examples for all the sentences con-

taining at least two entities. Thus the number of

examples generated for each sentence is given by

the combinations of distinct entities (N ) selected

two at a time, i.e. NC2. For example, as the sen-

tence shown in Figure 1 contains three entities, the

total number of examples generated is 3C2 = 3. In

each example we assign the attribute CANDIDATE

to each of the candidate interacting entities, while

the other entities in the example are assigned the

attribute OTHER, meaning that they do not partici-

pate in the relation. If a relation holds between the

two candidate interacting entities the example is

labeled 1 or 2 (according to the roles of the inter-

acting entities, agent and target, i.e. to the direc-

tion of the relation); 0 otherwise. Figure 2 shows

the examples generated from the sentence in Fig-

ure 1.

Figure 2: The three protein-gene examples gener-

ated from the sentence in Figure 1.

Note that in generating the examples from the

sentence in Figure 1 we did not create three neg-
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ative examples (there are six potential ordered re-

lations between three entities), thereby implicitly

under-sampling the data set. This allows us to

make the classification task simpler without loos-

ing information. As a matter of fact, generating

examples for each ordered pair of entities would

produce two subsets of the same size containing

similar examples (differing only for the attributes

CANDIDATE and OTHER), but with different clas-

sification labels. Furthermore, under-sampling al-

lows us to halve the data set size and reduce the

data skewness.

For the protein-protein interaction task (AImed)

we use the correct entities provided by the manual

annotation. As said at the beginning of this sec-

tion, this task is simpler than the LLL challenge

because there is no distinction between types (all

entities are proteins) and roles (the relation is sym-

metric). As a consequence, the examples are gen-

erated as described above with the following dif-

ference: an example is labeled 1 if a relation holds

between the two candidate interacting entities; 0
otherwise.

3 Kernel Methods for Relation

Extraction

The basic idea behind kernel methods is to embed

the input data into a suitable feature space F via

a mapping function φ : X → F , and then use

a linear algorithm for discovering nonlinear pat-

terns. Instead of using the explicit mapping φ, we

can use a kernel function K : X × X → R, that

corresponds to the inner product in a feature space

which is, in general, different from the input space.

Kernel methods allow us to design a modular

system, in which the kernel function acts as an

interface between the data and the learning algo-

rithm. Thus the kernel function is the only domain

specific module of the system, while the learning

algorithm is a general purpose component. Po-

tentially any kernel function can work with any

kernel-based algorithm. In our approach we use

Support Vector Machines (Vapnik, 1998).

In order to implement the approach based on

shallow linguistic information we employed a

linear combination of kernels. Different works

(Gliozzo et al., 2005; Zhao and Grishman, 2005;

Culotta and Sorensen, 2004) empirically demon-

strate the effectiveness of combining kernels in

this way, showing that the combined kernel always

improves the performance of the individual ones.

In addition, this formulation allows us to evalu-

ate the individual contribution of each informa-

tion source. We designed two families of kernels:

Global Context kernels and Local Context kernels,

in which each single kernel is explicitly calculated

as follows

K(x1, x2) =
〈φ(x1), φ(x2)〉

‖φ(x1)‖‖φ(x2)‖
, (1)

where φ(·) is the embedding vector and ‖ · ‖ is the

2-norm. The kernel is normalized (divided) by the

product of the norms of embedding vectors. The

normalization factor plays an important role in al-

lowing us to integrate information from heteroge-

neous feature spaces. Even though the resulting

feature space has high dimensionality, an efficient

computation of Equation 1 can be carried out ex-

plicitly since the input representations defined be-

low are extremely sparse.

3.1 Global Context Kernel

In (Bunescu and Mooney, 2005b), the authors ob-

served that a relation between two entities is gen-

erally expressed using only words that appear si-

multaneously in one of the following three pat-

terns:

Fore-Between: tokens before and between the

two candidate interacting entities. For in-

stance: binding of [P1] to [P2], interaction in-

volving [P1] and [P2], association of [P1] by

[P2].
Between: only tokens between the two candidate

interacting entities. For instance: [P1] asso-

ciates with [P2], [P1] binding to [P2], [P1],
inhibitor of [P2].

Between-After: tokens between and after the two

candidate interacting entities. For instance:

[P1] - [P2] association, [P1] and [P2] interact,

[P1] has influence on [P2] binding.

Our global context kernels operate on the patterns

above, where each pattern is represented using a

bag-of-words instead of sparse subsequences of

words, PoS tags, entity and chunk types, or Word-

Net synsets as in (Bunescu and Mooney, 2005b).

More formally, given a relation example R, we

represent a pattern P as a row vector

φP (R) = (tf(t1, P ), tf(t2, P ), . . . , tf(tl, P )) ∈ R
l
, (2)

where the function tf(ti, P ) records how many

times a particular token ti is used in P . Note that,
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this approach differs from the standard bag-of-

words as punctuation and stop words are included

in φP , while the entities (with attribute CANDI-

DATE and OTHER) are not. To improve the clas-

sification performance, we have further extended

φP to embed n-grams of (contiguous) tokens (up

to n = 3). By substituting φP into Equation 1, we

obtain the n-gram kernel Kn, which counts com-

mon uni-grams, bi-grams, . . . , n-grams that two

patterns have in common2. The Global Context

kernel KGC(R1, R2) is then defined as

KFB(R1, R2) +KB(R1, R2) +KBA(R1, R2), (3)

where KFB , KB and KBA are n-gram kernels

that operate on the Fore-Between, Between and

Between-After patterns respectively.

3.2 Local Context Kernel

The type of the candidate interacting entities can

provide useful clues for detecting the agent and

target of the relation, as well as the presence of the

relation itself. As the type is not known, we use

the information provided by the two local contexts

of the candidate interacting entities, called left and

right local context respectively. As typically done

in entity recognition, we represent each local con-

text by using the following basic features:

Token The token itself.

Lemma The lemma of the token.

PoS The PoS tag of the token.

Orthographic This feature maps each token into

equivalence classes that encode attributes

such as capitalization, punctuation, numerals

and so on.

Formally, given a relation example R, a local con-

text L = t
−w, . . . , t

−1, t0, t+1, . . . , t+w is repre-

sented as a row vector

ψL(R) = (f1(L), f2(L), . . . , fm(L)) ∈ {0, 1}m
, (4)

where fi is a feature function that returns 1 if it is

active in the specified position of L, 0 otherwise3.

The Local Context kernel KLC(R1, R2) is defined

as
Kleft(R1, R2) +Kright(R1, R2), (5)

where Kleft and Kright are defined by substituting

the embedding of the left and right local context

into Equation 1 respectively.

2In the literature, it is also called n-spectrum kernel.
3In the reported experiments, we used a context window

of ±2 tokens around the candidate entity.

Notice that KLC differs substantially from

KGC as it considers the ordering of the tokens and

the feature space is enriched with PoS, lemma and

orthographic features.

3.3 Shallow Linguistic Kernel

Finally, the Shallow Linguistic kernel

KSL(R1, R2) is defined as

KGC(R1, R2) +KLC(R1, R2). (6)

It follows directly from the explicit construction

of the feature space and from closure properties of

kernels that KSL is a valid kernel.

4 Data sets

The two data sets used for the experiments concern

the same domain (i.e. gene/protein interactions).

However, they present a crucial difference which

makes it worthwhile to show the experimental re-

sults on both of them. In one case (AImed) in-

teractions are considered symmetric, while in the

other (LLL challenge) agents and targets of genic

interactions have to be identified.

4.1 AImed corpus

The first data set used in the experiments is the

AImed corpus4, previously used for training pro-

tein interaction extraction systems in (Bunescu et

al., 2005; Bunescu and Mooney, 2005b). It con-

sists of 225 Medline abstracts: 200 are known

to describe interactions between human proteins,

while the other 25 do not refer to any interaction.

There are 4,084 protein references and around

1,000 tagged interactions in this data set. In this

data set there is no distinction between genes and

proteins and the relations are symmetric.

4.2 LLL Challenge

This data set was used in the Learning Language

in Logic (LLL) challenge on Genic Interaction

extraction5 (Nedéllec, 2005). The objective of

the challenge was to evaluate the performance of

systems based on machine learning techniques to

identify gene/protein interactions and their roles,

agent or target. The data set was collected by

querying Medline on Bacillus subtilis transcrip-

tion and sporulation. It is divided in a training set

(80 sentences describing 271 interactions) and a

4ftp://ftp.cs.utexas.edu/pub/mooney/

bio-data/interactions.tar.gz
5http://genome.jouy.inra.fr/texte/

LLLchallenge/
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test set (87 sentences describing 106 interactions).

Differently from the training set, the test set con-

tains sentences without interactions. The data set

is decomposed in two subsets of increasing diffi-

culty. The first subset does not include corefer-

ences, while the second one includes simple cases

of coreference, mainly appositions. Both subsets

are available with different kinds of annotation:

basic and enriched. The former includes word and

sentence segmentation. The latter also includes

manually checked information, such as lemma and

syntactic dependencies. A dictionary of named

entities (including typographical variants and syn-

onyms) is associated to the data set.

5 Experiments

Before describing the results of the experiments,

a note concerning the evaluation methodology.

There are different ways of evaluating perfor-

mance in extracting information, as noted in

(Lavelli et al., 2004) for the extraction of slot

fillers in the Seminar Announcement and the Job

Posting data sets. Adapting the proposed classi-

fication to relation extraction, the following two

cases can be identified:

• One Answer per Occurrence in the Document

– OAOD (each individual occurrence of a

protein interaction has to be extracted from

the document);

• One Answer per Relation in a given Docu-

ment – OARD (where two occurrences of the

same protein interaction are considered one

correct answer).

Figure 3 shows a fragment of tagged text drawn

from the AImed corpus. It contains three different

interactions between pairs of proteins, for a total

of seven occurrences of interactions. For example,

there are three occurrences of the interaction be-

tween IGF-IR and p52Shc (i.e. number 1, 3 and

7). If we adopt the OAOD methodology, all the

seven occurrences have to be extracted to achieve

the maximum score. On the other hand, if we use

the OARD methodology, only one occurrence for

each interaction has to be extracted to maximize

the score.

On the AImed data set both evaluations were

performed, while on the LLL challenge only the

OAOD evaluation methodology was performed

because this is the only one provided by the eval-

uation server of the challenge.

Figure 3: Fragment of the AImed corpus with all

proteins and their interactions tagged. The pro-

tein names have been highlighted in bold face and

their same subscript numbers indicate interaction

between the proteins.

5.1 Implementation Details

All the experiments were performed using the

SVM package LIBSVM6 customized to embed our

own kernel. For the LLL challenge submission,

we optimized the regularization parameter C by

10-fold cross validation; while we used its default

value for the AImed experiment. In both exper-

iments, we set the cost-factor Wi to be the ratio

between the number of negative and positive ex-

amples.

5.2 Results on AImed

KSL performance was first evaluated on the

AImed data set (Section 4.1). We first give an

evaluation of the kernel combination and then we

compare our results with the Subsequence Ker-

nel for Relation Extraction (ERK) described in

(Bunescu and Mooney, 2005b). All experiments

are conducted using 10-fold cross validation on

the same data splitting used in (Bunescu et al.,

2005; Bunescu and Mooney, 2005b).

Table 1 shows the performance of the three ker-

nels defined in Section 3 for protein-protein in-

teractions using the two evaluation methodologies

described above.

We report in Figure 4 the precision-recall curves

of ERK and KSL using OARD evaluation method-

ology (the evaluation performed by Bunescu and

Mooney (2005b)). As in (Bunescu et al., 2005;

Bunescu and Mooney, 2005b), the graph points are

obtained by varying the threshold on the classifi-

6http://www.csie.ntu.edu.tw/˜cjlin/

libsvm/
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OAOD

Kernel Precision Recall F1

KGC 57.7 60.1 58.9
KLC 37.3 56.3 44.9
KSL 60.9 57.2 59.0

OARD

Kernel Precision Recall F1

KGC 58.9 66.2 62.2
KLC 44.8 67.8 54.0
KSL 64.5 63.2 63.9

ERK 65.0 46.4 54.2

Table 1: Performance on the AImed data set us-

ing the two evaluation methodologies, OAOD and

OARD.

cation confidence7. The results clearly show that

KSL outperforms ERK, especially in term of re-

call (see Table 1).

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

KSL vs. ERK

ERK
KSL

Figure 4: Precision-recall curves on the AImed

data set using OARD evaluation methodology.

Finally, Figure 5 shows the learning curve of the

combined kernel KSL using the OARD evaluation

methodology. The curve reaches a plateau with

around 100 Medline abstracts.

5.3 Results on LLL challenge

The system was evaluated on the “basic” version

of the LLL challenge data set (Section 4.2).

Table 2 shows the results of KSL returned by

the scoring service8 for the three subsets of the

training set (with and without coreferences, and

with their union). Table 3 shows the best results

obtained at the official competition performed in

April 2005. Comparing the results we see that

KSL trained on each subset outperforms the best

7For this purpose the probability estimate output of LIB-
SVM is used.

8http://genome.jouy.inra.fr/texte/

LLLchallenge/scoringService.php
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Figure 5: KSL learning curve on the AImed data

set using OARD evaluation methodology.

Coref. Precision Recall F1

all 56.0 61.4 58.6
with 29.0 31.0 30.0
without 54.8 62.9 58.6

Table 2: KSL performance on the LLL challenge

test set using only the basic linguistic information.

systems of the LLL challenge9. Notice that the

best results at the challenge were obtained by dif-

ferent groups and exploiting the linguistic “en-

riched” version of the data set. As observed in

(Nedéllec, 2005), the scores obtained using the

training set without coreferences and the whole

training set are similar.

We also report in Table 4 an analysis of the ker-

nel combination. Given that we are interested here

in the contribution of each kernel, we evaluated

the experiments by 10-fold cross-validation on the

whole training set avoiding the submission pro-

cess.

5.4 Discussion of Results

The experimental results show that the combined

kernel KSL outperforms the basic kernels KGC

and KLC on both data sets. In particular, precision

significantly increases at the expense of a lower re-

call. High precision is particularly advantageous

when extracting knowledge from large corpora,

because it avoids overloading end users with too

many false positives.

Although the basic kernels were designed to

model complementary aspects of the task (i.e.

9After the challenge deadline, Reidel and Klein (2005)
achieved a significant improvement, F1 = 68.4% (without
coreferences) and F1 = 64.7% (with and without corefer-
ences).
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Test set Coref. Precision Recall F1

Enriched all 55.6 53.0 54.3
with 29.0 31.0 24.4
without 60.9 46.2 52.6

Basic all n/a n/a n/a
with 14.0 82.7 24.0
without 50.0 53.8 51.8

Table 3: Best performance on basic and enriched

test sets obtained by participants in the official

competition at the LLL challenge.

Kernel Precision Recall F1

KGC 55.1 66.3 60.2
KLC 44.8 60.1 53.8
KSL 62.1 61.3 61.7

Table 4: Comparison of the performance of kernel

combination on the LLL challenge using 10-fold

cross validation.

presence of the relation and roles of the interact-

ing entities), they perform reasonably well even

when considered separately. In particular, KGC

achieved good performance on both data sets. This

result was not expected on the LLL challenge be-

cause this task requires not only to recognize the

presence of relationships between entities but also

to identify their roles. On the other hand, the out-

comes of KLC on the AImed data set show that

such kernel helps to identify the presence of rela-

tionships as well.

At first glance, it may seem strange that KGC

outperforms ERK on AImed, as the latter ap-

proach exploits a richer representation: sparse

sub-sequences of words, PoS tags, entity and

chunk types, or WordNet synsets. However, an

approach based on n-grams is sufficient to identify

the presence of a relationship. This result sounds

less surprising, if we recall that both approaches

cast the relation extraction problem as a text cate-

gorization task. Approaches to text categorization

based on rich linguistic information have obtained

less accuracy than the traditional bag-of-words ap-

proach (e.g. (Koster and Seutter, 2003)). Shallow

linguistics information seems to be more effective

to model the local context of the entities.

Finally, we obtained worse results performing

dimensionality reduction either based on generic

linguistic assumptions (e.g. by removing words

from stop lists or with certain PoS tags) or using

statistical methods (e.g. tf.idf weighting schema).

This may be explained by the fact that, in tasks like

entity recognition and relation extraction, useful

clues are also provided by high frequency tokens,

such as stop words or punctuation marks, and by

the relative positions in which they appear.

6 Related Work

First of all, the obvious references for our work

are the approaches evaluated on AImed and LLL

challenge data sets.

In (Bunescu and Mooney, 2005b), the authors

present a generalized subsequence kernel that

works with sparse sequences containing combina-

tions of words and PoS tags.

The best results on the LLL challenge were ob-

tained by the group from the University of Ed-

inburgh (Reidel and Klein, 2005), which used

Markov Logic, a framework that combines log-

linear models and First Order Logic, to create a

set of weighted clauses which can classify pairs of

gene named entities as genic interactions. These

clauses are based on chains of syntactic and se-

mantic relations in the parse or Discourse Repre-

sentation Structure (DRS) of a sentence, respec-

tively.

Other relevant approaches include those that

adopt kernel methods to perform relation extrac-

tion. Zelenko et al. (2003) describe a relation ex-

traction algorithm that uses a tree kernel defined

over a shallow parse tree representation of sen-

tences. The approach is vulnerable to unrecover-

able parsing errors. Culotta and Sorensen (2004)

describe a slightly generalized version of this ker-

nel based on dependency trees, in which a bag-of-

words kernel is used to compensate for errors in

syntactic analysis. A further extension is proposed

by Zhao and Grishman (2005). They use compos-

ite kernels to integrate information from different

syntactic sources (tokenization, sentence parsing,

and deep dependency analysis) so that process-

ing errors occurring at one level may be overcome

by information from other levels. Bunescu and

Mooney (2005a) present an alternative approach

which uses information concentrated in the short-

est path in the dependency tree between the two

entities.

As mentioned in Section 1, another relevant ap-

proach is presented in (Roth and Yih, 2002). Clas-

sifiers that identify entities and relations among

them are first learned from local information in

the sentence. This information, along with con-

straints induced among entity types and relations,

is used to perform global probabilistic inference
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that accounts for the mutual dependencies among

the entities.

All the previous approaches have been evalu-

ated on different data sets so that it is not possi-

ble to have a clear idea of which approach is better

than the other.

7 Conclusions and Future Work

The good results obtained using only shallow lin-

guistic features provide a higher baseline against

which it is possible to measure improvements ob-

tained using methods based on deep linguistic pro-

cessing. In the near future, we plan to extend our

work in several ways.

First, we would like to evaluate the contribu-

tion of syntactic information to relation extraction

from biomedical literature. With this aim, we will

integrate the output of a parser (possibly trained on

a domain-specific resource such the Genia Tree-

bank). Second, we plan to test the portability of

our model on ACE and MUC data sets. Third,

we would like to use a named entity recognizer

instead of assuming that entities are already ex-

tracted or given by a dictionary. Our long term

goal is to populate databases and ontologies by

extracting information from large text collections

such as Medline.
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