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Abstract

In this work we investigate the signal con-
tained in the language of food on social me-
dia. We experiment with a dataset of 24 mil-
lion food-related tweets, and make several ob-
servations. First, the language of food has pre-
dictive power. We are able to predict if states
in the United States (US) are above the me-
dian rates for type 2 diabetes mellitus (T2DM),
income, poverty, and education – outperform-
ing previous work by 4–18%. Second, we in-
vestigate the effect of socioeconomic factors
(income, poverty, and education) on predict-
ing state-level T2DM rates. Socioeconomic
factors do improve T2DM prediction, with the
greatest improvement coming from poverty in-
formation (6%), but, importantly, the language
of food adds distinct information that is not
captured by socioeconomics. Third, we an-
alyze how the language of food has changed
over a five-year period (2013 – 2017), which
is indicative of the shift in eating habits in the
US during that period. We find several food
trends, and that the language of food is used
differently by different groups such as differ-
ent genders. Last, we provide an online visual-
ization tool for real-time queries and semantic
analysis.

1 Introduction
With an average of 6,000 new tweets posted ev-

ery second, Twitter1 has become a digital foot-
print of everyday life for a representative sam-
ple of the United States (US) population (Mis-
love et al., 2011). Previously, Fried et al. (2014)
demonstrated that the language of food on Twitter
can be used to predict health risks, political ori-
entation, and geographic location. Here, we use
predictive models to extend this analysis – explor-
ing the ways in which the language of food can
shed insight on health and the changing trends in

∗Equal contribution.
1https://twitter.com/

both food culture and language use in different
communities over time. We apply this methodol-
ogy to the particular use case of predicting com-
munities which are risk for type 2 diabetes mel-
litus (T2DM), a serious medical condition which
affects over 30 million Americans and whose di-
agnosis alone costs $327 billion each year2. We
refer to T2DM as diabetes in the rest of the pa-
per. We show that by combining knowledge from
tweets with other social characteristics (e.g., aver-
age income, level of education) we can better pre-
dict risk of T2DM. The contributions of this work
are four-fold:
1. We use the same methods proposed by Fried
et al. (2014) with a much larger (7 times) tweet
corpus gathered from 2013 – 2017 to predict
the risk of T2DM. We collected over 24 million
tweets with meal-related hashtags (e.g., #break-
fast, #lunch) and localized 5 million of them to
states within the US. We show that more data
helps, and that by training on this larger dataset the
state-level T2DM risk prediction accuracy is im-
proved by 4–18%, compared to the results in Fried
et al. (2014). We also apply the same models to
predict additional state-level indicators: income,
poverty, and education levels in order to further
investigate the predictive power of the language of
food. On these prediction tasks, our model out-
performs the majority baseline by 12–34%. We
believe that this work may drive immediate pol-
icy decisions for the communities deemed at risk
without awaiting for similar results from major
health organizations, which take months or years
to be generated and disseminated.3 Equally as
important, we believe that this state-level T2DM
risk prediction task may improve predicting risks

2http://www.diabetes.org/advocacy/
news-events/cost-of-diabetes.html

3https://www.cdc.gov/nchs/nhis/about_
nhis.htm
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for individuals from their social media activity, a
task which often suffers from sparsity (Bell et al.,
2018).
2. Unlike (Fried et al., 2014), we also investigate
the effect of socioeconomic factors on the diabetes
prediction task itself. We observe that aggregated
US social demographic information from average
income4, poverty5, and education6 is complemen-
tary to the information gained from tweet language
used for predicting diabetes risk. We add the cor-
relation between each of these socioeconomic fac-
tors and the diabetes7 rate in US states as addi-
tional features in the models in (1). We demon-
strate that the T2DM prediction model strongly
benefits from the additional information, as pre-
diction accuracy further increases by 2–6%. How-
ever, importantly, the model that relies solely on
these indicators performs considerably worse than
the model that includes features from the language
of food, which demonstrates that the language of
food provides distinct signal from these indicators.
3. Furthermore, with a dataset that spans nearly
five years, we also analyze language trends over
time. Specifically, using pointwise mutual in-
formation (PMI) and a custom-built collection of
healthy/unhealthy food words, we investigate the
strength of healthy/unhealthy food references on
Twitter, and observe a downward trend for healthy
food references and an upward trend for unhealthy
food words in the US.
4. Lastly, we provide a visualization tool to
help understand and visualize semantic relations
between words and various categories such as
how different genders refer to vegetarian vs. low-
carb diets.8 Our tool is based on semantic axes
plots (Heimerl and Gleicher, 2018).
2 Related Work

Many previous efforts have shown that social
media can serve as a source of data to detect possi-
ble health risks. For example, Akbari et al. (2016)
proposed a supervised learning approach that au-
tomatically extracts public wellness events from
microblogs. The proposed method addresses sev-
eral problems associated with social media such as

4https://www.census.gov/topics/
income-poverty/income.html

5https://www.census.gov/topics/
income-poverty/poverty.html

6https://talkpoverty.org/indicator/
listing/higher_ed/2017

7https://www.kff.org/other/
state-indicator/adults-with-diabetes

8http://t4f.cs.arizona.edu/

insufficient data, noisiness and variance, and inter-
relations among social events. A second contribu-
tion of Akbari et al. (2016) is an automatically-
constructed large-scale diabetes dataset that is ex-
tended with manually handcrafted ground-truth la-
bels (positive, negative) for wellness events such
as diet, exercise and health.

Bell et al. (2016) proposed a strategy that uses
a game-like quiz with data and questions acquired
semi-automatically from Twitter to acquire rele-
vant training data necessary to detect individual
T2DM risk. In following work, Bell et al. (2018)
predicted individual T2DM risk using a neural ap-
proach, which incorporates tweet texts with gen-
der information and information about the recency
of posts.

Sadeque et al. (2018) discussed several ap-
proaches for predicting depression status from a
user’s social media posts. They proposed a new
latency-based F1 metric to measure the quality and
speed of the model. Further, they re-implemented
some of the common approaches for this task, and
analyzed their results using their proposed metric.
Lastly, they introduced a window-based technique
that trades off between latency and precision in
predicting depression status.

Our work is closest to (Fried et al., 2014). Sim-
ilar to us, Fried et al. (2014) predicted latent pop-
ulation characteristics from Twitter data such as
overweight rate or T2DM risk in US states. Our
work extends (Fried et al., 2014) in several ways.
First, in addition of tweets, we incorporate state-
level indicators such as poverty, education, and in-
come in our risk classifier, and demonstrate that
language provides distinct signal from these in-
dicators. Second, we use the much larger tweet
dataset to infer language-of-food trends over a
five-year span. Third, we provide a visualization
tool to explore food trends over time, as well as
semantic relations between words and categories
in this context.

3 Data
We collected tweets along with their meta data

with Twitter’s public streaming API9. Tweets have
been filtered by a set of seven hashtags to make the
dataset more relevant to food (see distribution in
Table 1). We stored the tweets and their metadata

9https://developer.twitter.com/en/
docs/tweets/filter-realtime/guides/
connecting.html
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Term # of tweets # of tweets localized in US

#dinner 5,455,890 1,367,745
#breakfast 5,125,014 1,183,462

#lunch 4,969,679 1,094,681
#brunch 1,910,950 681,978
#snack 797,676 220,697
#meal 495,073 101,976

#supper 124,979 22,154

Total 24,493,223 4,362,940

Table 1: Seven meal-related hashtags and their corre-
sponding number of tweets filtered from Twitter. The
right-most column indicates the number of tweets we
could localize to a US state or Washington D.C.

into a Lucene-backed Solr instance.10 This Solr
instance is used to localize the tweets in the US
and annotate them with topic models afterwards.

All in all, we collected over 24 million tweets
from the period between October 2, 2013 to Au-
gust 28, 2018, a dataset that is seven times larger
than that of Fried et al. (2014). Both datasets
contain tweets filtered using the same 7 meal-
related hashtags. In order to localize the tweets
in the US, we use self-reported location, time-
zone, and geotagging information (latitude and
longitude). The geolocalization is performed in
two steps. First, we use regular expressions to
match a user’s reported location data with the
names or postal abbreviations of the 50 US states
(e.g., Arizona or AZ) and Washington D.C., and
also with city names or known abbreviations (e.g.,
New York City or NYC). Second, if we cannot
find a match, then we use the latitude and lon-
gitude information (if provided in the metadata)
to localize a tweet. This allowed us to success-
fully localize approximately 5 million out of the
24 million tweets. For the remaining tweets, lati-
tude/longitude data is converted into city, state, or
country using Geopy11, successfully localizing an
additional hundred thousand tweets12. Each tweet
is preprocessed and filtered to remove punctuation
marks, usernames, URLs, and non-alphanumeric
characters (but not hashtags).
4 Approach

This work aims for four main goals: predict-
ing state-level characteristics, evaluating the ef-
fect of socioeconomic factors in these prediction

10https://lucene.apache.org/. Solr is the open
source NoSQL search platform from the Apache Lucene
project.

11https://pypi.org/project/geopy/
12As our work is centered around state-level analysis, we

do not use the remaining unlocalized tweets in this paper.

tasks, analyzing food trends, and using visualiza-
tion tools to capture trends in the usage of the lan-
guage of food by different population groups.
4.1 State-level prediction tasks

We investigate the predictive power of the lan-
guage of food through four distinct prediction
tasks: T2DM rate, income, poverty, and education
level. We use the tweets from the above dataset as
the only input for our prediction models.

T2DM rate prediction: We use the diabetes rate
from the Kaiser Commission on Medicaid and
Uninsured (KCMU)’s analysis of the Center for
Disease Control’s Behavioral Risk Factor Surveil-
lance System (BRFSS) 2017 Survey (its most re-
cent year)7. The state-level diabetes rate is defined
as the percentage of adults in each state who have
been told by a doctor that they have diabetes. The
median diabetes rate for the US is 10.8%. For
each state, we convert the diabetes rate into a bi-
nary variable with a value of 1 if the state diabetes
rate is greater than or equal to the national median
rate, and a value of 0 if it is below. For exam-
ple, the state with highest diabetes rate, West Vir-
ginia (15.2%), is assigned a binary variable of 1
(high T2DM rates). On the other hand, states with
below-national-median rate, like Arizona (10.4%),
are assigned a label of 0 (low T2DM rates).

Income rate prediction: We collect income data
from the United States Census Bureau (USCB)’s
analysis of the American Community Survey
(ACS)’s Income and Poverty in the United States:
20174. The data shows that national median
household income is $60,336. Similarly to above,
we convert the household median income of the
state into a binary variable with a value of 0 (low
income) if its median household income is lower
than national median, and a value of 1 (high in-
come) if its median household income is equal or
greater. For example, Alabama ($48,193) is la-
beled as low-income and Alaska ($74,058) is la-
beled as high-income.

Poverty rate prediction: To predict poverty rates,
we also collect poverty data from the USCB’s
analysis of the ACS’s Income and Poverty in the
United States: 20175, which shows that national
median poverty rate is 13.4%. Again, we assign
each state a binary variable indicating whether its
rate is above or below this national median.

Education rate prediction: For predicting edu-
cation rate, we use the higher education attain-
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ment rate (HEAR) data from the Center of Ameri-
can Progress (CAP)6. The data shows that national
median HEAR is 43.2%. Once again, the state-
level HEAR is converted to a binary variable in
the same manner as above.

Because each of these binary variables is at the
state level, we group the tweets by state before
feature extraction. We use leave-one-out cross-
validation (LOOCV) as proposed by Fried et al.
(2014). This approach is necessary because even
though we have a large tweet corpus, we only have
51 aggregate data points (one for each state plus
Washington, D.C.). For classification, we use Sup-
port Vector Machines (SVM) (Vapnik, 2013) for
feature-based classification. To avoid overfitting,
we tuned the classifier’s hyper-parameters during
training using the tweets from 2013 to 2016. We
tested the tuned prediction models for each task
using solely tweets from 2017.

We use two sets of features: lexical (words from
tweets) and topical (sets of words appearing in
similar contexts). For lexical features, we com-
pare open (all unique tweet words or hashtags) and
closed (800 food words) vocabularies, using the
token counts as the tweet features. These exper-
iments help us to determine the predictive power
of the specific language of food versus the broader
context in the full tweets (or socially compact
hashtag). For topic model features, we use Latent
Dirichlet Allocation (LDA) (Blei et al., 2003), to
learn a set of topics from food tweets. Because
tweets are very short in nature (up to 140 char-
acters), this approach allows us to analyze cor-
relations that could go beyond individual words.
We chose 200 as the number of topics for LDA
to learn. After LDA is trained using MALLET13,
we use it to create the set of topics for each tweet,
and the topic with highest probability is then as-
signed to each tweet as an additional feature. Top-
ics are counted across all tweets in a state in the
same manner as the lexical features.

We also experimented with Deep Averaging
Network (DAN) (Iyyer et al., 2015), a simple but
robust bag-of-words model based on averaging
word embeddings that has been shown to perform
well in sentiment analysis and factoid question
answering with little training data. In our case,
we implemented DAN with embeddings generated
using Word2Vec (Mikolov et al., 2013) trained
over all 24 million tweets (including the ones that

13http://mallet.cs.umass.edu/
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Figure 1: Deep Averaging Network for prediction
tasks. The embeddings are averaged and passed to two
non-linear layers (tanh).

were not localized). We compute the embedding
for each token in our dataset, and pass them to the
network; see Figure 1. Again using LOOCV, in
each pass we leave out one state, train the network
on tweets from the 50 other states and predict the
T2DM rate for the left out state.
4.2 Impact of socioeconomic factors

Previous work has shown that the T2DM rate
can be predicted by socioeconomic factors such
as poverty (Chih-Cheng et al., 2012), income (Ye-
lena et al., 2015), and education (Ayyagari et al.,
2011). Therefore, we incorporate these factors
into our prediction models (Section 4.1) to assess
their contribution. We represent each socioeco-
nomic factor and its correlation with the T2DM
rate in the corresponding state as a feature, and in-
clude these new features alongside the lexical and
topic-based ones. Even though in general, the cor-
relations are relatively low (see Table 2), we will
show that the model strongly benefits from the ad-
ditional information leading to accuracy increases
of 2–6% (see Section 5). This indicates that the
language of food captures different signal and re-
flects distinct information from these indicators.
However, because these indicators are represented
as single features, as opposed to the other features
(e.g., there are tens of thousands of food word fea-
tures, each of which is represented as an integer
count), they tended to be ignored by the classi-
fier. To account for this, we empirically explored
a series of multipliers to increase the weights of
the values of these indicator features14. For this
task, we use the same SVM classifier from Sec-
tion 4.1, as well as a Random Forest (RF) classi-
fier (Breiman, 2001)15.

14For these correlation multipliers, we experimented with
powers of 10, from 101 to 106.

15To avoid overfitting, we do not fine-tune the RF classi-
fier’s hyperparameters.
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Socioeconomic factor Correlation with T2DM

Education -0.37
Income -0.14
Poverty 0.18

Table 2: Correlation between socioeconomic factors
(education, income, poverty) and type 2 diabetes mel-
litus (T2DM) in 2017. Each correlation is calcu-
lated from the binary data described in Section 4.1.
For the correlation values we used Pearson correla-
tion (Boslaugh, 2012).

4.3 Exploring food trends
We use pointwise mutual information (PMI) be-

tween food words/hashtags and years to analyze
food trends over time. We divide our corpus of
tweets into four parts, each containing a complete
year’s set of tweets (from 2014 to 2017) and then
calculate PMI for pairs (food term t, year y) using
the formula:

PMI(t, y) =
C(t, y)

C(t) ∗ C(y)
, (1)

where, C(t, y) is the number of occurrences of
term t in year y, C(t) is the total number of oc-
currences of the term, and C(y) is the number of
tweets in year y. Intuitively, the higher the PMI
value of a term in a given year, PMI(t, y), the
more that term is associated with tweets from that
year in particular.
4.4 Semantic axes analysis

Word vector embeddings are a standard tool
used to analyze text, as they capture similarity re-
lationships between the different words. However,
interpreting such embeddings and understanding
the encoded grammatical and semantic relations
between words can be difficult due to the high
dimensionality of the embedding space (typically
50-300 dimensions).

Semantic axes visualizations allow us to view
specific low dimensional projections where the
new dimensions can be used to explore differ-
ent semantic concepts (Heimerl and Gleicher,
2018). For our task, we generate several word
embeddings from our dataset using the CBOW
Word2Vec model of (Mikolov et al., 2013). Dif-
ferent than other visualization tools (e.g., t-SNE,
PCA), when using semantic axes we need to de-
fine two semantic axes by two opposite concepts
(e.g., man vs. woman and breakfast vs. dinner)
and project a collection of vectors (words in em-
bedding) based on the specific 2D space. The re-

sult is a 2D scatter plot with respect to two differ-
ent concepts.

We first create a word embedding for all the
tweets in our dataset. This allows us to explore
the correlations between different concepts.

We further augment the semantic axes tool16

provided by Heimerl and Gleicher (2018), to al-
low a concept axis to be defined by two sets of
words (rather than exactly two words). For ex-
ample, instead of having one axis defined by the
pair (vegetables, meat) we can now use two sets of
words (vegetables, fruit, vegetarian, vegan, etc.,
and meat, fish, chicken, beef, etc.). This allows us
to capture more complex concepts such as “meat-
eaters” that are not captured by individual words.
5 Results

We present the results for all prediction tasks
of state level characteristics, as well as the eval-
uation of the contribution of socioeconomic fac-
tors alongside food language in predicting T2DM
rate. We also investigate the shifts in eating habits
over time (i.e., food trends), as well as the trends
in different groups through our semantic axes ex-
periments.
5.1 State-level characteristics prediction

In Table 3, we show the results for predict-
ing state-level socioeconomic characteristics using
various sets of features. We compare the results
from our dataset with the results of Fried et al.
(2014) for predicting T2DM rates. However, since
Fried et al. (2014) do not experiment with pre-
dicting poverty, income, and education level, for
these we compare against a majority baseline. As
there are 51 states (including Washington D.C.),
and each binary socioeconomic factor is based on
the national median, this means that for each fac-
tor there will be 26 states either above or below
(resulting in a majority baseline of 50.98%).

Comparing the effects of each type of lexical
features and their combination with LDA topic
features on these prediction tasks, we make sev-
eral observations.

Performance comparison by feature set: First
and foremost, the results demonstrate that the lan-
guage of food can be used to predict health and so-
cial characteristics such as diabetes risk, income,
poverty, and education level. The highest overall
performance is achieved by using all tweet words
(both with and without LDA). This suggests that

16http://embvis.flovis.net/
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Diabetes Poverty Income Education Average

# Majority baseline 50.98 50.98 50.98 50.98 50.98

All Words
1 Fried et al. (2014) 64.71 – – – –
2 Our dataset 74.51 64.71 80.39 74.51 73.53

All Words + LDA
3 Fried et al. (2014) 64.71 – – – –
4 Our dataset 70.59 66.67 82.35 74.51 73.53

Hashtags
5 Fried et al. (2014) 68.63 – – – –
6 Our dataset 74.51 64.71 80.39 66.67 71.57

Hashtags + LDA
7 Fried et al. (2014) 68.63 – – – –
8 Our dataset 72.55 62.75 84.31 68.63 72.06

Food
9 Fried et al. (2014) 60.78 – – – –

10 Our dataset 72.55 62.75 64.71 62.75 65.69

Food + LDA
11 Fried et al. (2014) 60.78 – – – –
12 Our dataset 78.43 62.75 62.75 62.75 66.67

Food+Hashtags
13 Fried et al. (2014) 62.75 – – – –
14 Our dataset 72.55 64.71 78.43 66.67 70.59

Food+Hashtags+LDA
15 Fried et al. (2014) 62.75 – – – –
16 Our dataset 74.51 64.71 84.31 68.63 73.05

Table 3: Results from using various feature sets to pre-
dict state-level characteristics: whether a given state
is above or below the national median for diabetes,
poverty, income, and education. We also show the av-
erage performance across all characteristics. We com-
pare against Fried et al. (2014) as well as the majority
baseline. Note that Fried et al. do not predict poverty,
income, or education level. The low number of data
points (51 states) is responsible for the same accuracy
value in multiple experiments.

we can capture significant predictive signal from
tweets when capturing food words in context.

The highest prediction performance is seen
when predicting the state-level income rate,
demonstrating a high correlation between food-
related words and income. When predicting state-
level diabetes rate, we also see strong predictive
power from the language of food – all models per-
form above 70%, up to 78.43%. This confirms
our hypothesis that there is a strong correlation
between food-related words (and presumably food
behaviors) and diabetes rate, one indicator of pub-
lic health.

Amount and recency of data: For diabetes pre-
diction, with our larger dataset, we improve upon
the results of Fried et al. (2014) (ranging from 4 to
18%). In particular, when we use the food-word
features combined with LDA topics, we increase
prediction accuracy by almost 18%. These results
suggest that more data matters in this type of anal-
ysis, as evidenced by the learning curves shown in
Figure 2, where we compare performance against
amount of training data (by year).

Figure 2: The learning curves for each lexical fea-
ture set in terms of predicting diabetes rate in 2017.
The horizontal axis corresponds to the cumulative date
range used, i.e., 13 only uses tweets from 2013, and
13-14 uses tweets from 2013 through 2014, etc. The
y-axis is the state-level prediction accuracy.

We also created learning curves for prediction
of T2DM, but from the opposite direction, i.e.,
starting from tweets from 2017 only, and then
adding tweets from earlier years one year at a time.
We observe that the more recent the data, the more
useful it is for prediction. We hypothesize that in
terms of the utility of increased data, the perfor-
mance of food-word features is improved only as
the amount of relevant data increases. For the first
part of the curve (only from 17, combined 17–16,
combined 17–15), the classifier’s performance is
improved with additional tweets. However, after
this peak, additional older tweets decrease perfor-
mance, suggesting that people change their eating
behavior over a period spanning multiple years.
The importance of recency of tweet data is also
discussed in (Bell et al., 2016).

Comparison to previous work: The best per-
forming model of Fried et al. (2014) relies on
hash-tags (see Table 3, lines 5 and 7) and the worst
performing model use food words (lines 9 and 11).
However, with more data we find that we get the
best performance with food words (line 12). We
hypothesize that with smaller data, the concise se-
mantics of hashtags are more informative, but with
more data the model is able to learn the relative
semantics of the food words themselves. Further,
while LDA topics do not benefit any model of
Fried et al. in terms of predicting diabetes, here
we find that with additional data, LDA topics ben-
efit the food words model (compare lines 10 and
12), and in fact contribute to our best performing
model (line 12), perhaps because additional data
leads to more representative LDA topics.
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Figure 3: The learning curve using food word features,
on the diabetes rate prediction task for 2017. In this
figure, the data portion used for each point is in reverse
order compared to Figure 2, that is, starting from most
recent tweets and going back in time. The horizon-
tal axis is labeled based on the year(s) from which the
tweets used for prediction were used.

The Deep Averaging Network from Figure 1
consistently underperformed the results reported
in Table 3. This approach obtained an accuracy
of 60.78% for the T2DM rate prediction task, con-
siderably lower than the 78% obtained by the best
SVM configuration in Table 3. We hypothesize
that the reason behind this low performance is the
small number of data points (51), which is insuffi-
cient to train a neural network.
5.2 Impact of socioeconomic factors

In Table 5, we show the SVM results for pre-
dicting T2DM rate from extending the feature ma-
trix from 5.1 with one additional feature based on
the correlation between each socioeconomic fac-
tor (education, income, and poverty) and T2DM.
For each factor, we compare several multipliers
(see Section 4.2) to amplify the impact of the so-
cioeconomic correlations. Consistently, we find
that models with more features benefit from larger
multipliers. For example, the extended food word
models that have several hundred features perform
best with a multiplier of 102, while the other ex-
tended models, which all have tens of thousands
of features, perform best with a multiplier of 103.
The best multiplier for each model, according to
SVM performance, is used in our Random Forest
models (Table 4).

From these extended models we see that using
poverty information as an additional feature im-
proves our SVM performance by a range of 2–
8% and our RF performance by up to 6%. The
other socioeconomic factors, i.e., income and ed-
ucation, do not help when using an SVM classi-

# Features Results from best performing multiplier

All Words+LDA with RF 62.75
Fried et al. (2014) 64.71

1 + Education 64.71
2 + Income 64.71
3 + Poverty 64.71

Food+LDA with RF 70.59
Fried et al. (2014) 60.78

4 + Education 74.51
5 + Income 72.55
6 + Poverty 76.47

Hashtags+LDA with RF 68.63
Fried et al. (2014) 68.63

7 + Education 64.71
8 + Income 64.71
9 + Poverty 68.63

Food+Hashtags+LDA with RF 66.67
Fried et al. (2014) 62.75

10 + Education 72.55
11 + Income 72.55
12 + Poverty 70.59

Table 4: Results for predicting T2DM rate using a ran-
dom forest classifier with our additional socioeconomic
correlation features. For each feature set, we use the
best performing multiplier, as determined in the previ-
ous experiment that used a SVM classifier (Table 5).
That is, the best performing multiplier for food word
features is 102, while other features’ multipliers are
103.

fier (Table 5), but when using a RF classifier we
see up to 6% improvement (Table 4). Overall,
our highest T2DM prediction performance is ob-
tained with SVM using Food + LDA + poverty.
This performance surpasses 80% accuracy and is
the highest value reported for this task. Further,
to the best of our knowledge, the effect of using
poverty information to improve T2DM rate pre-
diction is novel and suggests a potential avenue
for improving classifiers with socioeconomic cor-
relation information.

Importantly, predicting the T2DM below/above
median labels from the poverty indicator alone has
an accuracy of 58.82%. This value is consid-
erably lower than that of the classifier that uses
poverty coupled with the extended word features
from tweets, which obtained 80% accuracy. This
demonstrates that the language of food provides
signal that is distinct from this indicator, which
suggests that there is value in social media min-
ing for the monitoring of health risks.
5.3 Food trends

Given our dataset that spans nearly five years,
we are also able to investigate whether changes in
food habits over time can be detected in social me-
dia language. To this end, we explored a list of 800
food words and their change in PMI values in the
different years. To understand which food words
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# 101 102 103 104 105 106

All Words + LDA 70.59 – – – – –
1 + Education 70.59 70.59 70.59 70.59 70.59 66.67
2 + Income 70.59 70.59 70.59 66.67 66.67 66.67
3 + Poverty 66.67 72.55 78.43 74.51 70.59 70.59

Food + LDA 78.43 – – – – –
4 + Education 70.59 74.51 68.63 70.59 68.63 68.63
5 + Income 70.59 74.51 68.63 70.59 66.67 62.75
6 + Poverty 78.43 80.39 76.47 68.63 70.59 70.59

Hashtags+LDA 72.55 – – – – –
7 + Education 70.59 70.59 74.51 70.59 66.67 68.63
8 + Income 66.67 68.63 70.59 66.67 62.75 66.67
9 + Poverty 72.55 74.51 76.47 64.71 68.63 68.63

Food+Hashtags+LDA 74.51 – – – – –
10 + Education 70.59 70.59 72.55 68.63 68.63 66.67
11 + Income 66.67 72.55 74.51 68.63 68.63 66.67
12 + Poverty 72.55 74.51 78.43 72.55 68.63 68.63

Table 5: Results for predicting T2DM rate using our
SVM classifier, which is similar to that of Fried et al.
(2014), but with additional socioeconomic correlation
features. Columns show results under different mul-
tipliers used to boost the importance of the indicator
features (see Section 4.2).

indicate healthy vs. unhealthy diets, we manually
classified the 800 food words into three categories
– healthy, unhealthy and neutral – using reliable
online resources17. The annotations were indepen-
dently performed by three annotators. The inter-
annotator Kappa agreement scores18 shown in Ta-
ble 6 indicate fair to good agreement between the
three annotators.

We computed PMI values for each of these 800
words and each year in our US dataset. We also
computed the PMI values for the three categories
and each year (here all words from each category
are treated as one). The category trends in our
US dataset indicate a slight increase of mentions
of unhealthy food words and a slight decrease in
mentions of healthy food words in US tweets; see
Figure 4. These results suggest a continued de-
cline in dietary patterns in the US, despite seem-
ingly increased interest in health benefits from
food19.
5.4 Semantic axes visualization

As discussed in Section 4.4, visualizations can
help discover correlations between different con-
cepts, as well as look at trends over time. In Fig-
ure 5, we consider the two axes defined by man

17http://www.diabetes.org/ and https:
//www.healthline.com/health/diabetes/

18We use the scikit learn library to calculate the score.
https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.cohen_kappa_
score.html

19https://foodinsight.org/wp-content/
uploads/2018/05/2018-FHS-Report-FINAL.
pdf

1st annotator 2nd annotator Score

annotator 1 annotator 2 0.72
annotator 1 annotator 3 0.39
annotator 2 annotator 3 0.58

Table 6: The Cohen’s kappa inter-annotator agreement
scores among the three annotators.
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Figure 4: PMI values for each category foods annotated
by the 1st annotator. The y-axis shows PMI values 106.
The trends based on the other annotators are similar.

vs. woman, and breakfast vs. dinner. Exploring
the four corners we can identify particular types of
foods representative of those coordinates. In the
top-left we see words associated with women and
breakfast (yogurt, cupcake, pastry), whereas in the
bottom-left we see words associated with men and
breakfast (sausage, bacon, ham). Similarly, in
the top-right we see words associated with women
and dinner (mussels, halibut, eggplant) whereas
the bottom right we see words associated with
men and dinner (lasagna, lamb, teriyaki). This
data confirms common stereotypes, e.g., (1) men
tend to eat more meat, whereas women often pre-
fer fish, and (2) women are more health-conscious
compared to men.

We also consider topics (defined by a collection
of words) as axes, as illustrated in Table 7. The
two axes now are man vs. woman, and vegetarian
words vs. low-carb diets. To represent the vegetar-
ian topic we use the words vegan, vegetarian, tofu,
and to represent the low-carb topic we use keto,
paleo, and atkins. We then average the word em-
bedding vectors for all words in the topic to create
the 2D projection.

We list the 4 corners in the projection as 4 rows
in Table 7, where the left column corresponds to
the concepts and the right column contains the
words. Several patterns emerge: vegetarian words
associated with women tend to be soups, salads,
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Figure 5: Semantic axes 2D plot using man vs. woman and breakfast vs. dinner as the two axes. We highlight the
four corners where interesting patterns can be seen (e.g., the top-left corner is associated with with women and
breakfast). Note that this image is a composite of four images, each highlighting one corner.

and gourmet types of foods (saffron, fennel). In
contrast, the vegetarian words associated with men
tend to be vegetables (spinach, kale, carrot). In
the low-carb and women corner we find break-
fast words and deserts (cupcake, pastry, caramel,
wheat) whereas in the low-carb and men corner
we see more hearty foods (spaghetti, hamburgers,
buns).

man vs. woman, and vegetarian vs. low-carb diets
woman, vegetarian diet mint, saffron, fennel, squash,

soup, tomato, eggplant
man, vegetarian diet beet, onion, coconut, spinach,

kale, carrot
woman, low-carb diet hazelnut, nut, cupcake, pastry,

grain, caramel, wheat
man, low-carb diet cereal, spaghetti, buns, ham-

burger, pepperoni, crunch

Table 7: The 4 corners in the man vs. woman and veg-
etarian words vs. low-carb diets plot. Each row repre-
sents one corner, The left column contains the pair of
concepts; the right column contains the foods associ-
ated with those concepts.

6 Conclusion
We showed that the language of food has pre-

dictive power for non-trivial state-level health
tasks such as predicting if a state has higher/lower
diabetes risk than the median. When augmented
with socio-economic data such as poverty in-
dicators, performance improves further, but we
demonstrate that the language of food captures dif-
ferent signal and reflect distinct information from
these socio-economic data. We also provide vi-
sualization tools to analyze the underlying data

and visualize patterns and trends. This work may
have immediate use in public health, e.g., by driv-
ing rapid policy decisions for the communities
deemed at health risk. Further, we hope that this
work complements predicting health risk for in-
dividuals, a task that is plagued by sparsity, and
which could potentially benefit from additional
community-level information.
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