Abstract
Knowledge distillation can effectively transfer knowledge from BERT, a deep language representation model, to traditional, shallow word embedding-based neural networks, helping them approach or exceed the quality of other heavyweight language representation models. As shown in previous work, critical to this distillation procedure is the construction of an unlabeled transfer dataset, which enables effective knowledge transfer. To create transfer set examples, we propose to sample from pretrained language models fine-tuned on task-specific text. Unlike previous techniques, this directly captures the purpose of the transfer set. We hypothesize that this principled, general approach outperforms rule-based techniques. On four datasets in sentiment classification, sentence similarity, and linguistic acceptability, we show that our approach improves upon previous methods. We outperform OpenAI GPT, a deep pretrained transformer, on three of the datasets, while using a single-layer bidirectional LSTM that runs at least ten times faster.