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Abstract

Asynchronous stochastic gradient descent
(SGD) converges poorly for Transformer mod-
els, so synchronous SGD has become the norm
for Transformer training. This is unfortu-
nate because asynchronous SGD is faster at
raw training speed since it avoids waiting for
synchronization. Moreover, the Transformer
model is the basis for state-of-the-art models
for several tasks, including machine transla-
tion, so training speed matters. To understand
why asynchronous SGD under-performs, we
blur the lines between asynchronous and syn-
chronous methods. We find that summing sev-
eral asynchronous updates, rather than apply-
ing them immediately, restores convergence
behavior. With this method, the Transformer
attains the same BLEU score 1.36 times as
fast.

1 Introduction

Models based on Transformers (Vaswani et al.,
2017) achieve state-of-the-art results on various
machine translation tasks (Bojar et al., 2018). Dis-
tributed training is crucial to training these mod-
els in a reasonable amount of time, with the
dominant paradigms being asynchronous or syn-
chronous stochastic gradient descent (SGD). Prior
work (Chen et al., 2016, 2018; Ott et al., 2018)
commented that asynchronous SGD yields low
quality models without elaborating further; we
confirm this experimentally in Section 2.1. Rather
than abandon asynchronous SGD, we aim to repair
convergence.

Asynchronous SGD and synchronous SGD
have two key differences: batch size and stale-
ness. Synchronous SGD increases the batch size
in proportion to the number of processors because
gradients are summed before applying one update.
Asynchronous SGD updates with each gradient as

it arises, so the batch size is the same as on a sin-
gle processor. Asynchronous SGD also has stale
gradients because parameters may update several
times while a gradient is being computed.

To tease apart the impact of batch size and stale
gradients, we perform a series of experiments on
both recurrent neural networks (RNNs) and Trans-
formers manipulating batch size and injecting stal-
eness. Out experiments show that small batch
sizes slightly degrade quality while stale gradients
substantially degrade quality.

To restore convergence, we propose a hybrid
method that computes gradients asynchronously,
sums gradients as they arise, and updates less of-
ten. Gradient summing has been applied to in-
crease batch size or reduce communication (Dean
et al., 2012; Lian et al., 2015; Ott et al., 2018; Bo-
goychev et al., 2018); we find it also reduces harm-
ful staleness. In a sense, updating less often in-
creases staleness because gradients are computed
with respect to parameters that could have been
updated. However, if staleness is measured by the
number of intervening updates to the model, then
staleness is reduced because updates happen less
often. Empirically, our hybrid method converges
comparably to synchronous SGD, preserves final
model quality, and runs faster because processors
are not idle.

2 Exploring Asynchronous SGD

2.1 Baseline: The Problem

To motivate this paper and set baselines, we first
measure how poorly Transformers perform when
trained with baseline asynchronous SGD (Chen
et al., 2016, 2018; Ott et al., 2018). We train a
Transformer model under both synchronous and
asynchronous SGD, contrasting the results with an
RNN model. Moreover, we sweep learning rates
to verify this effect is not an artifact of choosing
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Trans. BLEU RNN BLEU
Learn Rate Sync. Async. Sync. Async.
0.0002 35.08 13.27 34.11 33.77
0.0003 35.66 30.72 33.79 33.95
0.00045 35.59 5.21 33.68 33.68
0.0006 35.42 0.00 34.30 33.76
0.0009 34.79 0.00 34.28 33.47
0.0012 33.96 0.00 34.37 33.23
0.0024 29.35 0.00 33.98 32.83
0.00375 25.25 0.00 33.80 31.89

Table 1: Performance of the Transformer and RNN
model trained synchronously and asynchronously,
across different learning rates.

hyperparameters that favor one scenario. Further
experimental setup appears in Section 4.1.

Results in Table 1 confirm that asynchronous
SGD generally yields lower-quality systems than
synchronous SGD. For Transformers, the asyn-
chronous results are catastrophic, often yielding
0 BLEU. We can also see that Transformers and
asynchronous SGD are more sensitive to learning
rates compared to RNNs and synchronous SGD.

To understand why asynchronous SGD under-
performs, we run series of ablation experiments
based on the differences between synchronous and
asynchronous SGD. We focus on two main as-
pects: batch size and stale gradient updates.

2.2 Batch Size
In asynchronous SGD, each update uses a gradi-
ent from one processor. Synchronous SGD sums
gradients from all processors, which is mathemati-
cally equivalent running a larger batch on one pro-
cessor (though it might not fit in RAM). Therefore,
the effective batch size inN -workers synchronous
training is N times larger compared to its asyn-
chronous counterparts.

Using a larger batch size reduces noise in es-
timating the overall gradient (Wang et al., 2013),
and has been shown to slightly improve perfor-
mance (Smith et al., 2017; Popel and Bojar, 2018).
To investigate whether small batch sizes are the
main issue with asynchronous Transformer train-
ing, we sweep batch sizes and compare with syn-
chronous training.

2.3 Gradient Staleness
In asynchronous training, a computed gradient up-
date is applied immediately to the model, without
having to wait for other processors to finish. This

approach may cause a stale gradient, where pa-
rameters have updated while a processor was com-
puting its gradient. Staleness can be defined as the
number of updates that occurred between the pro-
cessor pulling parameters and pushing its gradient.
Under the ideal case where every processor spends
equal time to process a batch, asynchronous SGD
with N processors produces gradients with stale-
nessN−1. Empirically, we can also expect an av-
erage staleness of N −1 with normally distributed
computation time (Zhang et al., 2016).

An alternative way to interpret staleness is the
distance between the parameters with which the
gradient was computed and the parameters being
updated by the gradient. Therefore, higher learn-
ing rate contributes to the staleness, as the param-
eters move faster.

Prior work has shown that neural models can
still be trained on stale gradients, albeit with po-
tentially slower convergence or a lower quality.
Furthermore, Zhang et al. (2016); Srinivasan et al.
(2018) report that model performance degrades in
proportion to the gradient staleness. We introduce
artificial staleness to confirm the significance of
gradient staleness towards the Transformer perfor-
mance.

3 Incremental Updates in Adam

Investigating the effect of batch size and staleness
further, we analyze why it makes a difference that
gradients computed from the same parameters are
applied one at a time (incurring staleness) instead
of summed then applied once (as in synchronous
SGD). As seen in Section 4.3, our artificial stal-
eness was damaging to convergence even though
gradients were synchronously computed with re-
spect to the same parameters. In standard stochas-
tic gradient descent there is no difference: gradi-
ents are multiplied by the learning rate then sub-
stracted from the parameters in either case. The
Adam optimizer handles incremental updates and
sums differently.

Adam is scale invariant. For example, suppose
that two processors generate gradients 0.5 and 0.5
with respect to the same parameter in the first iter-
ation. Incrementally updating with 0.5 and 0.5 is
the same as updating with 1 and 1 due to scale in-
variance. Updating with the summed gradient, 1,
will only move parameters half as far. This is the
theory underlying the rule of thumb that learning
rate should scale with batch size (Ott et al., 2018).
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Time (t) 0 1 2 3 4 5 6

Constant gt 1 1 1 1 1 1
mt 0 0.1 0.19 0.271 0.344 0.41 0.469
vt 0 0.02 0.04 0.059 0.078 0.096 0.114
m̂t 0 1 1 1 1 1 1
v̂t 0 1 1 1 1 1 1
θ 0 −0.001 −0.002 −0.003 −0.004 −0.005 −0.006

Scaled gt 0.5 1.5 0.5 1.5 0.5 1.5
mt 0 0.05 0.195 0.226 0.353 0.368 0.481
vt 0 0.005 0.05 0.054 0.098 0.101 0.144
m̂t 0 0.5 1.026 0.832 1.026 0.898 1.026
v̂t 0 0.25 1.26 0.917 1.26 1.05 1.26
θ 0 −0.001 −0.002 −0.003 −0.004 −0.005 −0.005

Different sign gt −1 2 −1 2 −1 2
mt 0 −0.1 0.11 −0.001 0.199 0.079 0.271
vt 0 0.02 0.1 0.118 0.195 0.211 0.287
m̂t 0 −1 0.579 −0.004 0.579 0.193 0.579
v̂t 0 1 2.515 2 2.515 2.2 2.515
θ 0 0.001 0.001 0.001 0.000 0.000 −0.000

Table 2: The Adam optimizer slows down when gradients have larger variance even if they have the same average,
in this case 1. When alternating between −1 and 2, Adam takes 6 steps before the parameter has the correct sign.
Updates can even slow down if gradients point in the same direction but have different scales. The learning rate is
α = 0.001.

In practice, gradients reported by different pro-
cessors are usually not the same: they are noisy
estimates of the true gradient. In Table 2, we
show examples where noise causes Adam to slow
down. Summing gradients smooths out some of
the noise. Next, we examine the formal basis for
this effect.

Formally, Adam estimates the full gradient with
an exponentially decaying averagemt of gradients
gt.

mt ← β1mt−1 + (1− β1)gt
where β1 is a decay hyperparameter. It also com-
putes a decaying average vt of second moments

vt ← β2vt−1 + (1− β2)g2t
where β2 is a separate decay hyperparameter. The
squaring g2t is taken element-wise. These esti-
mates are biased because the decaying averages
were initialized to zero. Adam corrects for the bias
to obtain unbiased estimates m̂t and v̂t.

m̂t ← mt/(1− βt1)

v̂t ← vt/(1− βt2)
These estimates are used to update parameters θ

θt ← θt−1 − α
m̂t√
v̂t + ε

where α is the learning rate hyperparameter and ε
prevents element-wise division by zero.

Replacing estimators in the update rule with
statistics they estimate and ignoring the usually-
minor ε

m̂t√
v̂t + ε

≈ Egt√
E(g2t )

which expands following the variance identity

Egt√
E(g2t )

=
Egt√

V ar(gt) + (Egt)2

Dividing both the numerator and denominator by
|Egt|, we obtain

=
sign(Egt)√

V ar(gt)/(Egt)2 + 1

The term V ar(gt)/(Egt)
2 is statistical efficiency,

the square of coefficient of variation. In other
words, Adam gives higher weight to gradients if
historical samples have a lower coefficient of vari-
ation. The coefficient of variation of a sum of N
independent1 samples decreases as 1/

√
N . Hence

sums (despite having less frequent updates) may
1Batch selection takes compute time into account, so tech-

nically noise is not independent.
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actually cause Adam to move faster because they
have smaller coefficient of variation. An example
appears in Table 2: updating with 1 moves faster
than individually applying -1 and 2.

4 Ablation Study

We conduct ablation experiments to investigate the
poor performance in asynchronous Transformer
training for the neural machine translation task.

4.1 Experiment Setup

Our experiments use systems for the WMT 2017
English to German news translation task. The
Transformer is standard with six encoder and
six decoder layers. The RNN model (Barone
et al., 2017) is based on the winning WMT17
submission (Sennrich et al., 2017) with 8 layers.
Both models use back-translated monolingual cor-
pora (Sennrich et al., 2016a) and byte-pair encod-
ing (Sennrich et al., 2016b).

We follow the rest of the hyperparameter set-
tings on both Transformer and RNN models as
suggested in the papers (Vaswani et al., 2017; Sen-
nrich et al., 2017). Both models were trained
on four GPUs with a dynamic batch size of 10
GB per GPU using the Marian toolkit (Junczys-
Dowmunt et al., 2018). Both models are trained
for 8 epochs or until reaching five continuous vali-
dations without loss improvement. Quality is mea-
sured on newstest2016 using sacreBLEU (Post,
2018), preserving newstest2017 as test for later
experiments. The Transformer’s learning rate is
linearly warmed up for 16k updates. We apply
an inverse square root learning rate decay follow-
ing Vaswani et al. (2017) for both models. All of
these experiments use the Adam optimizer, which
has shown to perform well on a variety of tasks
(Kingma and Ba, 2014) and was used in the origi-
nal Transformer paper (Vaswani et al., 2017).

For subsequent experiments, we will use a
learning rate of 0.0003 for Transformers and
0.0006 for RNNs. These were near the top in both
asynchronous and synchronous settings (Table 1).

4.2 Batch Size

We first explore the effect of batch size towards
the model’s quality. We use dynamic batching, in
which the toolkit fits as many sentences as it can
into a fixed amount of memory (so e.g. more sen-
tences will be in a batch if all of them are short).
Hence batch sizes are denominated in memory

sizes. Our GPUs each have 10 GB available for
batches which, on average, corresponds to 250
sentences.

With 4 GPUs, baseline synchronous SGD has
an effective batch size of 40 GB, compared to 10
GB in asynchronous. We fill in the two missing
scenarios: synchronous SGD with a total effec-
tive batch size of 10 GB and asynchronous SGD
with a batch size of 40 GB. Because GPU mem-
ory is limited, we simulate a larger batch size in
asynchronous SGD by locally accumulating gra-
dients in each processor four times before sending
the summed gradient to the parameter server (Ott
et al., 2018; Bogoychev et al., 2018).

Models with a batch size of 40GB achieve better
BLEU per update, compared with its 10GB vari-
ant as shown in Figure 1. However, synchronous
SGD training still outperforms asynchronous SGD
training, even with smaller batch size. From this
experiment, we conclude that batch size is not
the primary driver of poor performance of asyn-
chronously trained Transformers, though it does
have some lingering impact on final model qual-
ity. For RNNs, batch size and distributed training
algorithm had little impact beyond the early stages
of training, continuing the theme that Transform-
ers are more sensitive to noisy gradients.

4.3 Gradient Staleness

To study the impact of gradient staleness, we in-
troduce staleness into synchronous SGD. Work-
ers only pull the latest parameter once every U

updates, yielding an average staleness of (U−1)
2 .

Since asynchronous SGD has average staleness 3
with N = 4 GPUs, we set U = 7 to achieve
the same average staleness of 3. Additionally, we
also tried a lower average staleness of 2 by set-
ting U = 5. We also see the effect of doubling
the learning rate so the parameter moves twice as
far, hence introduces staleness in terms of model
distance.

In order to focus on the impact of the staleness,
we set the batch size to 40 GB total RAM con-
sumption, be they 4 GPUs with 10 GB each in
synchronous SGD or emulated 40 GB batches on
each GPU in asynchronous SGD.

Results are shown in Figure 2. Staleness 3 sub-
stantially degrades Transformer convergence and
final quality (Figure 2a). However, the impact of
staleness 2 is relatively minor. We also continue
to see that Transformers are more sensitive than
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(a) Convergence over updates in Transformer model with
various batch sizes

0 20 40 60 80 100
num updates x1000

0

10

20

30

va
lid

at
io

n 
BL

EU

Convergence per-update

RNN + sync 40 GB
RNN + s nc 10 GB
RNN + sync 40 GB
RNN + s nc 10 GB

(b) Convergence over updates in RNN model with vari-
ous batch sizes

Figure 1: The effect of batch sizes on convergence of Transformer and RNN models.
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(b) RNN model with lr = 0.0006

Figure 2: Artificial staleness in synchronous SGD compared to synchronous and asynchronous baselines, all with
our usual learning rate for each model.
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Figure 3: Artificial staleness in synchronous SGD with doubled learning rates. Transformers with learning rate
0.0006 and staleness 3 (synchronous and asynchronous) did not rise above 0.

RNNs to training conditions.
Results for Transformer worsen when we dou-

ble the learning rate (Figure 3). With staleness 3,
the model stayed at 0 BLEU for both synchronous
or asynchronous SGD, consistent with our earlier
result (Table 1).

We conclude that staleness is primary, but
not wholly, responsible for the poor performance
of asynchronous SGD in training Transformers.
However, asynchronous SGD still underperforms
synchronous SGD with artificial staleness of 3 and

the same batch size (40 GB). Our synchronous
SGD training has consistent parameters across
processors, whereas processors might have differ-
ent parameters in asynchronous training. The stal-
eness distribution might also play a role because
staleness in asynchronous SGD follows a normal
distribution (Zhang et al., 2016) while our syn-
thetic staleness in synchronous SGD follows a uni-
form distribution.
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5 Asynchronous Transformer Training

5.1 Accumulated Asynchronous SGD
Previous experiments have shown that increasing
the batch size and reducing staleness improves the
final quality of asynchronous training. Increasing
the batch size can be achieved by accumulating
gradients before updating. We experiment with
variations on three ways to accumulate gradients:

Local Accumulation: Gradients can be accu-
mulated locally in each processor before sending
it to the parameter server (Ott et al., 2018; Bogoy-
chev et al., 2018). This approach scales the effec-
tive batch size and reduces communication costs
as the workers communicate less often. However,
this approach does not reduce staleness as the pa-
rameter server updates immediately after receiv-
ing a gradient. We experiment with accumulating
four gradients locally, resulting in 40 GB effective
batch size.

Global Accumulation: Each processor sends
the computed gradient to the parameter server nor-
mally. However, the parameter server holds the
gradient and only updates the model after it re-
ceives multiple gradients (Dean et al., 2012; Lian
et al., 2015). This approach scales the effective
batch size. On top of that, it decreases staleness as
the parameter server updates less often. However,
it does not reduce communication costs. We ex-
periment with accumulating four gradients glob-
ally, resulting in 40 GB effective batch size and
0.75 average staleness.

Combined Accumulation: Local and global
accumulation can be combined to gain the bene-
fits of both: reduced communication cost and re-
duced average staleness. In this approach, gradi-
ents are accumulated locally in each processor be-
fore being sent. The parameter server also waits
and accumulates gradients before running an opti-
mizer. We accumulate two gradients both locally
and globally. This yields in 40 GB effective batch
size and 1.5 average staleness.

We tested the three gradient accumulation fla-
vors on the English-to-German task with both
Transformer and RNN models. Synchronous SGD
also appears as a baseline. To compare results, we
report best BLEU, raw training speed, and time
needed to reach several BLEU checkpoints. Re-
sults are shown in Table 3.

Asynchronous SGD with global accumulation
actually improves the final quality of the model
over synchronous SGD, albeit not meaningfully.

This one change, accumulating every 4 gradients
(the number of GPUs), restores quality in asyn-
chronous methods. It also achieves the fastest time
to reach near-convergence BLEU in both Trans-
former and RNN.

While using local accumulation provides even
faster raw speed, the model produces the worst
quality among the other accumulation techniques.
Asynchronous SGD with 4x local accumulation is
essentially just ordinary asynchronous SGD with
4x larger batch size and 4x less update frequency.
In particular, gradient staleness is still the same,
therefore this does not help the convergence per-
update.

Combined accumulation performs somewhat in
the middle. It does not converge as fast as asyn-
chronous SGD with full global accumulation but
not as poor as asynchronous SGD with full local
accumulation. Its speed is also in between, reflect-
ing communication costs.

5.2 Generalization Across Learning Rates

Earlier in Table 1 we show that asynchronous
Transformer learning is very sensitive towards the
learning rate. In this experiment, we use an asyn-
chronous SGD with global gradient accumulation
to train English-to-German on different learning
rates. We compare our result with vanilla syn-
chronous and vanilla asynchronous SGD.

Our finding empirically show that asynchronous
Transformer training while globally accumulat-
ing the gradients is significantly more robust. As
shown in Table 5, the model is now capable to
learn on higher learning rate and yield compara-
ble results compared to its synchronous variant.

5.3 Generalization Across Languages

To test whether our findings on English-to-
German generalize, we train two more transla-
tion systems using globally accumulated gradi-
ents. Specifically, we train English to Finnish (EN
→ FI) and English to Russian (EN→ RU) models
for the WMT 2018 task (Bojar et al., 2018). We
validate our model on newstest2015 for EN→ FI
and newstest2017 for EN→ RU. Then, we test our
model on newstest2017 for EN → DE and new-
stest2018 for both EN → FI and EN → RU. The
same network structures and hyperparameters are
used as before.

The results shown in Table 4 empirically con-
firm that accumulating the gradient to obtain a
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Transformer
Communication accumulation batch avg. speed best hours to X BLEU

local global size staleness (wps) BLEU 33 34 35
synchronous 1 4 40 GB 0 36029 35.66 5.3 7.6 15.6
asynchronous 1 1 10 GB 3 39883 30.72 - - -
asynchronous 4 1 40 GB 3 45177 30.98 - - -
asynchronous 2 2 40 GB 1.5 43115 35.68 4.9 6.8 15.4
asynchronous 1 4 40 GB 0.75 39514 35.84 4.6 6.7 11.4

RNN
Communication accumulation batch avg. speed best hours to X BLEU

local global size staleness (wps) BLEU 32 33 34
synchronous 1 4 40 GB 0 23054 34.30 3.6 6.2 18.8
asynchronous 1 1 10 GB 3 24683 33.76 2.7 5.1 -
asynchronous 4 1 40 GB 3 27090 33.83 4.1 6.1 -
asynchronous 2 2 40 GB 1.5 25578 34.20 3.2 5.9 13.7
asynchronous 1 4 40 GB 0.75 24312 34.48 3.1 5.4 14.5

Table 3: Quality and convergence of asynchronous SGD with accumulated gradients on English to German dataset.
Dashes indicate that model never reach the target BLEU.

Model EN→ DE EN→ FI EN→ RU
newstest 2016 2017 2017 2018 2015 2018
Trans. + synchronous SGD 35.66 28.81 18.47 14.03 29.31 25.49
Trans. + asynchronous SGD 30.72 24.68 11.63 8.73 21.12 17.78
Trans. + asynchronous SGD + 4x global accum. 35.84 28.66 18.47 13.78 29.12 25.25
RNN + synchronous SGD 34.30 27.43 16.94 12.75 26.96 23.11
RNN + asynchronous SGD 33.76 26.84 14.94 10.96 26.39 22.48
RNN. + asynchronous SGD + 4x global accum. 34.48 27.56 17.05 12.76 27.15 23.41

Table 4: The effect of global accumulation on translation quality for different language pairs on development and
test set, measured with BLEU score.

Communication
Sync. Async. Async

Learn Rate + 4x GA
0.0003 35.66 30.72 35.84
0.0006 35.42 0.00 35.81
0.0012 33.96 0.00 33.62
0.0024 29.35 0.00 1.20

Table 5: Performance of the asynchronous Transformer
on English to German with 4x Global accumulations
(GA) across different learning rates on development set
measured with BLEU score.

larger batch size and a lower staleness in Trans-
former massively improves the result, compared
to basic asynchronous SGD (+6 BLEU on aver-
age). The improvement is smaller in RNN experi-
ment, but still substantial (+1 BLEU on average).
We also have further confirmation that training

a Transformer model with normal asynchronous
SGD is impractical.

6 Related Work

6.1 Gradient Summing

Several papers wait and sum P gradients from dif-
ferent workers as a way to reduce staleness. In
Chen et al. (2016), gradients are accumulated from
different processors, and whenever theP gradients
have been pushed, other processors cancel their
process and restart from the beginning. This is rel-
atively wasteful since some computation is thrown
out and P−1 processors still idle for synchroniza-
tion. Gupta et al. (2016) suggest that restarting is
not necessary but processors still idle waiting for
P to finish. Our proposed method follows Lian
et al. (2015) in which an update happens every
time P gradients have arrived and processors con-
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tinually generate gradients without synchroniza-
tion.

Another direction to overcome stale gradient
is to reduce its effect towards the model update.
McMahan and Streeter (2014) dynamically adjust
the learning rate depending on the staleness. Dutta
et al. (2018) suggests completely ignoring stale
gradient pushes.

6.2 Increasing Staleness

In the opposite direction, some work has added
noise to gradients or increased staleness, typi-
cally to cut computational costs. Recht et al.
(2011) propose a lock-free asynchronous gradient
update. Lossy gradient compression by bit quanti-
zation (Seide et al., 2014; Alistarh et al., 2017) or
threshold based sparsification (Aji and Heafield,
2017; Lin et al., 2017) also introduce noisy gradi-
ent updates. On top of that, these techniques store
unsent gradients to be added into the next gradient,
increasing staleness for small gradients.

Dean et al. (2012) mention that communica-
tion overload can be reduced by reducing gradient
pushes and parameter synchronization frequency.
In McMahan et al. (2017), each processor inde-
pendently updates its own local model and peri-
odically synchronize the parameter by averaging
across other processors. Ott et al. (2018) accumu-
lates gradients locally, before sending it to the pa-
rameter server. Bogoychev et al. (2018) also lo-
cally accumulates the gradient, but also updates
local parameters in between.

7 Conclusion

We evaluated the behavior of Transformer and
RNN models under asynchronous training. We
divide our analysis based on two main different
aspects in asynchronous training: batch size and
stale gradient. Our experimental results show that:

• In general, asynchronous training damages
the final BLEU of the NMT model. However,
we found that the damage with the Trans-
former is significantly more severe. In ad-
dition, asynchronous training also requires a
smaller learning rate to perform well.

• With the same number of processors, asyn-
chronous SGD has a smaller effective batch
size. We empirically show that training un-
der a larger batch size setting can slightly im-
proves the convergence. However, the im-

provement is very minimal. The result in
asynchronous Transformer model is subpar,
even with a larger batch size.

• Stale gradients play a bigger role in the
training performance of asynchronous Trans-
former. We have shown that the Transformer
model’s performed poorly by adding a syn-
thetic stale gradient.

Based on these findings, we suggest applying a
modification in asynchronous training by accumu-
lating a few gradients (for example for the number
of processors) in the server before applying an up-
date. This approach increases the batch size while
also reducing the average staleness. We empiri-
cally show that this approach combine the high
quality training of synchronous SGD and high
training speed of asynchronous SGD.

Future works should extend those experiments
to different hyper-parameter configurations. One
direction is to investigate wether vanilla asyn-
chronous Trasnformer can be trained under dif-
ferent optimizers. Another direction is to exper-
iment with more workers where gradients in asyn-
chronous SGD are more stale.
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