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Abstract
We present set to ordered text, a natural lan-
guage generation task applied to automatically
generating discharge instructions from admis-
sion ICD (International Classification of Dis-
eases) codes. This task differs from other nat-
ural language generation tasks in the following
ways: (1) The input is a set of identifiable en-
tities (ICD codes) where the relations between
individual entities are not explicitly specified.
(2) The output text is not a narrative descrip-
tion (e.g. news articles) composed from the
input. Rather, inferences are made from the
input (ICD codes, which represent diagnoses
and clinical procedures) to generate the output
(instructions). (3) There is an optimal order in
which each sentence (instruction) should ap-
pear in the output. Unlike most other tasks,
neither the input (ICD codes) nor their corre-
sponding text representations of diagnoses and
clinical procedures appear in the output, so the
ordering of the output instructions needs to be
learned in an unsupervised fashion. We hy-
pothesize that each instruction in the output is
mapped to a subset of ICD codes specified in
the input. We propose a neural architecture
that jointly models (a) subset selection: choos-
ing relevant subsets from a set of input entities;
(b) content ordering: learning the order of in-
structions; (c) text generation: representing the
instructions corresponding to the selected sub-
sets in natural language. In addition, we penal-
ize redundancy during beam search to improve
tractability for long text generation. We for-
mulate the problem setup and conducted ex-
periments using the MIMIC-III dataset. Our
model outperforms baseline models in both
BLEU scores and human evaluations.

1 Introduction

1.1 Problem Statement
Many healthcare applications exhibit a strong
mapping between numerical or categorical infor-
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Figure 1: Set to Ordered Text: Problem Definition

mation and clinical instructions. To develop lan-
guage generation capabilities for these settings,
we define a task where discharge instructions are
automatically generated using admission ICD (In-
ternational Classification of Diseases) codes1 to
potentially streamline clinical workflow. We de-
fine a task where the input is a set of identifiable
items (ICD codes) and the output consists of or-
dered text sequences (instructions), which are in-
ferred from the input (see Figure 1).

1.2 Proposed Approach
We hypothesize that each discharge instruction in
the output is mapped to a subset of ICD codes
specified in the input. Our proposed approach thus
models the correlations between individual enti-
ties in the input set to choose the most relevant
subsets, and learn to generate their correspond-
ing textual outputs in the appropriate order. We
also incorporate explicit means for reducing re-
dundancy during decoding. We empirically verify

1It is standard practice for healthcare providers to as-
sign ICD codes to represent information regarding diagnosis
and/or procedures for each hospital visit for medical billing
purposes.



6166

the proposed approach by generating discharge in-
structions from ICD codes assigned during hospi-
tal admissions.

1.3 Relation to Other Work

For most natural language generation tasks, the re-
lations between the input entities are specified in
one way or another. For text-to-text generation
(e.g. news articles), the relation between entities
are semantically encoded in sequences of words
(Paulus et al., 2017). For graph-to-text generation,
relations between the nodes in a graph are char-
acterized through labeled or unlabeled edges (Liu
et al., 2019b). For text generation with database
inputs, relations are usually specified through the
attributes of each data entry (Lebret et al., 2016).
In our problem setup, there is no explicit charac-
terization of the relations between the input ICD
codes assigned to a patient’s visit.

Most natural language generation problems fo-
cus on generating descriptions, which often in-
clude the entities specified in the input. Examples
include summarization or text generation from
database records (Cheng and Lapata, 2016; Jham-
tani et al., 2018). In our case, both the content and
the ordering of the output need to be inferred from
the input data.

Our work is closest to the line of research on
text expansion, where the generated text is condi-
tioned on a set of entities (Clark et al., 2018; Zhao
et al., 2018; Kiddon et al., 2016). Although in this
line of work the relations between the entity in-
put set are not specified, as in our case, these input
entities often appear in the output text, making it
more straightforward to model the order of the in-
put entities appearing in the output. In our case,
neither the input entity set (ICD codes) nor their
corresponding text representations (diagnoses and
clinical procedures) occur in the generated output
(instructions).

2 Approach

2.1 Task Definition

For input set S, the generation task can be speci-
fied as follows,

x← F (S,X)

o← Gen(x),

where F represents the mechanism to choose the
next subset x given input S and the already chosen

sequence of subsets X; Gen generates the output
sentence o from the chosen subset x.

2.2 Neural Architecture
The proposed neural architecture is shown in Fig-
ure 2. The major components of the network are
a lookup table for ICD codes, gates for content
and subset selection, one RNN for content order-
ing and another one for decoding each discharge
instruction. The network also posses two attention
layers for finding the correlations between input
ICD codes and for attending to the chosen con-
tent at each stage of instruction generation. The
instruction ordering RNN is initialized with a zero
vector. Below we elaborate on the major compo-
nents of the proposed neural architecture in more
detail. Bold symbols in equations represent pa-
rameter matrices.

2.2.1 Content and Subset Selection
The content selection gate selects the relevant con-
tent from each ICD code during each instruction
generation phase. The gate takes the ICD code
embedding, the previous state of the content or-
dering RNNHt−1 and the correlations among ICD
codes into account for selecting the content. The
content correlation vector Cj for each ICD code
embedding icdj in the input is computed as fol-
lows:

αj,k = exp(icdTj Waicdk)

Cj =
∑
k 6=j

αj,kicdk

The content gate value computation and the sub-
sequent content selection is conducted as follows:

gcj = sigmoid(Wgc[icdj ;Cj ;Ht−1])

icd
′
j = gcj � icdj

The selected content from each of the input ICD
code passes through a subset selection gate. Each
subset is selected as a probability distribution over
the input set of ICD codes as follows:

gsj = sigmoid(Wgs[icdj ;Cj ;Ht−1])

gsj = softmax(gsj) ∀j

gsj ,∀j represents the distribution of ICD codes
in the subset chosen at the current time step of
content ordering RNN. The subset selection gate
updates the output from content selection gate as
follows:

icd”j = gsjicd
′
j (1)
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Figure 2: Proposed Neural Architecture

In the Figure 2, trapezoids represent the content
and subset selection gates. During each stage
of content and subset selection, the gates receive
information regarding content and order of al-
ready selected subsets from the instruction order-
ing RNN. The figure also depicts the self attention
layer which computes Cj .

2.2.2 Content Ordering and Instruction
Generation

We use a GRU recurrent neural network (Chung
et al., 2014) for content ordering. The RNN is
initialized with a zero vector before the network
activity begins and it takes the selected content of
ICD codes as input during each time step. At time-
step t,

Ht = GRU(It, Ht−1), (2)

where It is the mean vector of icd”j s computed us-
ing the Equation 1. The instruction decoder RNN
(also a GRU) is initialized with Ht to generate the
instruction at the current time step of content or-
dering RNN. During each time step of decoding,
the decoder RNN attends over the current set of
icd”j to generate the sequence of words wt′ in the
instruction as formulated below.

βt′ ,k = exp(hT
t′
Wcicd

”
k)

ct′ =
∑

βt′ ,kicd
”
k

h
′

t′
= tanh(Wh[ht′ , ct′ ])

where ht′ is the hidden state of the decoder at
time-step t

′
. The probability distribution over the

output vocabulary for generating the word wt′ at
time step t

′
of the instruction generating decoder

is computed as below,

P (wt′ |w<t′ , {icd”i , .., icd”n}) =

softmax(Woh
′

t′
+ bo)

(3)

The portion of Figure 2 marked in blue, represents
the set of computations detailed in the current sec-
tion.

2.2.3 Beam Search with Redundancy
Penalization

In our approach, instructions are decoded one af-
ter another, corresponding to each hidden state of
the content ordering RNN, as generating one sin-
gle long text sequence could lead to intractability.
In addition, we include a penalization factor for re-
ducing redundancy in the cost function C of beam
search:

C = −
t∑

i=1

logPi + λ ∗ Jsim(qt, QI) (4)

where qt is the set of words currently chosen into
the instruction under generation,QI represents the
set of words in the previously generated instruc-
tions, Jsim computes Jaccard’s Similarity(Hamers
et al., 1989) and λ is a constant tuned to obtain a
maximum BLEU score on development set.
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Model Accuracy
SVM 73 %

Logistic Regression 91 %

Table 1: Instruction vs. non-instruction classification
results

3 Experiments

In this section, empirical evaluation is conducted
to quantify the accuracy of our model regarding
text generation, content ordering, correctness of
grammar and informativeness.

3.1 Corpus: ICD Codes to Discharge
Instructions2

Our dataset consisting of admission ICD codes
and their corresponding discharge instructions
is derived from MIMIC-III3. MIMIC-III is a
database containing clinical information regarding
patients, admission details, lab tests and medical
notes (Ew et al., 2016). For each patient admit-
ted to the hospital, there is a recorded set of ICD
codes assigned for billing purposes to specify the
diagnoses and clinical procedures related to the
patient’s admission. We assigned unique IDs for
diagnoses and procedure codes and did not distin-
guish between them. Patients receive a list of dis-
charge instructions written by clinical staff before
they return home. These discharge instructions are
embedded in larger documents called discharge re-
ports.

We trained statistical models (SVM and logistic
regression) to classify instruction sentences (e.g.
commands) from non-instruction sentences in the
discharge reports using TF-IDF vectors computed
from sentences in the discharge reports as features.
The dataset is split into the training set, develop-
mental set and test set, each comprising 2,000, 500
and 500 sentences, respectively. The accuracy of
this binary classification is in Table 1. The logis-
tic regression classifier was used to construct the
corpus that maps ICD codes to discharge instruc-
tions, resulting in 18,900 of input output pairs for
training and 900 each for testing and development.
Manual verification was performed to ensure data
quality for testing and developmental sets. Fol-
lowing customary data post-processing protocols,
named entities such as numerical values and per-

2https://github.com/littoncode/mimic scripts3
3https://mimic.physionet.org/gettingstarted/overview/

son names were replaced by place holder tags such
as [num] and [person name].

3.2 Implementation Details

We chose different base models and different set-
tings of our model to evaluate the efficiency of our
method. In this section we describe each of the
models in detail.

3.2.1 Seq2Seq

In this setting we use sequence to sequence model
with the attention mechanism (Bahdanau et al.,
2014). The set of input ICD codes are arranged as
a single sequence in random order and the model
generates the entire set of instructions as a single
sequence. The learning algorithm minimizes neg-
ative log-likelihood. Beam search decoding with
beam size of 9 is used during testing.

3.2.2 Set2SingleSeq

In this setup, the model is a variant of (Zhou et al.,
2017), where input is a set and content selection
is conducted by learning correlations between the
input items. This is also a variant of our method,
where the output is treated as a single sequence in-
stead of a set of instructions. Any icdj in the input
set of ICD codes are updated to selected content
icd

′
j using the content selection gate. The content

correlation vector Cj for each icdj is computed
below:

αj,k = exp(icdTj Waicdk)

Cj =
∑
k 6=j

αj,kicdk

The content gate value computation and subse-
quent content selection is conducted as follows:

gcj = sigmoid(Wgc[icdj ;Cj ])

icd
′
j = gcj � icdj

The entire sequence of instructions is decoded
using the computed set of icd

′
j . For this purpose,

the decoder is initialized with the mean vector of
icd

′
j and the decoder attends over all the set of

icd
′
j during each time-step of decoding. The learn-

ing algorithm minimizes negative log likelihood
for optimizing parameters. Beam search decoding
with beam size of 9 is used during testing.
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3.2.3 Set2MultipleSeq

This setting represents the method explained in the
Section 2.2. In this setup, instructions are gener-
ated one after another in the learned order. The
optimized size for ICD embedding, content order-
ing RNN, and decoder RNN is 600. Sizes of net-
work parameter matrices Wa, Wgc, Wgs, Wc

and Wo are adjusted accordingly. The learning al-
gorithm minimizes negative log likelihood for op-
timizing parameters. Error is averaged for all in-
struction decoder time steps for the set of instruc-
tions generated. Beam search with beam size of 9
is used during testing.

3.2.4 Set2MultipleSeq+Opt

This setup is an enhanced version of
Set2MultipleSeq (Section 3.2.3), but during
beam search decoding redundancy is penalized
(see Section 2.2.3). The value of λ in Equation 4
is set to 2.7 to obtain maximum content coverage
on the development set.

4 Evaluation Study

4.1 Evaluation I: Content Generation

Instruction generation is quantitatively estimated
by measuring the N-gram match of the gener-
ated content with ground-truth in test set using
the BLEU metric (Papineni et al., 2002). We did
not set any stopping criteria for the number of
instructions to be generated for simplicity sake.
However, we generated as many number of in-
structions in the corresponding test record. The
results are shown in Table 2. Set2MultipleSeq
yields a better score than Seq2Seq, indicating the
effectiveness of content selection and self atten-
tion for modeling the correlation between ICD
codes. The proposed Set2MultipleSeq approach
yields even more improvement, validating that the
introduction of subset selection and content selec-
tion helped in defining the content and context of
an instruction during generation. This resulted in
more accurate generation of instructions one after
the other. When penalizing redundancy during de-
coding (Set2MultipleSeq+Opt), it explicitly forces
the instruction decoder to generate an instruction
with novel content during each stage of the content
ordering RNN, thereby reducing errors caused by
repeated content.

Method Content Generation
BLEU BLEU-2

Seq2Seq 6.3 22.30
Set2SingleSeq 7.6 27.00

Set2MultipleSeq 9.6 33.30
Set2MultipleSeq+Opt 12.6 36.30

Table 2: Evaluation I: Content Generation.

Method Content Ordering
P R F

Seq2Seq 0.06 0.07 0.07
Set2SingleSeq 0.07 0.09 0.08

Set2MultipleSeq 0.18 0.19 0.18
Set2MultipleSeq+Opt 0.22 0.23 0.22

Table 3: Evaluation II: Content Ordering: P is Preci-
sion, R is Recall and F is F- Measure. The values are
approximated to two decimal points

4.2 Evaluation II: Content Ordering

For evaluating content ordering, we use a variant
of the metric used by Gong et al. (2016). In this
scheme, we compare the order of words in gen-
erated sequence of instructions with ground-truth:
We take the set of all order bigrams So from the
generated sequence of instructions where the first
word in each bigram is from a preceding instruc-
tion and the second word is from any instruction
succeeding it in the sequence. Precision and recall
is computed as:

Precision =
|So

⋂
S

′
0|

|S0|

Recall =
|So

⋂
S

′
0|

|S′
0|

S
′
0 is the order bigrams in the corresponding hu-

man written set of instructions in testset. Thus the
metric scores the ordering better when the right
content is generated in the right order. F-Measure
is computed as the harmonic mean of precision
and recall. The results in Table 3 show that there
is a considerable improvement in the quality of
ordering with after introducing content ordering
mechanism in the neural architecture. Better or-
dering score for Set2MultipleSeq+Opt is obvi-
ous as redundant content adversely affect instruc-
tion ordering.
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Method %
Set2SingleSeq 20

Set2MultipleSeq 77
Ambigous 3

Table 4: Evaluation III: Gramaticality: The values rep-
resent percentage of times instructions generated by the
model is chosen by the human evaluator.

4.3 Evaluation III: Human Analysis

We conduct human evaluations to measure if
the generated instructions are grammatically
correct and how informative they are. Four human
evaluators who are post graduate students in
linguistics were recruited and each given 30 sets
of instructions from the testset.

4.3.1 Grammaticality
For each of the 30 instructions chosen for human
evaluation, the evaluators were given a number of
choices, each generated from a different model,
and asked to choose the option that was the most
grammatically correct. For each question, the in-
structions from the different models were shown to
the evaluators in a random order to avoid any kind
of bias. Instructions generated by Set2SingleSeq
and Set2MultipleSeq. Set2MultipleSeq+Opt is ex-
cluded as it is an optimization for avoiding redun-
dancy without any direct influence on the gram-
matical quality of text generated by neural models.

Results aggregated across evaluators through
majority voting are shown in Table 4. The re-
sults show that incorporating neural network com-
ponents for content selection and ordering helps
in defining the context of an instruction and
generating the right content in the right form.
Set2MultipleSeq generates one instruction at a
time, while Set2SingleSeq generates the entire set
of instructions as one sequence. Grammaticality is
shown to improve Set2MultipleSeq when only one
(shorter) instruction needs to be decoded at a time
.

4.3.2 Informativeness
We also conducted human experiments to evalu-
ate the informativeness of generated instructions.
The evaluators were asked to read the reference set
of instructions prior to examining the instructions
generated by competing methods. They were then
asked to choose the model that generated instruc-
tions retaining the most information from the ref-

Method %
Set2SingleSeq 30

Set2MultipleSeq 63
Ambigous 7

Table 5: Evaluation III: Informativeness: The values
represent percentage of times instructions generated by
the model is chosen by a human evaluator.

Method %
Set2MultipleSeq 38

Set2MultipleSeq+opt 61
Ambigous 1

Table 6: Evaluation III: Informativeness: The values
represent percentage of times instructions generated by
the model is chosen

erence instructions. If two models present instruc-
tions that are equally informative, then the model
providing richer information density is chosen.

We conducted separate evaluations for two
pairs of competing systems (Set2SingleSeq,
Set2MultipleSeq) and (Set2SingleSeq,
Set2MultipleSeq+Opt). The results are shown
in Tables 5 and 6 respectively. Results shown
in Table 5 explains that incorporating neural
components for subset selection and content or-
dering helps in improving informative instruction
generation. We observe that conducting content
selection multiple times during each time step
through content ordering RNN helps in generating
a discrete set of instructions (Set2MultipleSeq).
Table 6 shows that penalizing redundancy during
beam search decoding reduces noise and helps
in generating instructions with rich information
density. Inter-evaluator agreement for the entire
set of human evaluation is reasonably high:
Cohen’s kappa coefficient is 0.79.

5 Discussions

5.1 Qualitative Comparison Across Models

Table 7 shows an example of instructions gener-
ated by the different approaches we investigated.
Though Set2SingleSeq generates relevant instruc-
tions, it repeats the same content, misses out on
instructions, and is less grammatically correct.

Set2MultipleSeq shows qualitative improve-
ment over Set2SingleSeq, where the repeated con-
tent is largely reduced and the grammaticality is
improved. However, for Set2MultipleSeq, there is
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Method Generated Content
Set2SingleSeq shower daily including washing incisions gently with mild

soap , no baths or swimming until cleared by surgeon. shower
daily and pat incisions dry no lotions , creams or powders on
incisions no driving for [num]. shower daily , let water flow
over wounds , pat dry with a towel towel , do no

Set2MultipleSeq 1) shower daily and pat incisions dry no lotions , creams or
powders on incisions, no baths or swimming until cleared by
surgeon.
2) no lifting greater then [num] pounds for [num] weeks , do
not drive or operate heavy machinery while taking any nar-
cotic pain medication such as percocet
3) call for any fever , redness or drainage from wounds or
weight gain more than [num] pounds
4) call your doctor for any fever , redness or drainage from
wounds

Set2MultipleSeq+Opt 1) shower daily and pat incisions dry no lotions , creams or
powders on incisions, no baths or swimming until cleared by
surgeon.
2) no lifting greater then [num] pounds for [num] weeks , do
not drive or operate heavy machinery while taking any nar-
cotic pain medication such as percocet
3) call for any fever , redness or drainage from wounds or
weight gain more than [num] pounds
4) follow up with your primary care doctor , dr [person name]
, in the next week as well

Nurse Written Instructions 1) shower, no baths, no lotions,creams or powders to incisions
2) no lifting more than [num] pounds for [num] weeks from
surgery
3) do not drive or drink alcohol while taking narcotic pain
medications
4) call with fever, redness or drainage from incision or weight
gain more than [num] pounds in one day or five in one week.

Table 7: Examples from Evaluation II: Content Ordering. Person names and numeric values are specified as
[person name] and [num] respectively. Repetitive content is color coded in blue for Set2SingleSeq and in purple
for Set2MultipleSeq.

still repeated content in the 3rd and 4th instruc-
tions.

Set2MultipleSeq+Opt brings more tractability
in the neural model by penalizing redundancy and
preventing noisy content generation. In the exam-
ple shown, Set2MultipleSeq+Opt improves over
Set2MultipleSeq, as the content in the 3rd instruc-
tion is no longer repeated in the 4th instruction.

5.2 Variability in Groundtruth References

Variability stemming from communication style
differences across clinicians could potentially be
one reason why the overall scores for content gen-

eration (BLEU scores) and content ordering (F-
measure) are on the low end. We observed that
for the same set of ICD codes, different clinicians
have different writing styles, even when the un-
derlying content of the instructions are the same.
Consider the following examples:

(a) shower daily and pat incisions dry no lotions
, creams or powders on incisions, no baths or
swimming until cleared by surgeon

(b) shower, no baths, no lotions,creams or pow-
ders to incisions

In (a), a more detailed way of representing the in-
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struction is presented, while in (b) the same infor-
mation is represented in a more succinct manner.

If a clinician decides to be more detailed in writ-
ing the instructions, the clinician might also in-
clude specific information such as medication de-
tails: “Please be sure to take aspirin and plavix ev-
eryday as directed.” Such inconsistency of how in-
formation such as medication details are specified
in the instructions can potentially lead the models
to generate noisy content.

6 Related Prior Work

6.1 Natural Language Generation

Here we define natural language generation as the
task of generating text from textual input or non-
linguistic input (e.g. graphs, data records). Pre-
vious work on text generation span across vari-
ous input types and methods. Initial models used
learned rules (Reiter et al., 2003, 2005) and manu-
ally engineered templates (Kukich, 1983; McRoy
et al., 2000; McKeown, 1985) for constructing
the output text. There is also work using au-
tomatic means for generating templates (Angeli
et al., 2010; Howald et al., 2013).

Such template approaches could be inherently
less efficient in modeling semantics when com-
pared to neural networks, especially if there is am-
ple training data. Initial neural models for text
generation were first motivated by machine trans-
lation (Bahdanau et al., 2014; Cho et al., 2014; Sri-
vastava et al., 2014). However, such approaches
are less suitable in comprehending the semantics
of structures that are more complex than short
sequences and in generating longer sequences
(Paulus et al., 2017; Wiseman et al., 2018). Re-
cent advancement in text to text generation has pri-
marily focused on news document summarization
(Cheng and Lapata, 2016; Nallapati et al., 2017;
See et al., 2017; Paulus et al., 2017).

A portion of related work focuses on generat-
ing text from an input graph (Koncel-Kedziorski
et al., 2019; Song et al., 2018, 2017): Graphs with
labeled edges (e.g., knowledge graphs or abstract
meaning representation) are used to generate a di-
rect description of the information characterized in
the input graph.

Text generation methods from data records has
been investigated for different datasets such as
wikipedia infobox (Lebret et al., 2016; Liu et al.,
2018; Sha et al., 2018; Perez-Beltrachini and
Lapata, 2018), weather predictions (Mei et al.,

2016) or sport game summaries (Wiseman et al.,
2017). There is a subset of work on text gen-
eration from data records which relies on con-
tent planning for generating a single sentence (Liu
et al., 2018), while some other researchers gen-
erate multi-sentence outputs from structured data
inputs (Puduppully et al.; Jhamtani et al., 2018).
Puduppully et al. generated basketball game sum-
maries by explicitly learning the order in which
information should be mentioned in the output by
generating an intermediate content plan.

6.2 Text Generation in Healthcare

A lot of NLP work in the medical domain has fo-
cused on information extraction (see (Wang et al.,
2018) for a review). Driven by healthcare applica-
tion demands, recently there is emerging interest
in areas such as automatic ICD code assignment
(Zhang et al., 2017; Scheurwegs et al., 2017; Mul-
lenbach et al., 2018), risk prediction (Ma et al.,
2018), and dialogue comprehension (Liu et al.,
2019a). One of the earliest work on text generation
in the medical domain dates back to more than two
decades ago, where interactive systems generate
summaries of the patient status for physicians and
tailored explanations of clinical information for
individual patients (Buchanan et al., 1995). Re-
cent advances of neural modeling has rekindled in-
terest in text generation. Text generation has had
more presence in the media and journalism do-
main, ranging from image captioning (Kinghorn
et al., 2018) to news reports on weather (Reiter
et al., 2005) and sports (Wiseman et al., 2017). For
the medical domain, interest in neural text gener-
ation has been springing up, with a primary focus
on document summarization (Moradi and Ghadiri,
2018). For interested readers, Pauws et al. (2019)
provides a recent review on how data-to-text tech-
nology can be applied in healthcare settings.

7 Conclusion

We proposed a neural architecture that learns to
generate content in a specific order (discharge in-
structions for patients) without explicit specifica-
tions of the relations between input entities (ICD
codes representing diagnoses and procedures) and
how the input entities relate to the output. Our
approach yields encouragingly better results in
comparison with strong baselines. We further
improved performance by penalizing redundancy
during decoding.
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