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Abstract

Implicit discourse relation classification is one
of the most difficult tasks in discourse parsing.
Previous studies have generally focused on ex-
tracting better representations of the relational
arguments. In order to solve the task, it is how-
ever additionally necessary to capture what
events are expected to cause or follow each
other. Current discourse relation classifiers fall
short in this respect. We here show that this
shortcoming can be effectively addressed by
using the bidirectional encoder representation
from transformers (BERT) proposed by Devlin
et al. (2019), which were trained on a next-
sentence prediction task, and thus encode a
representation of likely next sentences. The
BERT-based model outperforms the current
state of the art in 11-way classification by 8%
points on the standard PDTB dataset. Our ex-
periments also demonstrate that the model can
be successfully ported to other domains: on
the BioDRB dataset, the model outperforms
the state of the art system around 15% points.

1 Introduction

Discourse relation classification has been shown to
be beneficial to multiple down-stream NLP tasks
such as machine translation (Li et al., 2014), ques-
tion answering (Jansen et al., 2014) and summa-
rization (Yoshida et al., 2014). Following the re-
lease of the Penn Discourse Tree Bank (Prasad
et al., 2008, PDTB), discourse relation classifica-
tion has received a lot of attention from the NLP
community, including two CoNLL shared tasks
(Xue et al., 2015, 2016).

Discourse relations in texts are sometimes
marked with an explicit connective (e.g., but, be-
cause, however), but these explicit signals are of-
ten absent. With explicit connectives acting as
informative cues, it is relatively easy to classify
the discourse relation with high accuracy (93.09%
on four-way classification in (Pitler et al., 2008)).

When there is no connective, classification has
to rely on semantic information from the rela-
tional arguments. This task is very challenging,
with state-of-the-art systems achieving accuracy
of only 45% to 48% on 11-way classification.
Consider example 1:

(1) [The joint venture with Mr. Lang wasn’t a
good one.]Arg1 [The venture, formed in
1986, was supposed to be Time’s low-cost,
safe entry into women’s magazines.]Arg2

implicit Comp.Concess.expectation
relation from PDTB: wsj 1903

In order to correctly classify the relation, it is
necessary to understand that Arg1 raises the ex-
pectation that the next discourse segment may pro-
vide an explanation for why the venture wasn’t
good (e.g., that it was risky), and Arg2 contrasts
with this discourse expectation. More generally,
this means that a successful discourse relation
classification model would have to be able to learn
typical temporal event sequences, reasons, con-
sequences etc. for all kinds of events. Statistical
models attempted to address this intuition by giv-
ing models word pairs from the two arguments as
features (Lin et al., 2009; Park and Cardie, 2012;
Biran and McKeown, 2013; Rutherford and Xue,
2014), so that models could for instance learn to
recognize antonym relations between words in the
two arguments.

Recent models exploit such similarity relations
between the two arguments, as well as simpler
surface features that occur in one relational ar-
gument and correlate with specific coherence re-
lations (e.g., the presence of negation, temporal
expressions etc. may give hints as to what coher-
ence relation may be present, see Park and Cardie
(2012); Asr and Demberg (2015)). However, rela-
tions between arguments are often a lot more di-
verse than simple contrasts that can be captured
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through antonyms, and may rely on world knowl-
edge (Kishimoto et al., 2018). It is hence clear that
one cannot learn all these diverse relations from
the very small amounts of available training data.
Instead, we would have to learn a more general
representation of discourse expectations.

Many recent discourse relation classification
approaches have focused on cross-lingual data
augmentation (Shi et al., 2017, 2019), training
models to better represent the relational argu-
ments by using various neural network models, in-
cluding feed-forward network (Rutherford et al.,
2017), convolutional neural networks (Zhang
et al., 2015), recurrent neural network (Ji et al.,
2016; Bai and Zhao, 2018), character-based (Qin
et al., 2016) or formulating relation classification
as an adversarial task (Qin et al., 2017). These
models typically use pre-trained semantic embed-
dings generated from language modeling tasks,
like Word2Vec (Mikolov et al., 2013), GloVe
(Pennington et al., 2014) and ELMo (Peters et al.,
2018).

However, previously proposed neural models
still crucially lack a representation of the typi-
cal relations between sentences: to solve the task
properly, a model should ideally be able to form
discourse expectations, i.e., to represent the typi-
cal causes, consequences, next events or contrasts
to a given event described in one relational argu-
ment, and then assess the content of the second
relational argument with respect to these expec-
tations (see Example 1). Previous models would
have to learn these relations only from the anno-
tated training data, which is much too sparse for
learning all possible relations between all events,
states or claims.

The recently proposed BERT model (Devlin
et al., 2019) takes a promising step towards ad-
dressing this problem: the BERT representations
are trained using a language modelling and, cru-
cially, a “next sentence prediction” task, where
the model is presented with the actual next sen-
tence vs. a different sentence and needs to select
the original next sentence. We believe it is a good
fit for discourse relation recognition, since the task
allows the model to represent what a typical next
sentence would look like.

In this paper, we show that a BERT-based model
outperforms the current state of the art by 8%
points in 11-way implicit discourse relation clas-
sification on PDTB. We also show that after pre-

Figure 1: The architecture from BERT (Devlin et al.,
2019) for fine-tuning of implicit discourse relation clas-
sification.

trained with small size cross-domain data, the
model can be easily transferred to a new domain:
it achieves around 16% accuracy gain on BioDRB
compared to state of the art model. We also show
that the Next Sentence Prediction task played an
important role in these improvements.

2 Next Sentence Prediction

Devlin et al. (2019) proposed the Bidirectional En-
coder Representation from Transformers (BERT),
which is designed to pre-train a deep bidirectional
representation by jointly conditioning on both left
and right contexts. BERT is trained using two
novel unsupervised prediction tasks: Masked Lan-
guage Modeling and Next Sentence Prediction
(NSP). The NSP task has been formulated as a
binary classification task: the model is trained to
distinguish the original following sentence from a
randomly chosen sentence from the corpus, and it
showed great helps in multiple NLP tasks espe-
cially inference ones. The resulting BERT repre-
sentations thus encode a representation of upcom-
ing discourse content, and hence contain discourse
expectation representations which, as we argued
above, are required for classifying coherence rela-
tions.

3 Experiments and Results

As shown in Figure 1, E denotes the input to-
kens’ embedding and T are the target words. In
our case they are identical. We fit the implicit
discourse relation task into sentence-pair classifi-
cation proposed in BERT. Argument 1 and Argu-
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Methods PDTB-Lin PDTB-Ji Cross Validation

Cai and Zhao (2017) - 45.81 -
Kishimoto et al. (2018) 38.77 - 39.80
Bai and Zhao (2018) 45.73 48.22 -
Shi and Demberg (2019) 45.82 47.83 41.29

Bi-LSTM + w2v 300 37.95(0.59) 40.57(0.67) 37.82(0.74)
BERT 53.13(0.37) 53.30(0.39) 49.30(1.33)
BERT + WSJ w/o NSP 53.39(0.49) 51.28(0.49) 49.32(1.24)
BERT + WSJ 54.82(0.61)∗ 53.23(0.32)∗ 49.35(0.83)

Table 1: Accuracy (%) with standard deviation in brackets of implicit discourse relation classification on different
settings of PDTB level 2 relations. NSP refers to the subtask “next sentence prediction” in the pre-training of
BERT. Numbers in bold signal significant improvements over the previous state of the art (p<0.01). Numbers with
∗ denote significant improvements over BERT + WSJ w/o NSP with p<0.01.

ment 2 are separated with token “[SEP]”; “[CLS]”
is the special classification embedding while “C”
is the same as “[CLS]” in pre-training but the
ground-truth label in the fine-tuning. In the ex-
periments, we used the uncased base model1 pro-
vided by Devlin et al. (2019), which is trained on
BooksCorpus and English Wikipedia with 3300M
tokens in total.

3.1 Evaluation on PDTB

We used the Penn Discourse Tree Bank (Prasad
et al., 2008), the largest available manually anno-
tated discourse corpus. It provides a three level hi-
erarchy of relation tags. Following the experimen-
tal settings and evaluation metrics in Bai and Zhao
(2018), we use two most-used splitting methods
of PDTB data, denoted as PDTB-Lin (Lin et al.,
2009), which uses sections 2-21, 22, 23 as train-
ing, validation and test sets, and PDTB-Ji (Ji and
Eisenstein, 2015), which uses 2-20, 0-1, 21-22
as training, validation and test sets and report the
overall accuracy score. In addition, we also per-
formed 10-fold cross validation among sections 0-
22, as promoted in Shi and Demberg (2017). We
also follow the standard in the literature to formu-
late the task as an 11-way classification task.

Results are presented in Table 1. We evalu-
ated three versions of the BERT-based model. All
of our BERT models use the pre-trained repre-
sentations and are fine-tuned on the PDTB train-
ing data. The version marked as “BERT” does
not do any additional pre-training. BERT+WSJ
in addition performs further pre-training on the

1https://github.com/google-research/
bert#pre-trained-models

parts of the Wall Street Journal corpus that do
not have discourse relation annotation. The model
version “BERT+WJS w/o NSP” also performs
pre-training on the WSJ corpus, but only uses
the Masked Language Modelling task, not the
Next Sentence Prediction task in the pre-training.
We added this variant to measure the benefit of
in-domain NSP on discourse relation classifica-
tion (note though that the downloaded pre-trained
BERT model contains the NSP task in the original
pre-training).

We compared the results with four state-of-the-
art systems: Cai and Zhao (2017) proposed a
model that takes a step towards calculating dis-
course expectations by using attention over an en-
coding of the first argument, to generate the repre-
sentation of the second argument, and then learn-
ing a classifier based on the concatenation of the
encodings of the two discourse relation arguments.
Kishimoto et al. (2018) fed external world knowl-
edge (ConceptNet relations and coreferences) ex-
plicitly into MAGE-GRU (Dhingra et al., 2017)
and achieved improvements compared to only us-
ing the relational arguments. However, we here
show that it works even better when we learn this
knowledge implicit through next sentence predic-
tion task. Shi and Demberg (2019) used a seq2seq
model that learns better argument representations
due to being trained to explicitate the implicit
connective. In addition, their classifier also uses
a memory network that is intended to help re-
member similar argument pairs encountered dur-
ing training. The current best performance was
achieved by Bai and Zhao (2018), who com-
bined representations from different grained em-

https://github.com/google-research/bert#pre-trained-models
https://github.com/google-research/bert#pre-trained-models
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beddings including contextualized word vectors
from ELMo (Peters et al., 2018), which has been
proved very helpful. In addition, we compared
our results with a simple bidirectional LSTM
network and pre-trained word embeddings from
Word2Vec.

We can see that on all settings, the model us-
ing BERT representations outperformed all exist-
ing systems with a substantial margin. It obtained
improvements of 7.3% points on PDTB-Lin, 5.5%
points on PDTB-Ji, compared with the ELMo-
based method proposed in (Bai and Zhao, 2018).
What’s more, the BERT model outperformed (Shi
and Demberg, 2019) on cross validation by around
8%, with significance of p<0.01. Significance
test was performed by estimating variance of the
model from the performance on different folds in
cross-validation (paired t-test). For the Lin and Ji
evaluations, we estimated variance due to random
initialization by running them 5 times and calcu-
lating the likelihood that the state-of-the-art model
result would come from that distribution.

3.2 Evaluation On BioDRB

The Biomedical Discourse Relation Bank (Prasad
et al., 2011) also follows PDTB-style annotation.
It is a corpus annotated over 24 open access full-
text articles from the GENIA corpus (Kim et al.,
2003) in the biomedical domain. Compared with
PDTB, some new discourse relations and changes
have been introduced in the annotation of Bio-
DRB. In order to make the results comparable, we
preprocessed the BioDRB annotations to map the
relations to the PDTB ones, following the instruc-
tions in Prasad et al. (2011).

The biomedical domain is very different from
the WSJ or the data on which the BERT model
was trained. The BioDRB contains a lot of pro-
fessional words / phrases that are extremely hard
to model. In order to test the ability of the BERT
model on cross-domain data, we performed fine-
tuning on PDTB while testing on BioDRB. We
also tested the state of the art model of implicit
discourse relation classification proposed by Bai
and Zhao (2018) on BioDRB. From Table 2, we
can see that the BERT base model achieved almost
12% points improvement over the Bi-LSTM base-
line and 15% points over Bai and Zhao (2018).
When fine-tuned on in-domain data in the cross-
validation setting, the improvement increases to
around 17% points.

Method Cross-Domain In-Domain
Bi-LSTM + w2v 300 32.97 46.49
Bai and Zhao (2018) 29.52 55.90

BioBERT (Lee et al., 2019) 44.33 67.58
BERT 44.79 63.02
BERT + GENIA w/o NSP 43.99 65.02
BERT + GENIA 45.19∗ 66.04∗

Table 2: Accuracy (%) on BioDRB level 2 relations
with different settings. Cross-Domain means trained on
PDTB and tested on BioDRB. For the In-Domain set-
ting, we used 5-fold cross-validation and report average
accuracy. Numbers in bold are significantly better than
the state of the art system with p<0.01 and numbers
with ∗ denote denote significant improvements over
BERT + GENIA w/o NSP with p<0.01.

It is also interesting to know whether the per-
formance of the BERT model can be improved
if we add additional pre-training on in-domain
data. BioBert (Lee et al., 2019) continues pre-
training BERT with bio-medical texts including
PubMed and PMC corpora (around 18B tokens),
which achieved the best results on in-domain set-
ting. Similarly, BERT+GENIA refers to a model
in which the downloaded BERT representations
are further pre-trained on the parts of the GENIA
corpus which consists of 18k sentences and is not
annotated with coherence relations. Evaluation
shows that this in-domain pre-training yields an-
other 3% point improvement; our tests also show
that the NSP task again plays a substantial role in
the improvement. We believe that gains for fur-
ther pre-training on GENIA for the biomedical do-
main are higher than for pre-training on WSJ for
PDTB because the domain difference between the
BooksCorpus and the biomedical domain is larger.

Currently there are not so many published re-
sults that we can compare with on BioDRB for
implicit discourse relation classification. We com-
pared BERT model with naı̈ve Bayes and Max-
Ent methods proposed in Xu et al. (2012) on one-
versus-all binary classification. We followed the
settings in Xu et al. (2012) and used two arti-
cles (“GENIA 1421503”, “GENIA 1513057”) for
testing and one article (“GENIA 111020”) for val-
idation. During training, we employed down-
sampling or up-sampling to keep the numbers
of positive and negative samples in each rela-
tion consistent. The BERT base model achieved
43.03% average F1 score and 77.34% average
accuracy in one-versus-all level-1 classification.
Compared with the current state-of-the-art perfor-
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Method Comp. Cont. Exp. Temp. Average

Naı̈ve Bayes (Xu et al., 2012) 7.69(61.45) 3.88(60.24) 68.54(55.02) 17.19(57.43) 24.33(58.54)
MaxEnt (Xu et al., 2012) 7.08(57.83) 3.36(53.82) 72.32(60.64) 23.81(61.45) 26.64(58.44)
BERT 8.25(63.82) 10.26(71.54) 90.20(86.18) 63.41(87.80) 43.03(77.34)

Table 3: F1-score (Accuracy) of binary classification on level 1 implicit relation in BioDRB.

Relations WSJ w/o NSP WSJ w/ NSP C. GENIA w/o NSP GENIA w/ NSP C.P R F1 P R F1 P R F1 P R F1

Asynchronous 0.38 0.46 0.41 0.29 0.38 0.33 13 - - - - - - -
Synchrony - - - - - - 5 0.87 0.84 0.85 0.90 0.88 0.89 80
Cause 0.57 0.65 0.61 0.57 0.64 0.60 200 0.22 0.10 0.14 0.23 0.15 0.18 20
Prag. Cause - - - - - - 5 - - - - - - 1
Contrast 0.55 0.48 0.51 0.54 0.57 0.55 127 - - - - - - 22
Concession - - - - - - 5 - - - 0.50 0.06 0.11 16
Conjunction 0.42 0.60 0.49 0.46 0.61 0.53 118 0.60 0.78 0.68 0.62 0.82 0.71 130
Instantiation 0.62 0.67 0.64 0.62 0.65 0.64 72 - - - - - - 9
Restatement 0.52 0.45 0.48 0.55 0.45 0.50 190 0.56 0.76 0.65 0.59 0.69 0.64 72
Alternative 0.83 0.33 0.48 0.67 0.40 0.50 15 - - - - - - 1
List 0.71 0.17 0.27 0.60 0.20 0.30 30 - - - - - - -
Macro Avg. 0.53 0.53 0.52 0.55 0.55 0.55 780 0.55 0.64 0.59 0.59 0.66 0.61 351

Table 4: Precision, Recall and F1 score for each level-2 relation on PDTB-Lin setting and BioDRB with “BERT +
WSJ/GENIA” systems w/ and w/o NSP. “-” indicates 0.00 and “C.” means the number of each relation in the test
set.

mances (26.64% F1 and 58.54% accuracy) in Xu
et al. (2012), it achieves around 16% and 19%
points improvement when trained in-domain, as il-
lustrated in Table 3.

3.3 Discussion

The usage of the BERT model in this paper
was motivated primarily by the use of the next-
sentence prediction task during training. The re-
sults in Table 1 and Table 2 confirm that removing
the “Next Sentence Prediction” hurts the perfor-
mance on both PDTB and BioDRB.

In order to have better insights about which re-
lation has benefited from the NSP task, we also
reported the detailed performance for each re-
lation with and without it in BERT. As illus-
trated in Table 4, we can see that performances
on relations like Temporal.Synchrony, Compari-
son.Contrast, Expansion.Conjunction and Expan-
sion.Alternative have been improved by a large
margin. This shows that representing the likely
upcoming sentence helps the model form dis-
course expectations, which the classifier can then
use to predict the coherence relation between the
actually observed arguments.

However, compared with BERT+GENIA, the
results of BioBert (Lee et al., 2019) in Table 2
show that having large in-domain data for pre-
training also has limited ability in learning domain
specific representations. We therefore believe that
the model could be further improved by including

external domain-specific knowledge from an on-
tology (as in Kishimoto et al. (2018)) or a causal
graph for biomedical concepts and events.

4 Conclusion and Future work

In this paper, we show that BERT has very good
ability in encoding the semantic relationship be-
tween sentences with its “next sentence predic-
tion” task in pre-training. It outperformed the cur-
rent state-of-the-art systems significantly with a
substantial margin on both in-domain and cross
domain data. Our results also indicate that the
next-sentence prediction task during training in-
deed plays a role in this improvement. Future
work should explore the joint representation of
discourse expectations through implicit represen-
tations that are learned during training and the in-
clusion of external knowledge. In addition, Yang
et al. (2019) showed that NSP only helps tasks
with longer texts. It would be interesting to see
whether it has the same effect on implicit dis-
course relation classification task, we’d like to
leave that in the future work.
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