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Abstract

The general trend in NLP is towards in-
creasing model capacity and performance via
deeper neural networks. However, simply
stacking more layers of the popular Trans-
former architecture for machine translation re-
sults in poor convergence and high computa-
tional overhead. Our empirical analysis sug-
gests that convergence is poor due to gradi-
ent vanishing caused by the interaction be-
tween residual connections and layer normal-
ization. We propose depth-scaled initialization
(DS-Init), which decreases parameter variance
at the initialization stage, and reduces out-
put variance of residual connections so as to
ease gradient back-propagation through nor-
malization layers. To address computational
cost, we propose a merged attention sublayer
(MAtt) which combines a simplified average-
based self-attention sublayer and the encoder-
decoder attention sublayer on the decoder side.
Results on WMT and IWSLT translation tasks
with five translation directions show that deep
Transformers with DS-Init and MAtt can sub-
stantially outperform their base counterpart in
terms of BLEU (+1.1 BLEU on average for
12-layer models), while matching the decod-
ing speed of the baseline model thanks to the
efficiency improvements of MAtt.1

1 Introduction

The capability of deep neural models of handling
complex dependencies has benefited various ar-
tificial intelligence tasks, such as image recogni-
tion where test error was reduced by scaling VGG
nets (Simonyan and Zisserman, 2015) up to hun-
dreds of convolutional layers (He et al., 2015). In
NLP, deep self-attention networks have enabled
large-scale pretrained language models such as
BERT (Devlin et al., 2019) and GPT (Radford

1Source code for reproduction is available at https://
github.com/bzhangGo/zero

0

1

2

3

4

5

6

G
ra

d
ie

n
t

N
or

m

(a) Encoder

Transformer 6L

Transformer 12L

Transformer 18L

Transformer+DS-Init 6L

Transformer+DS-Init 12L

Transformer+DS-Init 18L

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Layer Depth

0

1

2

3

4

5

6

G
ra

d
ie

n
t

N
or

m

(b) Decoder

Transformer 6L

Transformer 12L

Transformer 18L

Transformer+DS-Init 6L

Transformer+DS-Init 12L

Transformer+DS-Init 18L

Figure 1: Gradient norm (y-axis) of each encoder layer (top)
and decoder layer (bottom) in Transformer with respect to
layer depth (x-axis). Gradients are estimated with ∼3k target
tokens at the beginning of training. “DS-Init”: the proposed
depth-scaled initialization. “6L”: 6 layers. Solid lines indi-
cate the vanilla Transformer, and dashed lines denote our pro-
posed method. During back-propagation, gradients in Trans-
former gradually vanish from high layers to low layers.

et al., 2018) to boost state-of-the-art (SOTA) per-
formance on downstream applications. By con-
trast, though neural machine translation (NMT)
gained encouraging improvement when shifting
from a shallow architecture (Bahdanau et al.,
2015) to deeper ones (Zhou et al., 2016; Wu
et al., 2016; Zhang et al., 2018; Chen et al., 2018),
the Transformer (Vaswani et al., 2017), a cur-
rently SOTA architecture, achieves best results
with merely 6 encoder and decoder layers, and no
gains were reported by Vaswani et al. (2017) from

https://github.com/bzhangGo/zero
https://github.com/bzhangGo/zero
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further increasing its depth on standard datasets.
We start by analysing why the Transformer does

not scale well to larger model depth. We find that
the architecture suffers from gradient vanishing as
shown in Figure 1, leading to poor convergence.
An in-depth analysis reveals that the Transformer
is not norm-preserving due to the involvement of
and the interaction between residual connection
(RC) (He et al., 2015) and layer normalization
(LN) (Ba et al., 2016).

To address this issue, we propose depth-scaled
initialization (DS-Init) to improve norm preserva-
tion. We ascribe the gradient vanishing to the large
output variance of RC and resort to strategies that
could reduce it without model structure adjust-
ment. Concretely, DS-Init scales down the vari-
ance of parameters in the l-th layer with a discount
factor of 1√

l
at the initialization stage alone, where

l denotes the layer depth starting from 1. The in-
tuition is that parameters with small variance in
upper layers would narrow the output variance of
corresponding RCs, improving norm preservation
as shown by the dashed lines in Figure 1. In
this way, DS-Init enables the convergence of deep
Transformer models to satisfactory local optima.

Another bottleneck for deep Transformers is
the increase in computational cost for both train-
ing and decoding. To combat this, we pro-
pose a merged attention network (MAtt). MAtt
simplifies the decoder by replacing the separate
self-attention and encoder-decoder attention sub-
layers with a new sublayer that combines an
efficient variant of average-based self-attention
(AAN) (Zhang et al., 2018) and the encoder-
decoder attention. We simplify the AAN by re-
ducing the number of linear transformations, re-
ducing both the number of model parameters and
computational cost. The merged sublayer benefits
from parallel calculation of (average-based) self-
attention and encoder-decoder attention, and re-
duces the depth of each decoder block.

We conduct extensive experiments on WMT
and IWSLT translation tasks, covering five transla-
tion tasks with varying data conditions and trans-
lation directions. Our results show that deep
Transformers with DS-Init and MAtt can substan-
tially outperform their base counterpart in terms of
BLEU (+1.1 BLEU on average for 12-layer mod-
els), while matching the decoding speed of the
baseline model thanks to the efficiency improve-
ments of MAtt.

Our contributions are summarized as follows:

• We analyze the vanishing gradient issue in
the Transformer, and identify the interaction
of residual connections and layer normaliza-
tion as its source.
• To address this problem, we introduce depth-

scaled initialization (DS-Init).
• To reduce the computational cost of training

deep Transformers, we introduce a merged
attention model (MAtt). MAtt combines a
simplified average-attention model and the
encoder-decoder attention into a single sub-
layer, allowing for parallel computation.
• We conduct extensive experiments and ver-

ify that deep Transformers with DS-Init and
MAtt improve translation quality while pre-
serving decoding efficiency.

2 Related Work

Our work aims at improving translation quality
by increasing model depth. Compared with the
single-layer NMT system (Bahdanau et al., 2015),
deep NMT models are typically more capable of
handling complex language variations and trans-
lation relationships via stacking multiple encoder
and decoder layers (Zhou et al., 2016; Wu et al.,
2016; Britz et al., 2017; Chen et al., 2018), and/or
multiple attention layers (Zhang et al., 2018). One
common problem for the training of deep neural
models are vanishing or exploding gradients. Ex-
isting methods mainly focus on developing novel
network architectures so as to stabilize gradient
back-propagation, such as the fast-forward con-
nection (Zhou et al., 2016), the linear associa-
tive unit (Wang et al., 2017), or gated recurrent
network variants (Hochreiter and Schmidhuber,
1997; Gers and Schmidhuber, 2001; Cho et al.,
2014; Di Gangi and Federico, 2018). In contrast to
the above recurrent network based NMT models,
recent work focuses on feed-forward alternatives
with more smooth gradient flow, such as convo-
lutional networks (Gehring et al., 2017) and self-
attention networks (Vaswani et al., 2017).

The Transformer represents the current SOTA
in NMT. It heavily relies on the combination of
residual connections (He et al., 2015) and layer
normalization (Ba et al., 2016) for convergence.
Nevertheless, simply extending this model with
more layers results in gradient vanishing due to
the interaction of RC and LN (see Section 4). Re-
cent work has proposed methods to train deeper
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Transformer models, including a rescheduling of
RC and LN (Vaswani et al., 2018), the transpar-
ent attention model (Bapna et al., 2018) and the
stochastic residual connection (Pham et al., 2019).
In contrast to these work, we identify the large
output variance of RC as the source of gradient
vanishing, and employ scaled initialization to mit-
igate it without any structure adjustment. The ef-
fect of careful initialization on boosting conver-
gence was also investigated and verified in previ-
ous work (Zhang et al., 2019; Child et al., 2019;
Devlin et al., 2019; Radford et al., 2018).

The merged attention network falls into the cat-
egory of simplifying the Transformer so as to
shorten training and/or decoding time. Methods
to improve the Transformer’s running efficiency
range from algorithmic improvements (Junczys-
Dowmunt et al., 2018), non-autoregressive trans-
lation (Gu et al., 2018; Ghazvininejad et al., 2019)
to decoding dependency reduction such as aver-
age attention network (Zhang et al., 2018) and
blockwise parallel decoding (Stern et al., 2018).
Our MAtt builds upon the AAN model, further
simplifying the model by reducing the number
of linear transformations, and combining it with
the encoder-decoder attention. In work concur-
rent to ours, So et al. (2019) propose the evolved
Transformer which, based on automatic architec-
ture search, also discovered a parallel structure of
self-attention and encoder-decoder attention.

3 Background: Transformer

Given a source sequence X = {x1, x2, . . . , xn} ∈
Rn×d, the Transformer predicts a target sequence
Y = {y1, y2, . . . , ym} under the encoder-decoder
framework. Both the encoder and the decoder in
the Transformer are composed of attention net-
works, functioning as follows:

ATT(Zx,Zy) =

[
softmax(

QKT

√
d

)V

]
Wo

Q,K,V = ZxWq,ZyWk,ZyWv,

(1)

where Zx ∈ RI×d and Zy ∈ RJ×d are input se-
quence representations of length I and J respec-
tively, W∗ ∈ Rd×d denote weight parameters.
The attention network can be further enhanced
with multi-head attention (Vaswani et al., 2017).

Formally, the encoder stacks L identical lay-
ers, each including a self-attention sublayer (Eq. 2)

and a point-wise feed-forward sublayer (Eq. 3):

H̄l = LN
(

RC
(
Hl−1,ATT(Hl−1,Hl−1)

))
(2)

Hl = LN
(

RC
(
H̄l, FFN(H̄l)

))
. (3)

Hl ∈ Rn×d denotes the sequence representation
of the l-th encoder layer. Input to the first layer H0

is the element-wise addition of the source word
embedding X and the corresponding positional
encoding. FFN(·) is a two-layer feed-forward net-
work with a large intermediate representation and
ReLU activation function. Each encoder sublayer
is wrapped with a residual connection (Eq. 4), fol-
lowed by layer normalization (Eq. 5):

RC(z, z′) = z + z′, (4)

LN(z) =
z− µ
σ
� g + b, (5)

where z and z′ are input vectors, and � indicates
element-wise multiplication. µ and σ denote the
mean and standard deviation statistics of vector z.
The normalized z is then re-scaled and re-centered
by trainable parameters g and b individually.

The decoder also consists of L identical layers,
each of them extends the encoder sublayers with
an encoder-decoder attention sublayer (Eq. 7) to
capture translation alignment from target words to
relevant source words:

S̃l = LN
(

RC
(
Sl−1,ATT(Sl−1,Sl−1)

))
(6)

S̄l = LN
(

RC
(
S̃l,ATT(S̃l,HL)

))
(7)

Sl = LN
(

RC
(
S̄l, FFN(S̄l)

))
. (8)

Sl ∈ Rm×d is the sequence representation of the l-
th decoder layer. Input S0 is defined similar to H0.
To ensure auto-regressive decoding, the attention
weights in Eq. 6 are masked to prevent attention
to future target tokens.

The Transformer’s parameters are typically ini-
tialized by sampling from a uniform distribution:

W ∈ Rdi×do ∼ U (−γ, γ) , γ =

√
6

di + do
, (9)

where di and do indicate input and output dimen-
sion separately. This initialization has the advan-
tage of maintaining activation variances and back-
propagated gradients variance and can help train
deep neural networks (Glorot and Bengio, 2010).
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4 Vanishing Gradient Analysis

One natural way to deepen Transformer is simply
enlarging the layer number L. Unfortunately, Fig-
ure 1 shows that this would give rise to gradient
vanishing on both the encoder and the decoder at
the lower layers, and that the case on the decoder
side is worse. We identified a structural problem
in the Transformer architecture that gives rise to
this issue, namely the interaction of RC and LN,
which we will here discuss in more detail.

Given an input vector z ∈ Rd, let us consider
the general structure of RC followed by LN:

r = RC (z, f(z)) , (10)

o = LN (r) , (11)

where r,o ∈ Rd are intermediate outputs. f(·)
represents any neural network, such as recurrent,
convolutional or attention network, etc. Suppose
during back-propagation, the error signal at the
output of LN is δo. Contributions of RC and LN to
the error signal are as follows:

δr =
∂o

∂r
δo = diag(

g

σr
)(I− 1− r̄r̄T

d
)δo (12)

δz =
∂r

∂z
δr = (1 +

∂f

∂z
)δr, (13)

where r̄ denotes the normalized input. I is the
identity matrix and diag(·) establishes a diagonal
matrix from its input. The resulting δr and δz are
error signals arrived at output r and z respectively.

We define the change of error signal as follows:

β = βLN · βRC =
‖δz‖2
‖δr‖2

· ‖δr‖2
‖δo‖2

, (14)

where β (or model ratio), βLN (or LN ratio) and
βRC (or RC ratio) measure the gradient norm ratio2

of the whole residual block, the layer normaliza-
tion and the residual connection respectively. In-
formally, a neural model should preserve the gra-
dient norm between layers (β ≈ 1) so as to al-
low training of very deep models (see Zaeemzadeh
et al., 2018).

We resort to empirical evidence to analyze these
ratios. Results in Table 1 show that LN weak-
ens error signal (βLN < 1) but RC strengthens it
(βRC > 1). One explanation about LN’s decay ef-
fect is the large output variance of RC (Var(r) >

2Model gradients depend on both error signal and layer
activation. Reduced/enhanced error signal does not necessar-
ily result in gradient vanishing/explosion, but strongly con-
tributes to it.

Method Module Self Cross FFN

Base

Enc

βLN 0.86 - 0.84
βRC 1.22 - 1.10
β 1.05 - 0.93

Var(r) 1.38 - 1.40

Dec

βLN 0.82 0.74 0.84
βRC 1.21 1.00 1.11
β 0.98 0.74 0.93

Var(r) 1.48 1.84 1.39

Ours

Enc

βLN 0.96 - 0.95
βRC 1.04 - 1.02
β 1.02 - 0.98

Var(r) 1.10 - 1.10

Dec

βLN 0.95 0.94 0.94
βRC 1.05 1.00 1.02
β 1.10 0.95 0.98

Var(r) 1.13 1.15 1.11

Table 1: Empirical measure of output variance Var(r) of
RC and error signal change ratio βLN, βRC and β (Eq. 14)
averaged over 12 layers. These values are estimated with
∼3k target tokens at the beginning of training using 12-layer
Transformer. “Base”: the baseline Transformer. “Ours”:
the Transformer with DS-Init. Enc and Dec stand for en-
coder and decoder respectively. Self, Cross and FFN in-
dicate the self-attention, encoder-decoder attention and the
feed-forward sublayer respectively.

1) which negatively affects δr as shown in Eq. 12.
By contrast, the short-cut in RC ensures that the
error signal at higher layer δr can always be safely
carried on to lower layer no matter how complex
∂f
∂z would be as in Eq. 13, increasing the ratio.

5 Depth-Scaled Initialization

Results on the model ratio show that self-attention
sublayer has a (near) increasing effect (β > 1)
that intensifies error signal, while feed-forward
sublayer manifests a decreasing effect (β < 1).
In particular, though the encoder-decoder atten-
tion sublayer and the self-attention sublayer share
the same attention formulation, the model ratio of
the former is smaller. As shown in Eq. 7 and 1,
part of the reason is that encoder-decoder attention
can only back-propagate gradients to lower lay-
ers through the query representation Q, bypassing
gradients at the key K and the value V to the en-
coder side. This negative effect explains why the
decoder suffers from more severe gradient vanish-
ing than the encoder in Figure 1.

The gradient norm is preserved better through
the self-attention layer than the encoder-decoder
attention, which offers insights on the successful
training of the deep Transformer in BERT (De-
vlin et al., 2019) and GPT (Radford et al., 2018),
where encoder-decoder attention is not involved.
However, results in Table 1 also suggests that the
self-attention sublayer in the encoder is not strong
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Figure 2: An overview of self-attention, AAN and the proposed merged attention with simplified AAN.

enough to counteract the gradient loss in the feed-
forward sublayer. That is why BERT and GPT
adopt a much smaller standard deviation (0.02) for
initialization, in a similar spirit to our solution.

We attribute the gradient vanishing issue to the
large output variance of RC (Eq. 12). Consid-
ering that activation variance is positively corre-
lated with parameter variance (Glorot and Bengio,
2010), we propose DS-Init and change the original
initialization method in Eq. 9 as follows:

W ∈ Rdi×do ∼ U
(
−γ α√

l
, γ

α√
l

)
, (15)

where α is a hyperparameter in the range of [0, 1]
and l denotes layer depth. Hyperparameter α im-
proves the flexibility of our method. Compared
with existing approaches (Vaswani et al., 2018;
Bapna et al., 2018), our solution does not require
modifications in the model architecture and hence
is easy to implement.

According to the property of uniform distribu-
tion, the variance of model parameters decreases
from γ2

3 to γ2α2

3l after applying DS-Init. By doing
so, a higher layer would have smaller output vari-
ance of RC so that more gradients can flow back.
Results in Table 1 suggest that DS-Init narrows
both the variance and different ratios to be∼1, en-
suring the stability of gradient back-propagation.
Evidence in Figure 1 also shows that DS-Init helps
keep the gradient norm and slightly increases it on
the encoder side. This is because DS-Init endows
lower layers with parameters of larger variance
and activations of larger norm. When error signals
at different layers are of similar scale, the gradi-
ent norm at lower layers would be larger. Never-
theless, this increase does not hurt model training
based on our empirical observation.

DS-Init is partially inspired by the Fixup ini-
tialization (Zhang et al., 2019). Both of them try
to reduce the output variance of RC. The differ-
ence is that Fixup focuses on overcoming gradi-
ent explosion cased by consecutive RCs and seeks
to enable training without LN but at the cost of
carefully handling parameter initialization of each
matrix transformation, including manipulating ini-
tialization of different bias and scale terms. In-
stead, DS-Init aims at solving gradient vanishing
in deep Transformer caused by the structure of RC
followed by LN. We still employ LN to standard-
ize layer activation and improve model conver-
gence. The inclusion of LN ensures the stability
and simplicity of DS-Init.

6 Merged Attention Model

With large model depth, deep Transformer un-
avoidably introduces high computational over-
head. This brings about significantly longer train-
ing and decoding time. To remedy this issue,
we propose a merged attention model for decoder
that integrates a simplified average-based self-
attention sublayer into the encoder-decoder atten-
tion sublayer. Figure 2 highlights the difference.

The AAN model (Figure 2(b)), as an alternative
to the self-attention model (Figure 2(a)), acceler-
ates Transformer decoding by allowing decoding
in linear time, avoiding the O(n2) complexity of
the self-attention mechanism (Zhang et al., 2018).
Unfortunately, the gating sublayer and the feed-
forward sublayer inside AAN reduce the empiri-
cal performance improvement. We propose a sim-
plified AAN by removing all matrix computation
except for two linear projections:

SAAN(Sl−1) =
[
Ma(S

l−1Wv)
]

Wo, (16)
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Dataset #Src #Tgt #Sent #BPE
WMT14 En-De 116M 110M 4.5M 32K
WMT14 En-Fr 1045M 1189M 36M 32K
WMT18 En-Fi 73M 54M 3.3M 32K
WMT18 Zh-En 510M 576M 25M 32K
IWSLT14 De-En 3.0M 3.2M 159K 30K

Table 2: Statistics for different training datasets. #Src and
#Tgt denote the number of source and target tokens respec-
tively. #Sent: the number of bilingual sentences. #BPE: the
number of merge operations in BPE. M: million, K: thousand.

where Ma denotes the average mask matrix for
parallel computation (Zhang et al., 2018). This
new model is then combined with the encoder-
decoder attention as shown in Figure 2(c):

MATT(Sl−1) = SAAN(Sl−1) + ATT(Sl−1,HL)

S̄l = LN
(

RC
(
Sl−1,MATT(Sl−1)

))
. (17)

The mapping Wo is shared for SAAN and ATT.
After combination, MAtt allows for the paral-
lelization of AAN and encoder-decoder attention.

7 Experiments

7.1 Datasets and Evaluation
We take WMT14 English-German translation
(En-De) (Bojar et al., 2014) as our bench-
mark for model analysis, and examine the
generalization of our approach on four other
tasks: WMT14 English-French (En-Fr), IWSLT14
German-English (De-En) (Cettolo et al., 2014),
WMT18 English-Finnish (En-Fi) and WMT18
Chinese-English (Zh-En) (Bojar et al., 2018).
Byte pair encoding algorithm (BPE) (Sennrich
et al., 2016) is used in preprocessing to handle low
frequency words. Statistics of different datasets
are listed in Table 2.

Except for IWSLT14 De-En task, we collect
subword units independently on the source and
target side of training data. We directly use the
preprocessed training data from the WMT18 web-
site3 for En-Fi and Zh-En tasks, and use new-
stest2017 as our development set, newstest2018 as
our test set. Our training data for WMT14 En-
De and WMT14 En-Fr is identical to previous se-
tups (Vaswani et al., 2017; Wu et al., 2019). We
use newstest2013 as development set for WMT14
En-De and newstest2012+2013 for WMT14 En-
Fr. Apart from newstest2014 test set4, we also

3http://www.statmt.org/wmt18/translation-task.html
4We use the filtered test set consisting of 2737 sentence

pairs. The difference of translation quality on filtered and full
test sets is marginal.

evaluate our model on all WMT14-18 test sets
for WMT14 En-De translation. The settings for
IWSLT14 De-En are as in Ranzato et al. (2016),
with 7584 sentence pairs for development, and the
concatenated dev sets for IWSLT 2014 as test set
(tst2010, tst2011, tst2012, dev2010, dev2012).

We report tokenized case-sensitive BLEU (Pa-
pineni et al., 2002) for WMT14 En-De and
WMT14 En-Fr, and provide detokenized case-
sensitive BLEU for WMT14 En-De, WMT18 En-
Fi and Zh-En with sacreBLEU (Post, 2018)5. We
also report chrF score for En-Fi translation which
was found correlated better with human evalu-
ation (Bojar et al., 2018). Following previous
work (Wu et al., 2019), we evaluate IWSLT14 De-
En with tokenized case-insensitive BLEU.

7.2 Model Settings

We experiment with both base (layer size
512/2048, 8 heads) and big (layer size 1024/4096,
16 heads) settings as in Vaswani et al. (2017). Ex-
cept for the vanilla Transformer, we also compare
with the structure that is currently default in ten-
sor2tensor (T2T), which puts layer normalization
before residual blocks (Vaswani et al., 2018). We
use an in-house toolkit for all experiments.

Dropout is applied to the residual connection
(dpr) and attention weights (dpa). We share the
target embedding matrix with the softmax projec-
tion matrix but not with the source embedding ma-
trix. We train all models using Adam optimizer
(0.9/0.98 for base, 0.9/0.998 for big) with adap-
tive learning rate schedule (warm-up step 4K for
base, 16K for big) as in (Vaswani et al., 2017) and
label smoothing of 0.1. We set α in DS-Init to
1.0. Sentence pairs containing around 25K∼50K
(bs) target tokens are grouped into one batch. We
use relatively larger batch size and dropout rate
for deeper and bigger models for better conver-
gence. We perform evaluation by averaging last
5 checkpoints. Besides, we apply mixed-precision
training to all big models. Unless otherwise stated,
we train base and big model with 300K maximum
steps, and decode sentences using beam search
with a beam size of 4 and length penalty of 0.6.
Decoding is implemented with cache to save re-
dundant computations. Other settings for specific
translation tasks are explained in the individual
subsections.

5Signature BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.2.20
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ID Model #Param Test14 4Dec 4Train
1 Base 6 layers dpa = dpr = 0.1, bs = 25K 72.3M 27.59 (26.9) 62.26/1.00× 0.105/1.00×
2 1 + T2T 72.3M 27.20 (26.5) 68.04/0.92× 0.105/1.00×
3 1 + DS-Init 72.3M 27.50 (26.8) ?/1.00× ?/1.00×
4 1 + MAtt 66.0M 27.49 (26.8) 40.51/1.54× 0.094/1.12×
5 1 + MAtt + DS-Init 66.0M 27.35 (26.8) 40.84/1.52× 0.094/1.12×
6 1 + MAtt with self-attention 72.3M 27.41 (26.7) 60.25/1.03× 0.105/1.00×
7 1 + MAtt with original AAN 72.2M 27.36 (26.7) 46.13/1.35× 0.098/1.07×
8 1 + bs = 50K 72.3M 27.84 (27.2) ?/1.00× ?/1.00×
9 1 + > 12 layers + bs = 25K ∼ 50K - - - -
10 4 + > 12 layers + bs = 25K ∼ 50K - - -
11 3 + 12 layers + bs = 40K, dpr = 0.3, dpa = 0.2 116.4M 28.27 (27.6) 102.9/1.00×† 0.188/1.00×†
12 11 + T2T 116.5M 28.03 (27.4) 107.7/0.96×† 0.191/0.98×†
13 11 + MAtt 103.8M 28.55 (27.9) 67.12/1.53×† 0.164 /1.15×†
14 3 + 20 layers + bs = 44K, dpr = 0.3, dpa = 0.2 175.3M 28.42 (27.7) 157.8/1.00×‡ 0.283/1.00×‡
15 14 + T2T 175.3M 28.27 (27.6) 161.2/0.98×‡ 0.289/0.98×‡
16 14 + MAtt 154.3M 28.67 (28.0) 108.6/1.45×‡ 0.251/1.13×‡

Table 3: Tokenized case-sensitive BLEU (in parentheses: sacreBLEU) on WMT14 En-De translation task. #Param: number of
model parameters. 4Dec: decoding time (seconds)/speedup on newstest2014 dataset with a batch size of 32. 4Train: training
time (seconds)/speedup per training step evaluated on 0.5K steps with a batch size of 1K target tokens. Time is averaged over 3
runs using Tensorflow on a single TITAN X (Pascal). “-”: optimization failed and no result. “?”: the same as model 1©. † and
‡: comparison against 11© and 14© respectively rather than 1©. Base: the baseline Transformer with base setting. Bold indicates
best BLEU score. dpa and dpr: dropout rate on attention weights and residual connection. bs: batch size in tokens.

7.3 WMT14 En-De Translation Task

Table 3 summarizes translation results under dif-
ferent settings. Applying DS-Init and/or MAtt
to Transformer with 6 layers slightly decreases
translation quality by∼0.2 BLEU (27.59→27.35).
However, they allow scaling up to deeper architec-
tures, achieving a BLEU score of 28.55 (12 layers)
and 28.67 (20 layers), outperforming all baselines.
These improvements can not be obtained via en-
larging the training batch size ( 8©), confirming the
strength of deep models.

We also compare our simplified AAN in MAtt
( 4©) with two variants: a self-attention network
( 6©), and the original AAN ( 7©). Results show
minor differences in translation quality, but im-
provements in training and decoding speed, and
a reduction in the number of model parameters.
Compared to the baseline, MAtt improves decod-
ing speed by 50%, and training speed by 10%,
while having 9% fewer parameters.

Result 9© indicates that the gradient vanishing
issue prevents training of deep vanilla Transform-
ers, which cannot be solved by only simplifying
the decoder via MAtt (10©). By contrast, both T2T
and DS-Init can help. Our DS-Init improves norm
preservation through specific parameter initializa-
tion, while T2T reschedules the LN position. Re-
sults in Table 3 show that T2T underperforms DS-
Init by 0.2 BLEU on average, and slightly in-
creases training and decoding time (by 2%) com-
pared to the original Transformer due to additional

ID BLEU PPL
Train Dev Train Dev

1 28.64 26.16 5.23 4.76
11 29.63 26.44 4.48 4.38
12 29.75 26.16 4.60 4.49
13 29.43 26.51 5.09 4.71
14 30.71 26.52 3.96 4.32
15 30.89 26.53 4.09 4.41
16 30.25 26.56 4.62 4.58

Table 4: Tokenized case-sensitive BLEU (BLEU) and per-
plexity (PPL) on training (Train) and development (new-
stest2013, Dev) set. We randomly select 3K sentence pairs
as our training data for evaluation. Lower PPL is better.

LN layers. This suggests that our solution is more
effective and efficient.

Surprisingly, training deep Transformers with
both DS-Init and MAtt improves not only run-
ning efficiency but also translation quality (by 0.2
BLEU), compared with DS-Init alone. To get an
improved understanding, we analyze model per-
formance on both training and development set.
Results in Table 4 show that models with DS-Init
yield the best perplexity on both training and de-
velopment set, and those with T2T achieve the
best BLEU on the training set. However, DS-
Init+MAtt performs best in terms of BLEU on the
development set. This indicates that the success of
DS-Init+MAtt comes from its better generaliza-
tion rather than better fitting training data.

We also attempt to apply DS-Init on the encoder
alone or the decoder alone for 12-layer models.
Unfortunately, both variants lead to unstable op-
timization where gradients tend to explode at the
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Task Model #Param BLEU 4Dec 4Train

WMT14 En-Fr Base + 6 layers 76M 39.09 167.56/1.00× 0.171/1.00×
Ours + Base + 12 layers 108M 40.58 173.62/0.97× 0.265/0.65×

IWSLT14 De-En Base + 6 layers 61M 34.41 315.59/1.00× 0.153/1.00×
Ours + Base + 12 layers 92M 35.63 329.95/0.96× 0.247/0.62×

WMT18 En-Fi Base + 6 layers 65M 15.5 (50.82) 156.32/1.00× 0.165/1.00×
Ours + Base + 12 layers 96M 15.8 (51.47) 161.74/0.97× 0.259/0.64×

WMT18 Zh-En Base + 6 layers 77M 21.1 217.40/1.00× 0.173/1.00×
Ours + Base + 12 layers 108M 22.3 228.57/0.95× 0.267/0.65×

Table 5: Translation results on different tasks. Settings for BLEU score is given in Section 7.1. Numbers in bracket denote
chrF score. Our model outperforms the vanilla base Transformer on all tasks. “Ours”: DS-Init+MAtt.
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Figure 3: Test BLEU score on newstest2014 with respect to
model depth for Transformer+DS-Init+MAtt.

Model #Param Test14 Test14-18
Vaswani et al. (2017) 213M 28.4 -
Chen et al. (2018) 379M 28.9 -
Ott et al. (2018) 210M 29.3 -
Bapna et al. (2018) 137M 28.04 -

Wu et al. (2019) 213M 29.76
(29.0)

∗ 33.13
(32.86)

∗

Big + 6 layers 233M 29.07
(28.3)

33.16
(32.88)

Ours + Big + 12 layers 359M 29.47
(28.7)

33.21
(32.90)

Ours + Big + 20 layers 560M 29.62
(29.0)

33.26
(32.96)

Table 6: Tokenized case-sensitive BLEU (sacreBLEU) on
WMT14 En-De translation task. “Test14-18”: BLEU score
averaged over newstest2014∼newstest2018. ∗: results ob-
tained by running code and model released by Wu et al.
(2019). “Ours”: DS-Init+MAtt.

middle of training. We attempt to solve this issue
with gradient clipping of rate 1.0. Results show
that this fails for decoder and achieves only 27.89
BLEU for encoder, losing 0.66 BLEU compared
with the full variant (28.55). We leave further
analysis to future work and recommend using DS-
Init on both the encoder and the decoder.

Effect of Model Depth We empirically com-
pare a wider range of model depths for
Transformer+DS-Init+MAtt with up to 30 layers.
Hyperparameters are the same as for 14© except that
we use 42K and 48K batch size for 18 and 30 lay-
ers respectively. Figure 3 shows that deeper Trans-
formers yield better performance. However, im-
provements are steepest going from 6 to 12 layers,

and further improvements are small.

7.3.1 Comparison with Existing Work
Table 6 lists the results in big setting and compares
with current SOTA. Big models are trained with
dpa = 0.1 and dpr = 0.3. The 6-layer baseline
and the deeper ones are trained with batch size of
48K and 54K respectively. Deep Transformer with
our method outperforms its 6-layer counterpart
by over 0.4 points on newstest2014 and around
0.1 point on newstest2014∼newstest2018. Our
model outperforms the transparent model (Bapna
et al., 2018) (+1.58 BLEU), an approach for
the deep encoder. Our model performs on par
with current SOTA, the dynamic convolution
model (DCNN) (Wu et al., 2019). In particular,
though DCNN achieves encouraging performance
on newstest2014, it falls behind the baseline on
other test sets. By contrast, our model obtains
more consistent performance improvements.

In work concurrent to ours, Wang et al. (2019)
discuss how the placement of layer normalization
affects deep Transformers, and compare the orig-
inal post-norm (which we consider our baseline)
and a pre-norm layout (which we call T2T). Their
results also show that pre-norm allows training of
deeper Transformers. Our results show that deep
post-norm Transformers are also trainable with ap-
propriate initialization, and tend to give slightly
better results.

7.4 Results on Other Translation Tasks

We use 12 layers for our model in these tasks. We
enlarge the dropout rate to dpa = 0.3, dpr = 0.5
for IWSLT14 De-En task and train models on
WMT14 En-Fr and WMT18 Zh-En with 500K
steps. Other models are trained with the same set-
tings as in WMT14 En-De.

We report translation results on other tasks in
Table 5. Results show that our model beats the
baseline on all tasks with gains of over 1 BLEU,
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Figure 4: Gradient norm (y-axis) of the first and the last
encoder layers (top) and decoder layers (bottom) in 18-layer
deep Transformer over the fist 5k training steps. We use
around 25k source/target tokens in each training batch. Each
point in this plot is averaged over 50 training steps. “L1/L18”
denotes the first/last layer. DS-Init helps stabilize the gradient
norm during training.

except the WMT18 En-Fi where our model yields
marginal BLEU improvements (+0.3 BLEU). We
argue that this is due to the rich morphology of
Finnish, and BLEU’s inability to measure im-
provements below the word level. We also provide
the chrF score in which our model gains 0.6 points.
In addition, speed measures show that though our
model consumes 50+% more training time, there
is only a small difference with respect to decoding
time thanks to MAtt.

7.5 Analysis of Training Dynamics

Our analysis in Figure 1 and Table 1 is based
on gradients estimated exactly after parameter ini-
tialization without considering training dynam-
ics. Optimizers with adaptive step rules, such as
Adam, could have an adverse effect that enables
gradient scale correction through the accumulated
first and second moments. However, results in Fig-
ure 4 show that without DS-Init, the encoder gra-
dients are less stable and the decoder gradients still
suffer from the vanishing issue, particularly at the
first layer. DS-Init makes the training more stable

and robust.6

8 Conclusion and Future Work

This paper discusses training of very deep Trans-
formers. We show that the training of deep Trans-
formers suffers from gradient vanishing, which we
mitigate with depth-scaled initialization. To im-
prove training and decoding efficiency, we pro-
pose a merged attention sublayer that integrates
a simplified average-based self-attention sublayer
into the encoder-decoder attention sublayer. Ex-
perimental results show that deep models trained
with these techniques clearly outperform a vanilla
Transformer with 6 layers in terms of BLEU, and
outperforms other solutions to train deep Trans-
formers (Bapna et al., 2018; Vaswani et al., 2018).
Thanks to the more efficient merged attention
sublayer, we achieve these quality improvements
while matching the decoding speed of the baseline
model.

In the future, we would like to extend our
model to other sequence-to-sequence tasks, such
as summarization and dialogue generation, as well
as adapt the idea to other generative architec-
tures (Zhang et al., 2016, 2018). We have trained
models with up to 30 layers each for the encoder
and decoder, and while training was successful
and improved over shallower counterparts, gains
are relatively small beyond 12 layers. An open
question is whether there are other structural is-
sues that limit the benefits of increasing the depth
of the Transformer architecture, or whether the
benefit of very deep models is greater for other
tasks and dataset.
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Bentivogli, and Marcello Federico. 2014. Report
on the 11th IWSLT Evaluation Campaign, IWSLT
2014. In Proceedings of the 11th Workshop on Spo-
ken Language Translation, pages 2–16, Lake Tahoe,
CA, USA.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin
Johnson, Wolfgang Macherey, George Foster, Llion
Jones, Mike Schuster, Noam Shazeer, Niki Parmar,
Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser,
Zhifeng Chen, Yonghui Wu, and Macduff Hughes.
2018. The best of both worlds: Combining recent
advances in neural machine translation. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 76–86. Association for Computational
Linguistics.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating long sequences with
sparse transformers. CoRR, abs/1904.10509.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learn-
ing Phrase Representations using RNN Encoder–
Decoder for Statistical Machine Translation. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 1724–1734, Doha, Qatar.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Mattia Antonino Di Gangi and Marcello Federico.
2018. Deep neural machine translation with weakly-
recurrent units. In Proceedings of EAMT, Alicante,
Spain.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N. Dauphin. 2017. Convolutional
sequence to sequence learning. In Proceedings
of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine
Learning Research, pages 1243–1252, International
Convention Centre, Sydney, Australia. PMLR.

Felix A. Gers and Jürgen Schmidhuber. 2001. Long
Short-Term Memory Learns Context Free and Con-
text Sensitive Languages. In Proceedings of the
ICANNGA 2001 Conference, volume 1, pages 134–
137.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke S. Zettlemoyer. 2019. Constant-time machine
translation with conditional masked language mod-
els. CoRR, abs/1904.09324.

Xavier Glorot and Y Bengio. 2010. Understanding the
difficulty of training deep feedforward neural net-
works. Journal of Machine Learning Research -
Proceedings Track, 9:249–256.

Jiatao Gu, James Bradbury, Caiming Xiong, Vic-
tor O.K. Li, and Richard Socher. 2018. Non-
autoregressive neural machine translation. In Inter-
national Conference on Learning Representations.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
Short-Term Memory. Neural Comput., 9(8):1735–
1780.

https://www.aclweb.org/anthology/D18-1338
https://www.aclweb.org/anthology/D18-1338
http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W/W14/W14-3302
https://www.aclweb.org/anthology/W18-6401
https://www.aclweb.org/anthology/W18-6401
https://doi.org/10.18653/v1/D17-1151
https://doi.org/10.18653/v1/D17-1151
http://aclweb.org/anthology/P18-1008
http://aclweb.org/anthology/P18-1008
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://proceedings.mlr.press/v70/gehring17a.html
http://proceedings.mlr.press/v70/gehring17a.html
https://openreview.net/forum?id=B1l8BtlCb
https://openreview.net/forum?id=B1l8BtlCb
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735


908

Marcin Junczys-Dowmunt, Kenneth Heafield, Hieu
Hoang, Roman Grundkiewicz, and Anthony Aue.
2018. Marian: Cost-effective high-quality neural
machine translation in C++. In Proceedings of the
2nd Workshop on Neural Machine Translation and
Generation, Melbourne, Australia.

Myle Ott, Sergey Edunov, David Grangier, and
Michael Auli. 2018. Scaling neural machine trans-
lation. arXiv preprint arXiv:1806.00187.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Com-
putational Linguistics, ACL ’02, pages 311–318,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Ngoc-Quan Pham, Thai-Son Nguyen, Jan Niehues,
Markus Müller, and Alexander H. Waibel. 2019.
Very deep self-attention networks for end-to-end
speech recognition. CoRR, abs/1904.13377.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191. Association for Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence Level
Training with Recurrent Neural Networks. In The
International Conference on Learning Representa-
tions.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

K. Simonyan and A. Zisserman. 2015. Very deep con-
volutional networks for large-scale image recogni-
tion. In International Conference on Learning Rep-
resentations.

David R So, Chen Liang, and Quoc V Le.
2019. The evolved transformer. arXiv preprint
arXiv:1901.11117.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.
2018. Blockwise parallel decoding for deep autore-
gressive models. In Advances in Neural Information
Processing Systems, pages 10086–10095.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Fran-
cois Chollet, Aidan Gomez, Stephan Gouws, Llion
Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki Par-
mar, Ryan Sepassi, Noam Shazeer, and Jakob
Uszkoreit. 2018. Tensor2Tensor for neural machine

translation. In Proceedings of the 13th Conference
of the Association for Machine Translation in the
Americas (Volume 1: Research Papers), pages 193–
199, Boston, MA. Association for Machine Transla-
tion in the Americas.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran As-
sociates, Inc.

Mingxuan Wang, Zhengdong Lu, Jie Zhou, and Qun
Liu. 2017. Deep neural machine translation with lin-
ear associative unit. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 136–
145, Vancouver, Canada. Association for Computa-
tional Linguistics.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F. Wong, and Lidia S. Chao.
2019. Learning deep transformer models for ma-
chine translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1810–1822, Florence, Italy. Associa-
tion for Computational Linguistics.

Felix Wu, Angela Fan, Alexei Baevski, Yann Dauphin,
and Michael Auli. 2019. Pay less attention with
lightweight and dynamic convolutions. In Interna-
tional Conference on Learning Representations.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, ukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap
between human and machine translation. CoRR,
abs/1609.08144.

Alireza Zaeemzadeh, Nazanin Rahnavard, and
Mubarak Shah. 2018. Norm-preservation: Why
residual networks can become extremely deep?
CoRR, abs/1805.07477.

Biao Zhang, Deyi Xiong, and Jinsong Su. 2018. Accel-
erating neural transformer via an average attention
network. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1789–1798, Mel-
bourne, Australia. Association for Computational
Linguistics.

Biao Zhang, Deyi Xiong, and Jinsong Su. 2018. Neu-
ral machine translation with deep attention. IEEE

https://kheafield.com/papers/edinburgh/wnmt_marian_paper.pdf
https://kheafield.com/papers/edinburgh/wnmt_marian_paper.pdf
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://aclweb.org/anthology/W18-6319
http://aclweb.org/anthology/W18-6319
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://www.aclweb.org/anthology/W18-1819
https://www.aclweb.org/anthology/W18-1819
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.18653/v1/P17-1013
https://doi.org/10.18653/v1/P17-1013
https://www.aclweb.org/anthology/P19-1176
https://www.aclweb.org/anthology/P19-1176
https://openreview.net/forum?id=SkVhlh09tX
https://openreview.net/forum?id=SkVhlh09tX
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1805.07477
http://arxiv.org/abs/1805.07477
https://www.aclweb.org/anthology/P18-1166
https://www.aclweb.org/anthology/P18-1166
https://www.aclweb.org/anthology/P18-1166
https://doi.org/10.1109/TPAMI.2018.2876404
https://doi.org/10.1109/TPAMI.2018.2876404


909

Transactions on Pattern Analysis and Machine In-
telligence, pages 1–1.

Biao Zhang, Deyi Xiong, Jinsong Su, Hong Duan, and
Min Zhang. 2016. Variational neural machine trans-
lation. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Process-
ing, pages 521–530, Austin, Texas. Association for
Computational Linguistics.

Hongyi Zhang, Yann N. Dauphin, and Tengyu Ma.
2019. Fixup initialization: Residual learning with-
out normalization via better initialization. In Inter-
national Conference on Learning Representations.

Xiangwen Zhang, Jinsong Su, Yue Qin, Yang Liu, Ron-
grong Ji, and Hongji Wang. 2018. Asynchronous
bidirectional decoding for neural machine transla-
tion. In Thirty-Second AAAI Conference on Artifi-
cial Intelligence.

Jie Zhou, Ying Cao, Xuguang Wang, Peng Li, and Wei
Xu. 2016. Deep recurrent models with fast-forward
connections for neural machine translation. Trans-
actions of the Association for Computational Lin-
guistics, 4:371–383.

https://doi.org/10.18653/v1/D16-1050
https://doi.org/10.18653/v1/D16-1050
https://openreview.net/forum?id=H1gsz30cKX
https://openreview.net/forum?id=H1gsz30cKX
https://doi.org/10.1162/tacl_a_00105
https://doi.org/10.1162/tacl_a_00105

