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Abstract

Natural language inference has been shown
to be an effective supervised task for learn-
ing generic sentence embeddings. In or-
der to better understand the components that
lead to effective representations, we propose
a lightweight version of InferSent (Conneau
et al., 2017), called InferLite, that does not
use any recurrent layers and operates on a col-
lection of pre-trained word embeddings. We
show that a simple instance of our model that
makes no use of context, word ordering or
position can still obtain competitive perfor-
mance on the majority of downstream predic-
tion tasks, with most performance gaps being
filled by adding local contextual information
through temporal convolutions. Our models
can be trained in under 1 hour on a single GPU
and allows for fast inference of new represen-
tations. Finally we describe a semantic hash-
ing layer that allows our model to learn generic
binary codes for sentences.

1 Introduction

Distributed representations of words have become
immensely successful as the building blocks for
deep neural networks applied to a wide range
of natural language processing tasks (Pennington
et al., 2014). Learning representations of sen-
tences, however, has largely been done in a task-
dependent way. In recent years, a growing body of
research has emerged for learning general purpose
sentence embeddings. These methods aim to learn
a universal encoding function that can map arbi-
trary sentences into vectors which can then be ap-
plied to downstream prediction tasks without fine-
tuning. Much of the motivation behind this work
is to mimic the successful use of feature transfer
in computer vision.

Recently, Conneau et al. (2017) showed that
a bidirectional LSTM with max pooling trained
to perform Natural Language Inference (NLI),
called InferSent, outperforms several other encod-
ing functions on a suite of downstream prediction

tasks. This method could match or outperform ex-
isting models that learns generic embeddings in an
unsupervised setting, often requiring several days
or weeks to train (Kiros et al., 2015). However,
a better understanding of what properties induce a
useful generic embedding remains illusive.

In this work we propose a lightweight version of
InferSent, called InferLite. InferLite deviates from
InferSent in that it does not use any recurrent con-
nections and can generalize to multiple pre-trained
word embeddings. Our method uses a controller
to dynamically weight embeddings for each word
followed by max pooling over components to ob-
tain the final sentence representation. Despite its
simplicity, our method obtains performances on
par with InferSent (Conneau et al., 2017) when
using Glove representations (Pennington et al.,
2014) as the source of pre-trained word vectors.
To our surprise, the majority of evaluations can be
done competitively without any notion of context,
word ordering or position. For tasks where this is
useful, much of the performance gap can be made
up through a stack of convolutional layers to in-
corporate local context. Finally, we describe a se-
mantic hashing layer that allows our model to be
extended to learning generic binary vectors. The
final result is a method that is both fast at train-
ing and inference and offers a strong baseline for
future research on general purpose embeddings.

1.1 Why learn lightweight encoders?

Our proposed model naturally raises a question:
why consider lightweight sentence encoders? If
a generic encoder only needs to be trained once,
why would training times be relevant? We argue
our direction is important for two reasons. One is
inference speed. With a lightweight encoder, we
can encode millions of sentences efficiently with-
out requiring extensive computational resources.
The appendix includes inference speeds of our
models. The second, perhaps more importantly,
is to gain a better understanding of what prop-



4869

erties lead to high quality generic embeddings.
When models take several days or weeks to train,
an ablation analysis becomes prohibitively costly.
Since our models can be trained quickly, it allows
for a more extensive analysis of architectural and
data necessities. Moreover, we include an ablation
study in the appendix that shows even innocent or
seemingly irrelevant model decisions can have a
drastic effect on performance. Such observations
could not be observed when models take orders of
magnitude longer to train.

2 Related Work

A large body of work on distributional seman-
tics have considered encoding phrase and sen-
tence meaning into vectors e.g. (Mitchell and
Lapata, 2008; Grefenstette et al., 2013; Paperno
et al., 2014). The first attempt at using neural net-
works for learning generic sentence embeddings
was Kiros et al. (2015), who proposed a sequence-
to-sequence extension of the skip-gram model but
applied at the sentence level. This method was
taught to encode a sentence and predict its neigh-
bours, harnessing a large collection of books for
training (Zhu et al., 2015). A similar approach,
FastSent, was proposed by (Hill et al., 2016)
which replaced the RNN encoder of skip-thoughts
with word embedding summation. Methods us-
ing RNN encoders tend to perform poorly on STS
evaluations, as shown by Wieting et al. (2015).
Arora et al. (2017) showed a simple weighted bag
of words with the first principal component sub-
tracted, can be competitive on many sentencing
encoding tasks.

Attempts to learn generic encoders with dis-
criminative objectives were considered by Nie
et al. (2017) and Logeswaran and Lee (2018) who
replaced the decoder of skip-thoughts with classi-
fication tasks based on discourse relations and pre-
diction of target sentences from an encoded candi-
date. All of the above methods relied on a large
corpus of unlabelled data. Conneau et al. (2017)
showed that similar or improved performance can
be obtained using NLI datasets as a source of su-
pervisory information. The state of the art sen-
tence encoders utilize multi-task learning (Subra-
manian et al., 2018) by training an encoder to si-
multaneously do well on a collection of tasks such
as NLI, next sentence prediction and translation.

The use of gating for selecting word representa-
tions has been considered in previous work. Yang
et al. (2017) introduced a method for choosing
between word and character embeddings while
Kiela et al. (2018) describe a contextual gating

Feature dataset dim method

Glove Common Crawl 300
News Google News 500 CBOW
Query Google Search 800 CBOW

Table 1: Comparison of word representations used.

method for word embedding selection. Gating
has also been widely applied to multimodal fusion
(Arevalo et al., 2017; Wang et al., 2018b; Kiros
et al., 2018).

Our work is also related to recent methods that
induce contextualized word representations (Mc-
Cann et al., 2017; Peters et al., 2018) as well as
pre-training language models for task-dependent
fine-tuning (Dai and Le, 2015; Howard and Ruder,
2018; Radford et al., 2018). We differ from these
approaches in that we aim to infer a transferable
sentence vector without any additional fine-tuning.

3 Method

Our method operates on a collection of pre-trained
word representations and is then trained on the
concatenation of SNLI (Bowman et al., 2015) and
MultiNLI (Williams et al., 2018) datasets as in
Conneau et al. (2017). Table 1 summarizes the
properties of the embeddings we consider. At a
high level, our method takes as input a collection
of embeddings for each word and learns a gated
controller to decide how to weight each represen-
tation. After encoding each word in a sentence,
the sentence embedding is obtained by max pool-
ing the transformed word representations. Unlike
Subramanian et al. (2018), which learn a shared
encoder in a multi-task setting, we instead fix the
prediction task to NLI but use embeddings ob-
tained from alternative tasks. Figure 1 illustrates
our model.

We begin by defining notation. Suppose we
are given a sentence of words S = w

1
, . . . , w

T

which we would like to encode into a vector.
Let K be the number of embedding types (e.g.
Glove, News, Query) and let Ek denote the word
embedding matrix for type k. Define E

c =
[E1; . . . ;EK ] to be the concatenation of word em-
bedding matrices of all K types.

We break our model description into four mod-
ules: Encoder, Controller, Fusion and Reduction.
In the appendix we include an ablation study that
analyzes the effect of our design choices.
Encoder. The encoder computes M + 1 layers
H

k
0 , . . . , H

k
M for k = 1, . . . ,K embedding types.
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Figure 1: Illustration of the InferLite model. Separate
and Concat refer to the embedding types used.

The first layer is computed as:

H
k
0 = �0,h(W

k
0,hE

k + b
k
0,h) (1)

where W
k
0,gE

k is a time distributed matrix mul-
tiply 1 and �0,h is the activation function. Each
subsequent layer is given by:

H
k
i = �i,h(W

k
i,h ⇤Hk

i�1 + b
k
i,h) (2)

where ⇤ denotes the 1-D convolution operator that
preserves dimensions. Note that if the convolu-
tional filter length is 1, the model reduces to a bag-
of-words encoder. We use ReLU activation func-
tions for �i,h where i = 0, . . . ,M � 1 and a tanh
activation for the last layer �M,h.
Controller. The controller first computes a
shared layer Gc

0 along with M heads Gk
1, . . . , G

k
M

for k = 1, . . . ,K embedding types. The first layer
is computed as:

G
c
0 = �0,g(W

c
0,gE

c + b
c
0,g) (3)

where W
c
0,gE

c is a time distributed matrix mul-
tiply and �0,g is the activation function. Define
G

k
0 = G

c
0, k = 1, . . . ,K. Each subsequent layer

is given by:

G
k
i = �i,g(W

k
i,g ⇤Gk

i�1 + b
k
i,g) (4)

We use ReLU activation functions for �i,g where
i = 0, . . . ,M � 1 and a sigmoid activation for the
last layer �M,g.

1Sometimes referred to as a ”translation layer” (see
https://github.com/Smerity/keras_snli).

Fusion. The fusion layer combines the encoder
and controller layers as follows:

F
0 =

 
KX

k=1

H
k
M �G

k
M

!
+G

c
0 (5)

F = �f (WfF
0 + bf ) (6)

where � denotes a component-wise product,
WfF

0 is a time distributed matrix multiply, �f is
a ReLU activation function and G

c
0 is added as a

skip connection. In the appendix we demonstrate
that the added skip connection is crucial to the suc-
cess of the model.
Reduction. The final reduction operation simply
applies max pooling across tokens:

s = maxpool{F}T (7)

resulting in a sentence vector s. This resulting vec-
tor corresponds to the embedding for which we
evaluate all downstream tasks with.

For training on NLI, we follow existing work
and compute the concatenation of the embed-
dings of premise and hypothesis sentences along
with their componentwise and absolute difference
(Conneau et al., 2017). This joint vector is fed into
a 2 hidden layer feedforward network with ReLU
activations, followed by a softmax layer to predict
whether the sentence pairs are neutral, entailed or
contradictory. After training on NLI, the weights
of the model are frozen and used for encoding new
sentences.

3.1 Relationship to other work

Our model shares similarities to two other
works, namely the gated convolutional layers from
Dauphin et al. (2016); Gehring et al. (2017) and
van den Oord et al. (2016). There are three main
differences: 1) we generalize to multiple embed-
ding types 2) we only apply gating at the end of
the last layer as a way of weighting all embedding
types (instead of each layer) and 3) we use a skip
connection from the controller’s transformed in-
put to the fusion layer. We note that our encoder
module can be reduced to the gated convolutional
encoder in van den Oord et al. (2016) if we use
one embedding type, remove the time distributed
layers and only use a single convolutional layer.

3.2 Semantic hashing

We can augment a semantic hashing (Salakhut-
dinov and Hinton, 2009) layer to InferLite as a
way of learning binary codes for sentences. Bi-
nary codes allow for efficient storage and retrieval

https://github.com/Smerity/keras_snli
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(a) NLI: no context (Conv length 1). (b) NLI: with context (Conv length 3).

Figure 2: NLI accuracy using models that (a) have no context (convolution length of 1) and b) local context
(convolution length of 3). Performance is reported on the concatenation of SNLI and MultiNLI development sets.
G stands for Glove, N stands for News and Q stands for Query embeddings.

over massive corpora. To do this, we append the
following layer:

h(s) = �

⇣
LN(Wxs+bx)

⌧

⌘
(8)

where LN is Layer Normalization (Ba et al.,
2016), � is the sigmoid activation and ⌧ is a tem-
perature hyperparameter. We initialize ⌧ = 1 at
the beginning of training and exponentially decay
⌧ towards 0 over the course of training. At infer-
ence time, we threshold at 0.5 to obtain codes. We
found Layer Normalization was important for ob-
taining good codes as otherwise many dead units
would form. In the appendix we include down-
stream performance results for 256, 1024 and
4096-bit codes. The combination of fast infer-
ence and efficient storage allows InferLite to be an
effective generic encoder for large-scale retrieval
and similarity search.

4 Experiments

We use the SentEval toolkit (Conneau and Kiela,
2018) for evaluating our sentence embeddings. All
of our models are trained to optimize performance
on the concatenation of SNLI and MultiNLI, us-
ing the concatenated development sets for early
stopping. We use 4096-dimensional embeddings
as in Conneau et al. (2017). We consider encoders
that use convolutional filters of length 1 (no con-
text) or length 3 (local context), with a stack of
M = 3 convolutional layers. All word embed-
dings are pre-trained, normalized to unit length
and held fixed during training. Full hyperparam-
eter details are included in the appendix, includ-
ing an ablation study comparing the effect of the
choice of M .

We first analyze performance of our model on
NLI prior to evaluating our models on downstream
tasks. Figure 2 shows development set accuracy
on NLI for models with and without context, using
various feature combinations. Here we observe
that a) using local context improves NLI perfor-
mance and b) adding additional embedding types
leads to improved performance.

Tables 2 and 3 show results on downstream
evaluation tasks. Here several observations can
be made. First note the effectiveness of the basic
(glove,1) model, which is essentially a deep bag-
of-unigram encoder. We also observe our models
outperform all previous bag of words baselines.
Next we observe that adding local context helps
significantly on MR, CR, SST2 and TREC tasks.
Furthermore, fusing embeddings from query and
news models matches or improves performance
over a glove-only model on 12 out of 15 tasks. Our
(glove+news+query,3) model is best on 5 tasks
and is a generally strong performer across all eval-
uations. Finally observe that our models signifi-
cantly improves over previous work on STS tasks.

Next we compare training times of our mod-
els to previous work. All of our models can be
trained in one GPU hour or less. QuickThoughts
and InferSent can be trained on the order of a day
while Multitask requires 1 week of training. This
demonstrates the trade-off of these approaches.

In the appendix we include results from sev-
eral other experiments including COCO image-
sentence retrieval, downstream performance of
InferLite with semantic hashing and results on
10 probing tasks introduced in Conneau et al.
(2018). We also do an extensive ablation study
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Model MR CR SUBJ MPQA SST2 TREC MRPC time (h)

Glove BOW (Conneau et al., 2017) 78.7 78.5 91.6 87.6 79.8 83.6 72.1/80.9 0
USE-D (Cer et al., 2018) 74.5 81.0 92.7 85.4 77.6 91.2

ST-LN (Ba et al., 2016) 79.4 83.1 93.7 89.3 82.9 88.4 ⇠ 720
DisSent (Nie et al., 2017) 80.1 84.9 93.6 90.1 84.1 93.6 75.0/
InferSent (Conneau et al., 2017) 81.1 86.3 92.4 90.2 84.6 88.2 76.2/83.1 < 24
USE-T (Cer et al., 2018) 81.4 87.4 93.9 87.0 85.4 92.5
QuickThoughts (Logeswaran and Lee, 2018) 82.4 86.0 94.8 90.2 87.6 92.4 76.9/84.0 ⇠ 24
Multitask (Subramanian et al., 2018) 82.5 87.7 94.0 90.9 83.2 93.0 78.6/84.4 ⇠ 168

glove,1 79.6 82.2 92.0 89.5 83.0 88.2 75.5/82.7 ⇠ 0.3
glove+news,1 79.0 82.7 92.1 89.8 83.7 89.2 76.9/83.7 ⇠ 0.5
glove+query,1 79.0 83.2 92.2 89.6 83.3 89.4 75.8/83.0 ⇠ 0.5
glove+news+query,1 78.8 82.2 92.0 89.6 83.0 89.2 76.7/83.5 ⇠ 0.7

glove,3 80.9 84.1 92.4 89.6 85.8 90.0 76.5/83.4 ⇠ 0.5
glove+news,3 80.4 84.8 91.9 89.7 86.3 89.8 77.0/83.9 ⇠ 0.7
glove+query,3 80.1 85.6 92.2 89.4 84.7 91.0 76.4/83.3 ⇠ 0.7
glove+news+query,3 80.4 85.6 92.2 89.9 85.0 91.2 76.1/83.3 ⇠ 1

Table 2: Comparison of embedding methods on downstream evaluations. Each set of results is a) bag-of-words b)
RNN and Transformer c) ours, filter length 1 and d) ours, filter length 3. Last column is training time in hours.

Model SICK-R SICK-E STSB STS12 STS13 STS14 STS15 STS16

Glove BOW (Conneau et al., 2017) 80.0 78.6 52.5 42.3 54.2 52.7
GloVe + WR (Arora et al., 2017) 86.0 84.6 56.2 56.6 68.5 71.1

ST-LN (Ba et al., 2016) 85.8 79.5 30.8 24.8 31.4 31.0
InferSent (Conneau et al., 2017) 88.4 86.3 75.8/75.5 59.2 58.9 69.6 71.3 71.4
Multitask (Subramanian et al., 2018) 88.8 87.8 78.9/78.6 60.6 54.7 65.8 74.2 66.4

glove,1 88.3 85.9 78.1/78.0 62.4 60.4 71.6 74.6 70.3
glove+news,1 88.5 86.7 78.0/78.1 63.0 58.8 71.2 74.2 70.2
glove+query,1 88.5 86.0 77.1/77.1 63.1 56.8 70.9 74.1 70.3
glove+news+query,1 88.6 85.9 77.7/78.0 63.9 58.1 70.9 73.6 69.8

glove,3 88.1 85.5 78.4/78.3 61.9 61.3 71.7 74.5 71.2
glove+news,3 88.5 86.6 77.5/77.4 61.7 59.5 71.0 73.9 71.6

glove+query,3 88.6 86.5 78.1/78.3 61.8 61.3 71.8 74.3 70.1
glove+news+query,3 88.7 87.2 77.1/77.1 63.1 58.6 71.7 73.8 70.1

Table 3: Comparison of embedding methods on downstream evaluations. Each sets of results are a) bag-of-words
b) RNN encoders c) ours, filter length 1 d) ours, filter length 3. Best results bolded. Our best results underlined.

of model components and illustrate gate activa-
tion values qualitatively for sentences from the
(glove+news+query,3) model.

4.1 Limitations

We also experimented with additional embedding
types, including Picturebook (Kiros et al., 2018),
knowledge graph and neural machine translation
based embeddings. While adding these embed-
dings improved performance on NLI, they did
not lead to any performance gains on downstream
tasks. This is in contrast to Subramanian et al.
(2018) who showed adding additional tasks in a
multi-task objective led to better downstream per-
formance. This demonstrates the limitations of
solely using NLI as an objective, even if we trans-
fer embeddings from additional tasks.

5 Future Work

In future work, we would like to explore using
contextualized word embeddings, such as CoVe
(McCann et al., 2017) and ELMo (Peters et al.,
2018), as input to our models as opposed to non-
contextualized representations. We also intend
to evaluate on additional benchmark tasks such
as GLUE (Wang et al., 2018a), explore using
the learned word representations as contextualized
embeddings and perform downstream fine-tuning.
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